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PREFACE

Soon after its founding in 1952, the Advisory Group for Aerospace Research and
Development recognized the need for a comprehensive publication on flight test techniques
and the associated instrumentation. Under the direction of the AGARD Flight Test Panel
(now the Flight Mechanics Panel), a Flight Test Manual was published in the years 1954 to
1956. The Manual was divided into four volumes: I. Performance, I1. Stability and Control,
111, Instrumentation Catalog, and IV. Instrumentation Systems.

Since then flight test instrumentation has developed rapidly in a broad field of sophisti-
cated techniques. In view of this development the Flight Test Instrumentation Group of the
Flight Mechanics Panel was asked in 1968 to update Volumes III and IV of the Flight Test
Manual, Upon the advice of the Group, the Panel decided that Volume III would not be
continued and that Volume IV would be replaced by a series of separately published mono-
graphs on selected subjects of flight test instrumentation: The AGARD Flight Test
Instrumentation Series. The first volume of the Series gives a general introduction to the
basic principles of flight test instrumentation engineering and is composed from contributions
by several specialized authors, Each of the other volumes provides a more detailed treatise
by a specialist on a selected instrumentation subject. Mr W.D.Mace and Mr A.Pool were willing
to accept-the responsibility of editing the Series, and Prof.D.Bosman assisted them in editing
the introductory volume. In 1975 Mr K.C.Sanderson succeeded Mr Mace as an editor. AGARD
was fortunate in finding competent editors and authors willing to contribute their knowledge
and to spend considerable time in the preparation of this Series.

It is hoped that this Series will satisfy the existing need for specialized documentation
in the field of flight test instrumentation and as such may promote a better understanding
between the flight test engineer and the instrumentation and data processing specialists. Such
understanding is essential for the efficient design and execution of flight test programs.

The efforts of the Flight Test Instrumentation Group members (J.Moreau CEV/FR,
H.Bothe DFVLR/GE, J.T.M. van Doorn and A.Pool NLR/NE, E.J .Norris A&AEE/UK,
K.C.Sanderson NASA/US) and the assisiance of the Flight Mechanics Panel in the prepard-
tion of this Series are greatly appreciated.

F.N.STOLIKER

Member, Flight Mechanics Panel
Chairman, Flight Test
Instrumentation Group
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SUMMARY

At first sight, the presence of a Volume concerned with the analysis of random data in &
series devoted to flight test instrumentation may appear to be extraneous. However, the
availability of powerful computing facilities, both on-line and off-line, for processing experimental
data means that the flight test engineer has great flexibility in choosing the dividing line between
“hard wired” and “soft” signal conditioning equipment (the former is normally carried aboard
the test vehicle, whilst the latter may be incorporated in the ground equipment), Further, the
techniques described in this Volume are being used increasingly to extract meaningful informa-
tion in situations where more conventional test and analysis techniques are inappropriate. It
therefore follows that the “softwars™ tools which are represented by such techniques are just
as important to the modern flight test engineer as the hardware used to detect and collect the

necessary measurements.

1t is not intended that this Volume should be a reference document for the specialist
analyst who is required to generate the software for analysing random data; a number of
excellent publications exist which satisty this requirement admirably (for example (reference
0.1, 0.2 and 0.3)). Ratherit s intended to introduce the non-specialist both to the possibi-
lities and to the fundamental limitations of those techniques which are most frequently
encountered. For this reason the author has attempted to present mainly heuristic explana-
tions of the techniques in the main body of the text, and has confined the more detailed
mathematical treatments to appendices. A second, and equally important, objective of the
Volume is to emphasise the strong interaction between the various elements and facts of a

measurement programme.

In essence, the contents of’ this volume are intended as a “guide” to the analysis
techniques which are available to the flight test engineer for analysing random data, and to
the requitsments and constraints which mey be imposed upon the selection of hardware and
the design of a trial if meaningful information is to be gained from the measurements

gathered during a trial,
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THE ANALYSIS OF RANDOM DATA
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D.A. WILLIAMS

cranfield Institute of Technology.,
Cranfield,
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CHAPTER 1 PRE~PROCESSING

l.1 Introduction

The validity of an interpretation of the results obtained from any £1light trial is crit=-
ically dependent upon the fidelity of the measurements., This in turn depends upons3

- the selection of appropriate transducers, signal conditioning and recording

equipwent
- the determination of total measurement systém static
ics for each parameter

and dynamic characterist-

- gelecting suitable gsensitivities for all elements in the measurement chain for

each measuresment

- the correct siting and mounting of the transducers

- the correct functioning of the cgmplete measurement system

It is the author's experience that of the items listed above, the first often receives

least attention. This is, perhaps, because instrumentation is considered to be a "black
ecause a large and expensive meagsurement

art" and best left to a specialist. Oz, perhaps, b

system already axists 1t is easier to risk using this than it is to demand one which

is more appropiiate to the task in hand. In any event, it is unlikely that a flight trial
will prove guccessful unless appropriate instrumentation is used; and nobody is in a better
position to specify the requirements for this than the engineer who is going to interpret

the results.

r an instrumentation system which is suitable for
gathering random data? The answer to this question will depend upon the application.

Random signals may occur as a result of, for example, navigation errors, ILS approach

path errors, structural loads resulting from take off and landing or £light in atmospheric
turbulence, excitation by turbulent boundary layers or power plant exhausts, through to
radio frequency interference. tach may be of interest to at least one discipline involved
in the design of a f1light vehicle, and each may make different demands of an instrumentaciun
system, In each case, however, thd gort of questions which need answering before an ade~

quate instrumentation system can be defined are:

What, then, are the requirements fo

- 48 it possible to measure all the parameters of interest?

pessible to derive them from other meagurements?
or on the ground during

- 4f not, 1is it

- should this derivation be effected in real time,
analysis?

- what type of analysis is to be performed on the regults?

- what frequency bandwidth is required?

- how many channels are required?

- ig it possible to condition the experiment so as to reduce the number of

meagurament parameters?
- how long do the records need to be?
- what is the likely maximum signal level to be encountered?

- is the presence of the transducers and/or the instrumentation systen likely
to affect wmoteslally the paramatexs of interest?

- are variations in the paramstars of interast li%ely to affest the output of
the transducers in an indirrcc way (e.g. prersure transducers ure sensitive
to acceleration, jet effluxes generate accelerations; great care is needed
to measure the pressure fluctuations of jet effluxes correctly)?

T R PR T ¥ 24
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- are steady state levels important?
- ig it necessary to filter the signals before sampling?

- are inter-channel phase relationships important?

- what sort of environment will the measurement egquipment be subjected to?

- ara the transducers outputs likely to be affected by uncontrolled environ~

mental factors?

- does this mattex?
- how are the measurement units to be transformed into physical units?

It is not within the scope of this Volume to discuss in detail all, or even many,

6f the questions posed above in relation to the measurement of random data. However,
the analysis techniques described in Chapter 2 are performed upon the end produtt of
what is often a vexy long chain of decisions and events, all of which can affect the
validity of the results obtained. The present section is devoted to'matters which may
pe looked upon as forming the interface between the raw measurements and the analysis

proper .
1.2 Recording and Recovery of Random Signals

pata gathered during flight trials may be handled in a verxy large number of ways. Some
of those which are available from commercial sources are shown in figure 1,1. The range
is so wide, and each technique is so expensive to implement, that the luckless engineer
faced with the task of choosing a system can find it very difficult to arrive at a
decision. His problems are exacerbated by the fact that each type of system has charac-
teristics which are beneficial in some applications, but which can create difficulties

in others.

or encounteré a asimilar kxind of dilemma when faced with

the task of describing techniques which are available for handling random signals. His
difficulties arise from the fact that random signals are of interest to all engineering
digciples ranging from radio technology with signals of many millions of Hertz to fatigue
investigations in which “cycles" can last for several hours. Further, the capabilities

of some techniques are increasing very rapidly: the packing density potential of commer-
cially available maynetic tape racorders, for example, has recently been increased by a
factor of ten, and ideas currently under development threaten to increase this by at least

another order of magnitude.

It has to be stated that an auth

In the event, rather than examining particular applications areas, this author has chosen
to classify, in fairly broad terms, the technigues which are available for handling experi-
mental information, to discuss the characteristics of each technique as it may affect the
handling of random signals, and to indicate possible applications areas in the general field

of flight testing, .

Data

Magnetic Tape Telemetry Trace On=-bhoard

Recorring Transmission Racording Processing
\ : l | Meters
Diract bDigital Auto-obLerver
Frequency FM/FM
Modulation
(FM)

FM/FM PAM PDM PCM

Figure 1.1 Methods of Recording and/ox
Transmitting Flight Test Data




l.2.1. Analogue Magnetic Tape Recording

Magnetic tape provides the means for recording a large quantity of information in a very
small volume onto a relatively permanent medium. Moreover, it is possible to recover in~
formation stored in this way directly in the form of electrical signals which can be fed

to electronic analysis equipment without a great deal of difficulty. These are the feat-
ures which make magnetic tape recorders so attractive to the flight test engineer when he
is required to record flight trials information. In all other respects, magnetic tape is
an uniikely medium for flight trials work. For example, recorders are complex and expcn-

' sive devices which do not like operating in less than ideal conditions -~ they are sensitive
} to vibration, dirt and extremes of temperature, pressure and humidity. FPurtier, they are

. incapable of recording directly information having frequencies less than several tens of

' Hertz. PFinally, it is not possible to visualise recordings without recourse to’ additional

{ expensive equipment. Despite these drawbacks magnetic tape recordars are now used almost
universally for recording flight test information. It is therefore essential that engin-
eers are familiar with the characteristics associated with magnetic tape and with the
various techniques which can be used to encode information onto the medium, This Section
is devoted to those encoding techniques which are generally classified as *analogue”,

Direct recordiing is, as the name implies, the process of recording analogue voltages
directly onto magnetic tape, with the additicn only of a very high frequency bias current
to linearise the properties of the medium. It is the technique which is used in the
' majority of domestic audio recording equipment, largely because it affords the greatest
. frequency bandwidth for a given tape speed. However the technique has three major draw=-
i backs which make it highly unpopular for measurement purposes. Flrstly the apparent amp-
1itude of a recorded signal is affected by time, tape-head contact, and by the lateral
. positioning of the tape relative to the raplay head, Secondly it is necessary to “equa-
lige® (filter to correct inherent variations in the frequency response characteristic)
recoverad signals = in the measurement context a very inexact process. Finally, as noted
in -Section 1.2.1., the medium is incapable of recording slowly varying signals.

t
\
|
|
! 1.2.1.1. Direct Recording
}
{
|

The technigue is of rather poor fidelity with accuracies quoted in decibels (normaliy a
sure sign that all is not well). Therefore, despite its use in “Hi Fi" audio aystems, it is
not to be recommended for measurement purposes, unless the frequency bandwidth of interest
is such that no other recording technique can be used. At the present time this implies

an interest in frequencies in excess of 500 KHz.

1,2.1.2. Frequency Modulation Recoxding

The requirement to record signals with a reasonable dagree of fidelity down to gteady
state levels can be satisfied by frequency modulation (FM) recording. The technique uses
a voltage-controlled oscillator to convert the "instantaneous® value of a signal to an

i, *instantaneous" fregquency prior to recording on magnetic tape. It follows that, provided
g only that the frequency of the recorded signal can be detected, then the original un-
distorted signal can theoretically be recovered, irrespective of the distortions intro-
duced by the recording medium.

-

Separate channels of data may be recorded on separate tracks of a iulti-track tape rec-
order (up to eighty have been racorded on one inch wide tape). In this application mod=-
ulations in frequency of up to forty percent of centre frequency are used to desvribe the
amplitude variations of a signal., An increased numberx of recording channels may be accom-
modated by frequency multiplexing (FM/FM) up to eight channels onto each recorder track.
In this case it is necessary to reduce the maximum allowable frequency dsviation and to
' assign a different frequency band to each channel. Since the maximum bandwidth of a data
! channel is directly proportional to centre frequency, this has the aeffect of varying the
data bandwidth between one channel and the next. FPor this reason the FM/FM technique is
no longer widely used for recording random data.

o

The penalties of using FM as a recording (rather than transmission) technique are that
the fidelity of tha recording becomes critically dependent upon the stability of tape
speed as it passes the record (and/or replay) heads, and that the "packing density"
(maximum number of effective data cycles per unit length of tape) is only a tenth of
that which can be achieved by direct recording.

s bt s e LIRS
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The importance of recorder speed stability can be demonstrated by analogy with a chart
recorder, If the pen of the recorder is made to oscillate at a constant frequency, then

a sinusoid will be traced on the paper produced by the recorder when the paper travels

at a constant speed. The distance, measured along the paper, between one peak and the
next will be directly proportional to paper speed. If the paper speed varies without the
knowledge of the user, then the frequency of the sinusoid will appear to vary. If the
apparent frequency is to be interpreted as being proportional to the amplitude of a signal,
then that amplitude will appear to vary. This is exactly analogous tc the gituation where
signals are recorded on magnetic tape using frequency modulation.

Very precise tape speeds are achieved in instrumentation standaxd recorders either by
using large flywheels (the Ampex AR 1200 used a flywheel weighing over 20kg) or by using
tight servo control of the speed of a capstan (and consuming a lot of power). In applic~
ations where size and weight are critical, and where the recorder must be powered by a
battery, neither of these stabilising techniques is apprupriate. 1In such applications the
recorder must be set to operate as best it can, and the hard work of recovering the rec-
orded signal must be performed in the laboratory after flight.

A very good technique for recovering signals from frequency modulated information record-
ed under conditions where the tape speed is liable to vary uses the principle that a dir-
ectly recorded signal of known frequency can be used to monitor the tape speed. If such

a signal is recorded at the same time as the data, then it can be demodulated in the same
way and the resuliing time history used to remove speed induced amplitude changes in the

data signals. For the system to be effective over the whole frequency band, the follow-

ing rules should be followed:

- the reference frequency should be of a similar value to the centre frequencies
of the data modulators

- the output filters of all demodulators should be closely matched to limit
phase errors between channels

- a roference track must be recorded on each stack of a multi~-head tape record-
er

- tape motion past the heads must have a low dynamic skew for accurate compen=
sation

- best results are obtained when the azimuth of the replay head stack is matched
to that of the recorder

A diagram of a "true® speed compensator is shown in figure 1.2. An illustration of the
performance which can be achieved by the tape recorder is shown in figure 1.3. It may
be seen that peak-to-peak errors of over forty percent (more than half the nominal range
of the recorder) can be reduced to barely perceptible levels using this type of compen-
sation. The particular recorder used to obtain the results shown in figure 1.3. was a
lightweight recorder consuming approximataly 2 amps at 23V DC. Its performancs vhen
operating in a severe environmant compares favourably (after compensation} with laborat-
ory standard instrumentation recorders.

A simplified form of speed compensation is offered by several manufzcturers of instrum-
entation recorders in which it is assumed that the amplitude error caused by speed devi-
ation is additive.

It is easy to demonstrate that this asgunmption is invalid, except at one data modulation
frequency. The method does achieve a significant reduction in speed induced errors, but
the author has found that the performance of systems using this method is generally
inferior to that which can be achieved by *true" compensation.

In summary, frequency modulation allows magnetic tape recorders to be used as an accur-
ate data recording medium, but the penalty is a decreased recording density and a great-
er complexity in tape trangports and/or signal recovery equipment. FM tape recorders
are however uged almost universally for recording randon signals in the frequency range
from zero to 500KHz,
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1.2.1.3, Digital Recording.

When data gathered in flight is to be analysed digitally, it is natural to consider the
possibility of making the tape recnrder completely transparent. This may be achieved by
sarpling and digitising the analogue signals at source and recording the digital informa~
tion on magnatic tape in a format which can be read by a digital computer either directly
(computer compatible) or indirectly, via an interface.

At the present time standard computer compatible recording formats are rarely used, for a
number of reasons:

- data must be recorded on tape in discrete blocks., This can oniy be achieved
by using a pair of iunterleaving storage buffers.

- computer tape recorders normally include hardware which prevents a block
being read if it contains an erxor. :

- computer standard packing densities are normally much lower than can be
achieved technically. '

A great many recording formats which are not, in general, computer compatible are, how-
ever, available commercially. Discussion of these is beyond the scope of the present
manual; the interested reader is referred to References l.1. and 1l.2,, for example.

All digital recording techniqgues employ the principle of sampling a number of analogue
signals mequentially, digitising each sample, and encoding the resulting digital value
prior to recording the information onto magnetic tape.

Provided that the record quality is sufficient to enable each recorded "bit®™ to be recov-
ared, then the recording and replay processes are completely transparent (i.e, there is
no difference between the recorded and recovered data,) This feature is unique to digital
recording and makes the technigue very attractive to £light test engineers. It is inevi-
table that the technique has disadvantages. These include: .

- additional electronic equipment must be carried in the aircraft.

- the packing density of information is much lower than can be achieved
with FM recorders.

- it is sometimes necessary to have a prior knowledge of the gsignal levels if
the bust use is to be made of limited resolution digitisers.

- a tape recorder having good tape speed stability is normally required.
- data sampling can cause difficulties (see Section 1.3.)

- complex and expensive equipment is normally required in order to recover
£light records.

As a general rule, digital recording techniquez aie used for signals which vary compara-
tively slowly with time and which have known anmplitude bounds. In the context of random
phenomena, they can be used to good affect for monitoring navigation errors, rigid body
aircraft wotion and, perhaps, flexible aircraft responses up to frequencies of several
tens of Hertz. They are not at present suitable for recording acoustic signals, boundary
layer pressure fluctuations, or engine induced vibrations. N

1.2.1.4, Telemetry.

Telemetry has been used for many years for transmitting measurements from flight' vehicles
which must be controlled remotely and/or which are unlikely to be recovered. MNore
recently, the high cost of flight testing has made the tachnique viable for normal air-
craft f£light trials, when the potential for "on=1line" analysis and display can enable
the flight envelope to be explored more rapidly. However the technique remains very
costly to implement and‘'may rxestrict unduly the flexibility of £light trials since the
aircraft must remain within range of a ground receiving station during the time measure=-
ments are required. The interested readsr is referred to References 1.3, and 1.4, for
reviews of telemetry techniques.
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Telemetry transmission gives the engineer the capability of processing random information
*on-line” to obtain statements about the quality of data being received. Statements nf
the peak, mean and RMS (root mean square) values of each channel are normally sufficient
to satisfy this requirement. It is unlikely that the computing power necessary to make
more detailed on-line statements about thc data could be justified except in particular
situations where the aircraft may be at risk, for exanple during flight flutter trials.

1.2.1.5. On=board Processing.

The arrival of the ubigquitous microprocessor, oY microcomputer, has greatly reduced the
size and cost of providing on~board processing capabilities, and it is certain that such
gystems will be used increasingly in multi-seat aircraft where telematry is impractical.
However the environment on board an aircratt is not conducive to decision making, so that
the major application of on~board processing is to provide for relatively simple assess-
ments in order to ensure that information of suitable quality has been obtained. Where
random data is of interest, then useful on-board processing is likely to be restricted
to estimates of peak, mean and RMS values for each data channel. The task of processing
the measurements in detail is likely to remain firmly ground-basged.
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1.3, Analogue Pee-processing

Signals which have been transmitted from an aircraft or recorded in flight in an anal-
ogue format are normally recovered prior to analysis as continuous signals vhose volt-
ages are proportional to the chysical parameters under investigation with the addition,
parhaps, of measurement and reconstruction noise. They may then be processed using
analogue, or pseudo-analogue, equipment. Alternatively, and this is the usual case,
they may be sampled and coverted to a digital seguence in preparation for analysis

using a digital computer.

signala which are recovered in this way have the characterimtics that they are "soft®,
that is, no two attempts at recovering the signals produce identical results., Such a
characteristic is caused by noise injection and/or fluctuations in sensitivity and off-
set of the recovery equipment. The cbvious disadvantage of this characteristic is
compensated for by a number of advantages which are afforded by analogue recording,

These include:

- the recovery equipment can be optimised so as to recover successfully signals
that would otherwise be lost (due to over modulation, for example)

- signals can be filtered and/or amplified to make best possible use of the
available processing equipment

- the aguisition parameters can be varied to suit the requirements of a part-
icular recording

The subject of this Section is the pre=processin
g tecnniques which can be used with
analogue signals to maintain that the best possible analysis fidelity.

1.3.1, System Calibration

————

The "soft" nature of analogue recording systems has been the stimulus for considerable
ingenuity in generating in~flight system calibration signals. At worst such signals
allow the record/replay/acquisition system to be calibrated prior to analysic. In their
most sophisticated form they allow the performance of the complete measurement system to

be monitered automatically during flight.

System calibration signals recorded on the data tape can take a variety of forms, in=-
cluding:

- multiple steady~state levals
- sine waves of constant amplitude

- gquare waves of constant amplitude
Examples of typical calibration signals are shown in figure 1.4.

The type of signal chosen for any particular application depends upon tradition and/ox
upon tha nature of the transducers employed and their associated signal conditioning
equipment. It is certain that the most satisfactory calibration signal uses multiple

steady state levels of known amplitude expressed in physical units. In this case the
zero offget, sensitivity, and sign of each signal channel can bs estimated with no ambi-

guity .

The interpretation of sine wave calibration signals presents some &ifficulty. The per—
ceived laevel of a sine wave may be estimated by:
- computing the RMS amplitude of the fundamental frequency component

- computing ¢he RMS amplitude of the fundamental and harmonics of the sine
wave (both of these can be cbtained from the power spectral density)

- computing the average of successive peak-to=peak excursions (the peaks must
be wall defined)

- gomputing the amplitude probability density of the signal
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i The four methods outlined above will, in general, yield four different estimates for the

A RMS value of the signal. The most appropriate therefors, is the method which most closely
: : resembles that used to define the level of the signal prior to recording, provided that
. . all of the intervening measurement and recording alements are linear. in the absence

1 : of other information the most satisfactory method s the first, provided that supporting
information regarding the amplitudes of the harmonics and overall noise levels is also

presented.

- : Square wave calibration gignals can be processed in a manner similar to sine waves.
L - However, filters are used to recover the modulated analogue signals., These will supp-
! ress higher harmonics of the square wavas and may give rise to overshoot of the signal
: after each transition. Therefore the only satisfactory method of estimating the peak
levels of a square wave calibration signal is to use its amplitude probability density.

It is, in general, possible to estimate neither the sign of the scale factor nor the value
of the zero offset [rom sine or square wave calibration signals.

i Multiple steady state calibration levels can be interpreted by associating the average
value of each level with the physical value assigned to that level. Both the zero off-
set and sensitivity of the channel can then be computed by regression analysis of the
results. Examples, both good and bad, of the results of this type of analysis are shown

b in figures 1.5. and l.6.
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Figure 1.4, Examples of Recorded System
Calibration Signals
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1.3.2. Analogue Filtering

Analogue filters have been used for conditioning random signals prior to analysis for a
very long time. In particular, ¢arly analogue spectral analysexs possessed a very limited
dynamic range and it was common practise to *pre=-whiten" random signals (g.v. reference
1.5.) to obtain satisfactory results. The objective of this process was to modify the
characteristics of a signal to obtain, so far as wvas possible, a band-limited white noise
spectrum. Provided that the modification was effected by filters having precisely known
characteristics, then the spectrum of the original signal could be reconstructed by

weighting the computed spectrum.

Modern analysis equipment has bought with it a dramatic improvement in dynamic range, and
this has led to a widespread belief that conditioning filters of this sort are no longer
necessary. However it should be remembered that modern analysis equipment has also per—
mitted a greatly increased frequency resolution, more than a hundred times the resolution
of early analysers, and applications still exist in which significent improvements can be
effectsd by the use of simple pre-whitening filters.

In fact, all commercially available spectral analysers permit the user to condition
signals in a simple way by high pass filtering. The filters are provided mainly to in=-
hibit the acquisition of large signal offsets, but they have the additional character-
istic of suppressing low frequency signals which may be of no interest to the analyst.
Such high pass filters are in essence, simple pre-whitening filters, and computed spectra
can be corrected to remove their effects.

1.3.3. Gain Adjustment

It frequently happens that the levels which may be attained by measured parameters during
a flight trial are unknown prior to the trial. When this is the case, then it is common
practice to set the channel sensitivities to a conservative value to ensure that over-
ranging does not occur. As a rgsult the analyst is sometimes called upon to extract in-
formation from signals having a maximum value which is only a small proportion of the
available recorder rangs. In this event it is normal to amplify the signal level before
sanpling or analysis so as to make best possible use of the analysis equipment. The
analysis results must, of course, be adjusted to take account of the resulting changes

in sensitivity and, if appropriate, signal offset.

Measurement system noise (400Hz breakthrough, recordes rasonances, etc.) is often pre-
dominantly narrow band. Hence when the processing involves spectral analysis, very small
signals can be analysed in a meaningful way provided that the inherent system noise char-
acteristics are known (by analysing a record which contains no signal, for instance).

The author has, on occasion, amplified recorded signals destined for spectral analysis s
by more than 40dB (100 times) with no apparent detriment to the results.

Amplifiers used for mensitivity adjustment should have, ideally, switched gain settings
which are known accurately. They should possess an adequate frequency bandwidth and,
particularly when jnter-channel time delayz are important, should have matched phase
characteristics. All of these parameters must be measurad; experience has shown that it
is not sufficient to xely upon manufacturers' specifications.

1,3.4. Tape Speed Compensation

Analogue tape recorders are not perfect instrusents, The spead at which tape passas the
rocord or replay head may be affected by vibration, temperature, supply voltage, and even
the amount of tape on the take-up reel. Tape speed variations can cause sampling time
“jyitter" and, if frequency modulation is used, signal amplitude fluctuations. A method
by which speed dependent amplitude £luctuations can bs reduced has been described in
Section l1.2. It remains to consider the problem of time jitterx.

Time jitter is important when a record is being exanined in detail to establish precise
frequency information or to estimate accurate inter=channel phase characteristics. In
such situations the resolution of the racord can be limited by frequency smearing caused
by jitter. Hore seriously, freguency and phase information may be biased if the tape
speed is consistently different from nominal.
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When a record is to be analysed digitally, then the effects of time jitter may be reduced

significantly by using a referance track (it can be the same track as that required for
amplitude compensation) to produce sanpling clock pulses. This causes data samples to be
time. However, drop outs in the

obitained at points relatéd to recoxd, rather than replay,
refersnce track can cause a degradation of the analysed results, rather than the hoped

for improvement. When this happens, the insertion of a phase-locked oscillator (PLO)
between the sampling clock and the pulse shaping circuit can restore mattars to a degree.
The phase-locked oscillator will "flywheel” over dropout areas, thereby ensuring that no
data is lost. It is to be noted that a PLO should be used only when refarence track
drop~outs are a problem, because of its finite response tims to tape speed changes and
because the phasa of its output relative to the reference frequency changes with the value
of that frequency. A typical circuit is shown in figure 1l.7.

Certain tape recorders offer a “"tape servo® facility which allows the replay speed to be
locked to a reference track. This facility can be used to limit the more extreme taps
speed fluctuations, but the control loop frequency bandwidth is generally insufficient

to remove the effects of time jitter completely.

When analogue eguipment is to be used te analyse a record, then tape speed induced time
jitter can be reduced by using a FIFQ (firast in, first out) buffer. Signals output by

the tape racorder are sampled, digitised and input to the buffer under the control of a
recorded reference frequency. Samples are then output from the buffer and passed to a
digitale-analogue converter under the control of a local oscillator. The arrangement is

shown in figure 1.8.

vhe scheme works provided that the buffer is sufficiently long and provided that the
average clock rates are identical.

REFERENCE PHAGE - RE
e el . \
FREG JENCY GENSITINE veo OUTPUT

L

Figure 1.7. Schematic of a Phase-Locked Oscillator.
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Figure 1.8. A Circuit to Remove Time Jitter
From Analoyue signals.
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1.4, Sampling
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The majority of parameters of interest to the flight test engineer occur naturally as

_ continucus functions of time. If the parameters are to be processed by a digital

) ! computer, and this is now normally the case, then the parameters must, at soma stage, be

' converted into a se:t of digital numbers, each number representing the value of a parti-

] { cular parameter at a particular instant of time. The resulting sequence of numbers is
A ' referred to as a sampled time history or data sequence. Usually, although not always, a
parameter is sampled such that the time interval betwesn succasive sanples is coustant.

, when this is not the case it is normally convenient for processing purposes to interpolate
: ‘ between samples so as to generate a saguencs which does have a constant interval between

successive samples.

1 A signal may be sampled at any stage in the measurement process, depending upon the
nature of the signal and, often just as important, upon the measurement system available
to the Flight Test Engineer.

It is current practice to transmit and/or record low frequency information (e.g. steady
state and aircraft ®rigid body" motions) in & digital format, but to use analogue methods
for recording higher frequency information (e.g. flutter measurements, engine vibrations,
etc.). The reasons for this are simply that the cost per unit volume or weight for rec-
ording each parameter is lower for an analogue system than it is for a digital system
when the required frequancy bandwidth is greater than a few tens of Herts.

It is important to realise that the rules for sampling a continuous function of time
successfully, and the characteristics of tha resulting sanpled sequence are the same
regardless of the point at which the sampling is executed: the output of a shaft encoder
has the same sampling characteristics as the output of an equivalent analogue measure~
ment system after it has been sampled at the input to a digital computer.

:
fu The remainder of this Section is concerned with the characteristics of a sampled saequencs,
¥ and the rules for sampling which result from those characteristics. Also included are
sections devoted to the characterisztics of the elements which may be used for effecting

signal sampling.

o |Load //453
N , 1.4,1. Principles of sampling /;/

[
. gvery enyinear has, at some time, plotted a /
! graph of measured extension against applied

load and fitted a curve through the points to /7
determine the stiffness of a spring. A number r\\\ /
l : of decisions are made during this process. . 7
4 B The most important deciusion relates to the
! choice of curve from the infinity of possible ' /
curves which pass through the measured points /
(see, for example figure 1.9.) ’ //

meagured dita points is, in some respects,

: the inverss of the sampling process. In one
i case the task is to represent a set of sampled /

data points by a suitable continuous function; —
in the other the task is to represent a Extension

s continuous function by a set of sampled data
points. Fiqure 1.9. Some possible curves

assing through one set of data.

. ' . o > ¢
. ] 4
£ \ The process of fitting a curve to a set of / ,/5 —

It is not normally difficult to choose & suitable function relating, for example, the
axtension of a spring to the applied load since the choice is limited by the physics of
the process. However, when there is no veason to restrict the choice of functional rela-
tionship, then an infinite number of possible solutions exist. The latter is usually

the case for a sampled time history if no precautions have been taken to limit the choicas.
It clesrly foliows that for a sanpled time history to have any meaning, some mechaniss
must be incorporated to limit possible excursions of the signal betwesn successive

samples.
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if this limiting can be achieved then it becomes possible to interpolate between sanples
without incurring an excessive exror, $0 that the sampled sequence can be said to repre-
sent fairly the original time history. It remains to define reasonable limits for ex-
cursions bstween samples and to decide upon the characteristics of the limiting mechanism,

l1.4,2. The Samplin @0,

The Sampling Theorsm states that a seguence resulting from sampling a continuous signal
at a constant rate of 2f samples per sscond compleiely describes that signal (in the sensa
that the original signal can be reconstructed) provided that the signal contains no
frequency components greater than ox uval to f Hs. The frequency f£ is known as the
Nyquist or folding frequency. The Sampling Theorem is discussed further in Appendix A.

The underlined part of the above statement is often omitted: its relevance is clearly
jllustratad in figure 1.10., which shows & sinusoid of frequency f Hz. sampled at 2f

samples per second!

¥

Fiqure 1,10, A Sinusoid Sampled Exactly Twice per Period.

The Sampling Theorem describes, in frequency dowmain terms, the excursions which are all-
owable between samples. It states that a signal can be saxpled sucoessfully, provided
that it has been filtersd prior to sampling so as to eliminate effectively all signal
components greater than or equal to the folding frequancy. It will be noted that the
resulting sequence represents the filtered rather than the original analogue signal.
Filters which are used in this way are called "anti-aliasing” filters, The design of

suitable filters is diacussed in Section l.4.5.

The selection of an anti-aliasing filter for any particular application depends upon the
nature of the signals under investigation and upon the proportion of the available freq-
uency bandwidth which is of interest. For general applications a rather conservative rule
is adopted. This demands that the amplitude of a white nolse signal shall be reduced to
ons percent of its original value at the folding frequency. The available bandwidth is
then dictated by the numbar of poles used in the £ilter and the permissible attenuation
of the signal, bearing in mind that the effects of this can, under some circumstances, be
removed after sampling. Pigure l.1ll. represents a filter order selection guide using the
above rule (curve A}. Also included ig a guide based upon the rather less conservative
rule of less than ons percent aliasing at the highest frequency of interest (curve B).,
The latter rule implies that aliasing is acceptable provided that its effects axe not

significant in the frequency range of interest.
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In general, a filter will be accaptable if its characteristics lie between curves A and
B. It is interesting to note that a six pole filter only allows a frequency range of
batween 46 and 63 percent of that theoretically available. -

N
;
:
E
‘
4

|

h

10'07(10-01
5 oo
: B &
2 Bl
d o] o
gl
A ° .0
§f‘ bé‘ 8 Curve B
” \ s /
;‘
I;l / / curve A
. § /
ll“
- 4.0 ///
y
[,
-
: . J 2.0 /
o
! ..
' {
3
. o.
1 : %-0 2.0 4.0 6.0 8.0 10.0x10+00
% Number of Filter Poles
)
b

Fiqur 11 Attaina dwid ag a F

of Filter Order (No, of Poles )




16

1.4,3. The Effect of Aliasing

The rules for filtering an anlogue signal prior to sampling have been discussed in the
previous section. It is relsvant to consider the effects of omitting such filtering,
partly because some airborne digital systems do not incorporats filtering specifically to

prevent aliasing, and partly because the characteristics of an aliased signal can be

utilised in digital processing.

o e AT

i : It is assumed that the signal under investigation is continuous and has characteristics
: which do not vary with time (i.e. is stationary). Suppose that a portion of the signal

; is saxpled at constant interval such that the folding frequency of the signal is fc.
Then a periodic component of the signal of frequency £ may be described as

cos 2"£t l.4.1.

if a suitable time reference is chosen. The kthAlanpled value is then equal to

cos 2nfkh = cos 2nf.k l.4.2.
2fc

where the interval between successive samples is h = 1l/2fc.

An arbitrary frequency f can be re-defined as

£ = 2n.fc i £ 1.4.3.

where n is a suitably chosen integer and f' lies between zero and fc.

'[ ’ Equation 1l.4.3. may be substituted into 1l.4.2. to give

Bt
L cos 2 nfk = cos 2 nk.{(2n.foc * £')
iic 2fc

A = cos 27k.{n & £ )
p1

= cos 2nkf' l.4.4.

2fc

because Cos 2xkn is unity for integer k and n.

Equation l.4.4. is identical with 1l.4.2., but with £ replaced by f'. Note that no res-
triction was placed upon the value of £, but that f' was assured to lie bestween zero and
fc. Thus equations 1l.4.3. and 1.4.4, imply that any periodic component of a sampled
signal will appear to have a frequency within the range iero and fo. Equation lL.4.4. im-
plies that tlie amplitude of the component will be unchanged,

related to

Equation 1,4.3. states that the perceived freguency of a periodic cowmponent is
the actual frequency as shown in figure 1l.12.

Thus a frequency perceived at £ may in fact be at any one of the following frequencies:

£ 3 (c=£) ;3 (2fc+ f) (4fc = £) 3 (4fc + £) 3 eto.

Consideration of the effects of aliasing can bs extended to apariodic signals within the
assumption of stationarity by & similar analysis if it is assumed that a portion of the
tize history can be represented by a Pourisc Series. The conclusions reached are then

identical to those above.
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| Perceived Frequency

.

[}
)
¢ 2tc 3£c Frequancy

Fiqure 1.12. Graphical Interpraetation
of Equation 1.4.3.

To summarise, a frequency component which is aliased by sampling will be perceived as a
component having the sane amplitude (RMS value for a random component) as the original,
but having a predictable, incorrect frequency. : i

The consequences Of aliasing can be catastrophic, particularly if the original signal
cannot be re-examined, since it is impossible to differentiate betwean “true" and aliased

components of a signal.

However, the predictable nature of aliasing can be '.'ed to enhance the analysis of
signal, as described in Section 2.4,

1,4.4. Typical Sampling Systems

sampling systems are constructed using five basic elements:

- Pre-sampling filter

Multiplexor
Sample/hold module
Analogue - digital converter (ADC)

controller

The slements can be arranged in a variety of configurations; three typical arrangemenis
are shown in figure 1l.13.

The purpose of the filters, one of which should be dedicated to each analogue gignal, 1is

to prevent aliasing of the digital output. (see section 1.4.3,). Sample/Hold modiiles axe
used to maintain a constant sampled analogue value for the period reduired by the convertar
to guantise that level, A multiplexor is commonly used at some point to limit the nunber
of connections required und/or to reduce the number of modules required in a systam,

It is relevant to consider in more detail the configuration shown in figure 1.13.

The first arrangement (a) employs a filter, a Sample/Hold module, and an Analogue =

digital converter for each analogue signal. The digital outputs from the ADCs are
multiplexsd to obtain a single digital data stream. The arrangement is capable of very
high sampling rates since the conversion process is executed in parallel. Morseover

samples can be cbtained with no time delsy betwesn one output and another, Howaver the
item of major cost in a sampling system is the analogue = digital converter {ADC), sc that
the arrangement is prohibitively axpensive for all but a few specialised applications.
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Arrangemant (b) employs an analogue multiplexor to enable multiple analogue inputs to be
sampled by one ADC. Sample/Hold modules are used to obtain apparent parallel sampling of
the analogue signals. The arrangement has a lower acquisition rate potential than (a)
but is much less expensive.

The configuration most commonly used in airborne acquisition systems is shown as arrange=
ment (¢). It is similar to (b) but requires only a single Sample/Hold module, thereby
reducing the cost of the system. The arrangenent introduces time delays bstween data
channels which, if embarrassing, must be removed prior to processing.

Of the three, arrangement (b) has much to conmend it provided that the increaszed size
and weight in relation to arrangement (c) can be tolerated. The higher initial cost of
the arrangement comparxed with (c) is offsei: by a reduction in processing time for every
record in which inter=-channel time delays must be removed.

-t remains to consider in some detail the individual characteristics of the four elements
used in sampling systems.

?

(a)
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Figure 1.13. Schematics of Three Types of Sampling System,




l.4.5. Pre-gsampling Filters

% Pre-gampling filters are low pass filters which are used to prevent the introduction of
aliasing by the sampling process (see Saction 1.4.3.). All analogue low pass filters
' modify signals passing through them in three ways: they introduce

- fraquency dependent attenuation or amplification

- frequency dependent phase lag
- possible "ringing" when excited by signal transients

h ;
Y { The first is the characteristic required of a pre-sampling filter, the second and third
| : are undesirable by-products of an analogue filter.

{

i Frequency dependent phase lag translates to a frequency dependent delay in the time domain,
L and unless controlled it may seriously distort the analogue signal. An illuminating

! starting point to a discussion of filter design is to investigate the "ideal™ phase lag

i : versus frequency relationship for an analogue filter.

If it is accepted that an analogue low pass filter must introduce time delay, then an
optimum filter is one which delays all signal frequency components by the gsame amount.
Such a filter would pass a signal without distortion, provided that all frequency com-
ponents of the signal lie within its pass band. This is the case when the action of the
filter upon a signal camponent having an amplitude A and frequency £ Hz may be expressed

A.exp -127ff. (t + T) 1.4.5.

f‘ |
: : where T is the (constant) time delay introduced by the filter. This represents a phase
: ghift of

{ -2x£T = K.f radians l.4.6.

: Thus one characteristic of an ideal low pass filter is that the rate of change of phase
with frequency of its transfer function should be a constant, at least within the pass

band of the filter.

' : The frequency-dependent gain {(attenuation or amplification) of a low pass filter is
characterised by its ultimate slope (the slope as frequency becomes very large). In a

physically realiseable filter this is given by:

HE = (5~ 1.4.7.

where n is the order of the filter (and equals the number of *poles® or the order of the
highest derivative in the equation of motion.) The gain characteristic of an ideal

filter is shown in figure 1.14., which shows a unity gain up to the filter "break point"
(also known as the cut-off frequency) and a gain inversely proportional to n thereafter.

In an "ideal® filter having a time delay which is constant at all frequencies, the delay
o is related to fo by the relationship:

T - n seconds. 1.4.8,

3o

N

It can be seen from equation 1.4.8. that the time delay is diractly proportional to the
ordar of the filter. Thus a filter giving the optimum gain characteristic (an infinite
value of n) would have an infinite time delay, i.e. would not wozk.
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In practical terms, the numbexr of poles used in a filter depends upon the application and
an acceptable cost. A filter with a large number of poles ia

- difficult to design (a computer is desireable to design a filter with more
than three poles) .

- JQifficult to build (accurately matched components are nacessary to control
the characteristics)

eristics which can be undesireable, since it is not possible

such a filter also has charact
low time domain distortion and good frequency domain gain

to achieve in one design both
characteristics.

A third order low pass filter can be used to illustcate the problems. The equation of

motion of such a filter is given by:

_ 83 g% e _%2 gy o+ gy = W) - ¥ 1.4.9.
(27f0) 3 at3 (27£0) % at? 2afo dt

tes the response of the filter to an input £(t). Values of aj, a2, and a,,

in filters optimised to satisfy different requirements, are shown in figure
given in figures l.16 and

where y deno
which result
1.15., and the corresponding frequency response functions are

1.17.

The synthesised responses of the three types of filter to a gsquare wave input are shown
in figure 1.18. The fundamental freqguency of the input was, for the purposes c¥ the
illustration, chosen to be 1 Hz. and the natural frequencies of the filters (fo) were
chosen to be 3 Hz, The response of filter A does not overshoot the input and haz “he
largest apparent time delay (compare the output values at 0.2 seconds). Filter ., on
the other hand, overshoots the input by approximately eight percent (in this case) and
distorts the input waveform to a considerable degree.,

Thus the engineer who is interested in observing a sampled time history directly might
conceiveably select either filter A or filter B, and tolerate the rather poor frequency
response in the pass band in return for a lower time domain distortion. On the other
hand, the engineer who is interested in observing the data in the frequency domain would

probably prefer the response characteristic of filter C.

om data analysis, when constant time delay is not

The most commonly used filter for rand
has the gain characteristic

of paramount importance, is the Butterworth Filter. This
given by:

o

BLE) = (1 + (£/£0)%R )% : 1.4.10.

which is a relatively simple filter to realise and closely resembles the *“ideal® of
figure 1.14, when n is large.

When phase information between two channels is required, then it becomes necessary to
control the phase characteristics of the filters. An eight pole filter has 360 degrees
of phase shift at the cut-off frequency. If the relative phase shift between two filters
is to be maintained to less than one degree, then individual ¢circulit comgonents must be
controlled to better than 0.25 percent. Clearly this is close to the acceptable limit

for component tolerances.
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Fo LOG(FREGD

of an "Ideal" Low Pass Filter.

The Gain~-Frequenc Characteristic

Ident.
(Figure a, a, a, H(k), k = £/f, Description.
1.16.)
, 2 4 6.=% | Lovest time dowain
A 2.4662 | 2.4329 1l {1 + 1,216k + 0.9865k" + k) digtortion (Bessel.)
B 2.3562 | 2.2750| 1 (L + k2 + o.46322x4 + 5y % Low frequency components
) . have time delay given by
R equation 1.4.8.
c 2 2 1 (-« kﬁ)"lj *Best" frequency re=-
sponse characteristics
(Butterworth).

Figure 1.,15%

Three Differant Third-Crder F lters.
(The Identifiers refer to the Frequency

Response Functions uhownhin Figurass

1.16. and 1.17.)
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Figure 1.16. Gain Characteristic of Three Third-
Ordar Filters.
0.0
L
&
<
E"'Oos
1.0 ® Filter A
T X Filter B
4+ Filter C
"'1-5
“2.0 . Baan 4
0.0 0.5 1.0 1.9 2.0%x10+00
. FREQ-HZ

Figure 1.17. Phase Characteristic of Three Third-

Oxrdexr Filters.
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1,4,6, -] o )
A sample/hold module is a linsar analogus devics whose coperation is controlled by a logic
signal. When the logic signal is in one state the module is transparent, that is an

analogue signal is transferred from input to output with no modification., When the logic
signal changes state, however, the analogue output signal is *frozen" to the value
obtaining at that time. The circuit diagram of a simple SH wodule is shown in figure 1.19,
together with a diagram to illustrate its mode of operation.

Applications of the BH (Sample/Hold) module include:

- isolation of the input to an analogue-digital converter during conversion
(see Ssction l.4.7.)

- isolation of the output from a digital-analogue converter vhen the converter
is settling to a new value -

- aligning the inputs to an analogus multiplexor when inter-channel time delays
are uncertain (see Section 1,4.4.)

It is praesumed in the foregoing description that the operation of a SH module is ideal.
Practical desiyns are characterised by a number of parameters:

- Settling time. This is the time required for the output voltage to mirrxor
the input voltage within specified limits after the module has been released

from the hold conditien.

- Droop rate. The time rate of change of output voltage when the module is in
the hold condition.

- Feed through. A measure of the proportion of the input voltage which is
transmitted to the output voltage when the module is in the hold condition.
Feed through is normally very small at low signal frequencies, but can be
significant at higher freguencies.

- Aparture time. The time required for the awitch to turn off after a hold
command has been applied.

- Aperture Uncer:ainty time. The difference between maximum and minimum
aperture times.

phe first two parameters are of major importance when salecting (or designing) a SH
module, This is because the requirements for reducing their values are conflicting: in
general githar a fast settling time or a low droop rate can be achieved. Thus a widse
range of SH modules is available ccmmercially to satisfy a variety of applications. It
is, howevaer, to be noted that the apparent settling time can be reduced to a very small
value if two SH modules are used in parallel and the hold control is switched alternately

between the two.

A suitable SH module may be selected for a particular application by estimating the
maximum "hold* time, the minimum time batween release of one hold condition and setting
of the next, and the frequency bandwidth of the analogue signal(s). The required droop
rate is then the required resolution divided by the maximum hold time. The required
maximum settling time is the minimum sanpling time, but this may be relaxed for low
bandwidth analogue signals. In such cases, 2 pessimistic estimate of the maximum
voltage change betwean one sample and the next may be obtained frcm:

(Vz - Vl)m [~ 4 2.‘“.50‘:' l.4.11.

where fm is the maximum frequency present in the signal

A is the maximum voltages of the signal

and ty is the sum of the maximum hold time and the settling time.
(A good approximation for this time is often the sampling period.)
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1.4,7,  Analogue - Digital Converters

An analogue signal is converted to a sequence of digital samples by sampling the signal
at regular intervals using a sample-hold module ( seu Section 1.4.6.) and by converting
each sample into a digital value representing the voltage of the appropriate sample.
vhe process of “"digitising" an analogue sample is effected by an Analogue - Digital

Converter (ADC).

The technigqus used for tha conversion process depends upon the intended application, the
paramsters of interest being cost, accuracy and speed. Techniques which are used in
ADCs which are available commercially irnclude:

- Dual Slope Intagration. Very slow, good noiss rejection.
= Servo Counter. Cheap, relatively slow.
- Parallel. Very fast, expensive.

The dual slope integration tachnique (figure 1.21) compares the analogue signal with a
reference voltage by inteyrating the input signal for a fixed period of time, and then
switching a reference voltage to the integrator, counting the tima reguired to reduce
the output of the integrator to the start valus. The time taken is proportional to

the input voltage. The tachnigue can be very accurate (it is used in digital voltmeters)

but it is relatively expensive to implement and is very slow.

The servo counter (figure 1.22) compares the output of a digital-analogue coriverter (DAC)
with the analogus signal and adjusts the input to the DAC until the two voltages are
equal. The technique is the simplest and least sxpensive to implement but, unless a
sophisticated strategy is used to determine the input to the DAC (successive approxim-

ation), it can be relatively slow.

An analogue signal may be digitised by comparing the signal with each of a number of
reference levels, If each reference level corresponds to a transition poiint betwesn

one quantisation level and the next, then the conversion process can be effacted very
rapidly, the time required being the switching time of one comparator, and the time

taken to convert the lerel thus determined to a digital output. This is the technique
employsd in a parallel (or “flagh®) ADC (figure 1.23). It is very fast and very expensive
to manufacture, since & comparator is required for each quantisation intexval.

The parcmeter of major importance in the selection of a suitable ADC is the resolution
of the zonverted signal. The output of an ADC mway take the form of a binary coded
decims)l {BCD) number or, more commonly, a *pure® binary number. Its resolution is
limited Yy the number of bits (length) of the number, as shown in figure 1,20, It can
be seen :hat an ADC producing a binary output always has a greater resolution than one

produciny BCD for a given number of bits.

1.0
Max. l
Error
(Percent)
P n E a 0.1
Punct £ F BCD
Binary
0.01-
8 10 12 14

Word Length (inc. sign)

It can be shown that the finite resolution of an ADC introduces an error into the sampled
signal. This has an RMS value of:

AV volts l.4.12.
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S ! where AV is the voltage interval betwean one quantisation level and the next. When a
2 § random signal is being sampled, then the RMS value of the signal should bs no more than
- ‘ one third of the maximum voltage of the ADC. Under this favourable condition, the ratio
o % of quantisation error to signal level has an RMS values
|
o VO 1.4.13,
!
{‘ f where N is the number of bits {including sign) output by a binary output ADC.
!
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1,5  Digital Preprocessing

Digital sampled data sequences cbtained from flight trials are sometines chazacterised
by!:

- an inadequate sequence length
- an inappropriate acquisition rate
= the presence of unwanted signal components

An inadequate sequence length implies that no part of the sequence should be rejected
on the grounds that unwanted components are present. An inappropriate acquisition
rate may mean that analysing the sequence as it stands would ba very expensive. The
presence of unwanted signal components will contaminate processed results and may
influence conclusions drawn from them.

uUnder these circumstances, it is imperative to havs tools available for conditioning
data sequences prior to processing propex. This Section describes certain commonly
used processes for removing unwanted signal components. An introduction to the more
general topic of digital filtering is included, and the Saction ends by describing

techniques for operating on & data sequence in order to reducs the time required for

subsequent analysis.

1,5:1,  Irsnd Removal

Random data sequences are sonetines superimposed upon slowly changing daterministic
functions. It is normally essential to remove these functions prior to axamining

the nature of the random component in order to eliminate possible contamination of the
results. An efficient method of removing a deterministic function is to identify its
characteristics and then to subtract the function from the data sequence. This Section
describes the techniques which may be used to identify the more important of these
deterministic functions.

1:5:3: % Removal of a Constant Level

It is assumed that the random component of the signal under investigation is stationary
and has a zero average value, Then that random componsnt may be estimated as: ]

i) = y(i) - a 1.5.1.
N

Where a = 1 ¥yl 1.5.2.
LTS

a is defined as the average valus of y.

The estimate of the average valus as defined by 1.5.2. will not, in general, be squal

to the true average value 42, dafined by 1.5.2. in the 1imit as N=@, This is because
its value will be affected by the presence of the random component. A detailed assess-
ment of the uncertainty of mean value estimation is included in Appendix E. It is
concluded that, if the random component can be approximated by band limited white noise
(Section 2.3.) of bandwidth B Hz., then the standard error of the estimate of a is given

byt

o = Sy 1.5.3.
28T

where 9y is the RMS (root mean square) value of the random component (see Section 2.3.)
and T is the avaraging time (= Nh). Equation 1.5.3. m&kes the logical statemant that the
averaging time required to achieve a given standard error is inversely proportional to
the characteristic bandwidth of the random componsnt.

It is important to consider tha accuracy of the estimated average value a, b‘cauu this
will reflect upon the validity of the random componant obtained from equation 1.5.1.
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1.5.1,2. Removal of a linear trend

It is assumed that the data seguance has a Tero average value (perhaps &s a result of
applying equation 1.5.1.) and that the random component under investigation is
stationary and has no low frequency components which might be interpreted as a lineaz
trend. Then a linear trend may be removed by computing:

$) = y() - (d=m.b 1.5.4.
Where b = 3 . T em)ey(d)
m{2m+l) (m+l) i=0

1.5.5.

lnd n - B 1 ' 105-6.

As was the case for estimates of average value, estimates of the parameter defined in
equation 1.5.5. will, in general, be subject to an error caused by the presence of the
random component of the signal. The standard srror of an estimate of b is given by

- t N _ }“- oy 1.5.7.
28T .m(2m+1) (m+l)

where, as befora, ¢y is the RMS value of the xandom component, B is the bandwidth of the
(assumed band limited white) noise, and T is the averaging time.

1,5,1,3, ggggvnl of an Exggngntial Function

It sometimes happens that the characteristics of a random signal are required when the
measurement system is recovering from an overload condition. When the transducer is a
piezo-slectric accelerometer buffered by a charge amplifier, then the system recovery
characteristic is exponential. For this reason the identification of an exponential
function in the presence of a random gsignal has been chosen to illustrate techniques
which may be used to obtain the characteristics of more general deterministic functions.

It im to be assumed that the rando component of a signal under investigstion is
stationary and is defined ast:

1) = y(i) = A.exp (Bi) 1.5.8.

The parameters A and B are to be determined. The first step is to calculate the rate
of change of the function with respect to the parameters, that is:

_3_£ =  @Xp (Bi) = F(i) » BAY . 1‘5.9-
3A

of = {A.exp (8i) = G(i) , say 1.5,10.
9B

The vector y(i) is then minimised using the method of least aquares by setting up the
following linearised equations:

sr? rr@).Gd) |- {a] = Era).(yd) - Aexp (B4))
Fld) .61  Ie(h? B (1) (g(1) = A.axp (BL)) 1.5.11,

Equations 1.5.11, can be solved to determine 4A and 4B, increxental values which must be
added to A and B to improve an initial estimatas.




3

In order to use the technique, initial estimates for the parametexs A and B are requircd
L and, since equations 1.5.1l. use previous estimates of A and B to obtain ypdated values,
" i the process is iterative. A test for convergence is to compare estinated mean square

: values of y(i) (equation 1.5.8.) and to terminate the iteration when successiva

T T

2
% estimates differ by less than, say, one per cent.
2 ' ,
3 ) Estimates for the standard errors of the paramaters A and B can be obtained by computing
: ' the matrix:
g { :
:’ ’ PP PG | T = X X
- . 1 2
. Z¥(1).G(1) $G(1)? K, X, 1.5.12,
& extracting the leading diagonal elements, and multiplying their square xoots by the root
i\ mean sguare value of y(i). Hence:
E a = owh
5‘ ' 1.5.13.
E and ‘B = WK .
3 ¢
] where, as before, ¢y is the RMS value of §(i).
;. The above process is quite general and may be used to define the parametars of any
N deterministic function, provided that the derivatives of the function with respect to
}‘ the unknown parameters (egquivalent to equation 1.5.9. and 1.5,10.) can be calculated.
. I
i' It may be noted that the problem of identifying an exponential funtion could be
3 linearised (and hence made non-iterative) by re-writing eguation 1.5.8. as follows:
e
b .
{ : y{i) - Q(i) = A.exp {(Bi) 1.5.14.

and taking the logarithm of both sides to yield:

n( y(4) = §(4) ) = lna + Bi 1.5.15.

Equation 1.5.15, may be solved to yield estimates of A and B by, regression analysis.
However difficulties are likely to be encountered when (y(i) - y(i)) is close to zero,

- and the estimation problems described by equations 1.5.8. and 1,5.15. are different:
o the first implies that fy2(i) is to be minimised, and the gecond that

a I{ln(y(i) -~ $(4)) ~ ln A - B1}2 is to be minimised., The first difficulty can be

] overcome by temporarily adding a known offmet to all data points and restating the problem,
but the second will give rise to biased estimates of the parameters A and B. Therefore,
the formulation of equation 1.5.15. is not to be recommended as a technique for extracting
an exponential function (at least for the present application,)

1.5.1.4., Removal of a Trend by Spline Fitting

When the "deterministic" (i.e. unwanted) component of a signal cannot easily be described
by an explicit function, then it is tempting to consider using a polynomial function to
describs the deterministic component. If the component has a complicated shape then

high order polynomial functions may bs necessary to describe the component adequately.
Now, high order polynumials can be unstable unless their shape is controlled in some way.
One msthod of stabilising a high order polynamial fit is to use splines,

The term spline oriyinated from the engineer's tool which is widely used to interpolate
smoothly between calculated points (eg constructing an aerofoil shape). The engineer's
spline consists of a uniform fluoxible baam which is constrained to pass through the
calculated points (nodes), but is not constrained (in general) in any other way (1i.e.
the slops of the baam at the nodes is not constrained). Clearly the shape taken up by
the beam is stable, since it will obay the "minimum strain energy" principle.
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principle of the engineer's spline and have gener-

Mathematicians have seized upon the
n can now be defined and used as a *spline”.

alised the concapt, so that almost any functio
The concept of "minimum energy" remains.

the presence of noise is introduced by

In this Section, the concept of spline fitting in
to the problem of removing a trend.

application of the traditional engineer's spline

Consider a uniform beam, unloaded except by shear forces and momements applied to the
ends as shown in figure 1.24.

Lz'wz

M2092

Figure 1,24.

The deflection anywhere along the beam may be determined if the applied loads (L,, L,)
and moments (Mj, Mj) are known. Alternatively, the deflection may also be calcu ated if
the deflections (W3, W2) and rotations (@1, 63) at either ends of the beam are known.

It may be observed that, with ro applied loads except at the oends, the shear force (S)
alonyg the beam is copstant. Since

8§ o a’w - a constant,

axd

it follows that:

2 3 1.5.16.

w - a + bx + ¢Xx + dx

6 = dw = b + 2cx + 3dx? 1.5.17.

and aw
dx

and 1.5.17. define the deflection and the slope anywhere along the beam
been determined. These can be expressed readily in
node conditions. These might be,

Equations 1.5.16.
elanent once the coefficients have
terms of the node deflactions, Wy, by applying suitable

for example,

zero end slope (encastre): e = O
zero bending moment: %% = 0

zero bending moment induced across the ith node:

Lxgg}x-l- 1+1{%§'}x‘-o

where x refers to the ith beam element, and x' refors to the (i+l)th element.

The first two conditions are relevant for the first and last nodes of a multi-node
spline. The last can be applied at each of the intervening nodes. Thus, for example,
if a spline having four equally spaced nodes and pin-jointed ends (zero momant) has
deflections at sach node Wy, Wz, W3, W4 and rotations €f, 82, 83, 84, then application

of the appropriate end conditions gives:

. R Lo . A}
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In general, the end rotations may always be expressed in terms of the node deflections
using matrix equations having the form:

L TR

c.oy = D.Wy

or o, = clowwy = E.Wy, say B 1.5.19.

The position of any point along the spline can be computed using equations having the
form:

wix) - A(x).WN + B(x).eN 1,5.20.

where Wy and @y are the (nxl) vectors of the n node deflections and rotations. A(x) and
B(x) are (lxn) row vectors in which it is understood that the eiements are all null except
for the two corresponding to the nodes at either end of the appropriate beam element
(dependent upon the value of x.) Equation 1.5.20. may be avaluated for each of m locations
along the beam, and the results can be listed as an (mxl) vector:

-

ST N AT T TN AR e A e e e

w = F.WN + G.eN 1.5.21,
é‘, Here F and G are (mxn) arrays, each row corresponding to one position along the spline.
{

»[ ) Equation 1.5.21. can be used to interpolate between any set of coordinates., The
validity of the rasult, howevar, depends directly upon the validity of the original
informatiori. An alternative application of equation 1.5.21. is to determine estimates
: ’ of W, given "noisy" values of w. This can be effected using the method of "least square
L: errors", provided that the random conponent constituting the noise has a Gaussian
! wWhen

A distribution with a zero mean value, and provided: that m is much greater than n.
this is the case, then equation 1.5.21. can be written:

w = (F + G.B).Wy, {from equation 1,5.19.) 1l.5.22,

\
|
1 Hence: (F + G.E) Tw = (F + G.E)T(F + G.E) Wy 1.5.23.
\ | or Wy = [+ G TF ¢ GE)]THE + BN W 1.5.24.

Once estimates of the node deflections have been determined using equation 1.5.24., then
equation 1.5.21. can be uged to isolate the random component of w.

S . Spline fitting can thus be used to identify the deterministic component embedded in random
L. : data by assuming that the random component is normally distributed about a zero mean,

; and, incidentally, that it has no gignificant energy in the bandwidth of the deterministic
i component. If these conditions are satisfied then the method of least squares can

used to estimate the node deflections which result in the "best" spline fit of the data
once suitable positions for the nodes have been chosen. These may be chosen arbitrarily,
or may be chosen to suite particular “avants® in the deterministic component.

l.5.2. Digital Filtering

Wwhere the characteristic of a digital data sequence is such that trend removal is not a
practical proposition, then digital f£iltering caa be used to remove undesirable 3ignal
components. Digital filtering is also used to develop practical intagrators and
differentiators, and in conditioning a data sequence prior to decimation {see Section
1.5.6.) and "zoom" spectral analysis (see Section 2.4.).
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A great deal of theoretical work has been published on the subject of digital filtering
(see, for example, references 1l.6. and 1,7.), much of it involving complicated mathemat~
ica). analysis. The purpose of this section is to introduce the main concepts of time
domain digital filtering and to show how these concepts fit in with more esoteric
design procedures.

1.5.2.1. Pirst Order Low Pass Filter

An electrical "RC" first order low pass filter has the following characteristic equations
Ty + y = £(t) 1.5.25.

where £(t) is the input signal
Yy is the output -of the filter
and T is the Time Constant of the filter.

The task is to derive a simple transfer equation to implement 1.5.25. for a sampled data
sequence y(i).

Equation 1.5.25. can be re~written as follows:

y = 1 f“ (£(t) = y) .4t 1.5.26.
T [}

This may be written in terms suitable for applying to a digital data sequence by pre-
suming that the integration can be performed with sufficient accuracy using the “trap-
ezoidal® rule, which gtates that the area contained within two sampled points is ihe
average value of the two samples multiplied by the distance (or time) between them,

Thus:

T -1
[° y.dt & E{y(o) + 2. Y y(i) + y(N)] 1.5.27.
<] 2 i=1

where h is the sampling interval, and T translates to h.N seconds. Hence equation
1,5.26. becomes

(N = b_[f(o) -y(o) + 2. T (1) = y(d)) + £(N) = y(N)] 1.5.28.

27T . =] ’

or y(N) = 2;;_{5@ -y(@) ¢ 2. Y (£(4) =y(d)) = £(N) - y(N)] 1.5.29.

but y(N-1) = g[f(o) -y(o) + 2. 3 (£(1) - y(i)) - fm-u+y(n-1)] 1.5.30.
2T i

gubtractiang 1.5.30. frow 1.5.28. and rearranging gives:

y(N) = 1l = h/ar, y(N-1) <+ h/2r . (£(N-1) + £(N)) : 1.5.31.
1l + bs2T (1 + h/2T)

This is a recursion formula for implementing a low pass filter in the time domain. It

is sfficlent in so far as only the current and oue previous time perjod values are meaeded
to compute the current output (information about time periods prior to those are contained
implicitly in y(N-l1)). The recursion formula given by 1.5.31, is identical in form

to thar obtained in the litarature using very slegant and conmplicated transformations,

It 10 not always obvioua from thege that tha fundumental assumption has been maue thut
trapezoidal intagration is sufficient for computing the output of the filter (discuscions
on this aspect may be found in Reference 1l.6.}. ’
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.5.31, may be converted into a practical integration formula by multiplying

Equation 1
the f terms by the time constant T {c.f. equation 1.5.25.). This then becomes:
y(N) = 1 - h/2T. y(N-1) + h/2 . (£(N=1) + £(N)) "1.5.32,
1 + h/2T (1 + h/2T)
In the limit as the time constant tends to infinity, equation 1.5.32. becomes:

y(N) = y(N=1) + ‘,%- (£(v=1) + £(N)) 1.5.32.

which is the standaxd result for trapezoidel integration. Equation 1.5.32, is better

behaved than 1l.5.33. when experimental data are to be integrated because of the

problems introduced by spurious offsets in y (see section 1.5.1.1.). Any offset in the
dats will cause the integral as defined by 1l.5.33. to “run away", whereas the offset will
simply be multiplied by T if equation 1.5.32. is used, once the filter has stabilised.

1.5.2.2. Second-Order Low-Pasg Filter

A recursive algorithm for implementing a second order low pass filter in the time domain
may be developed using a method similar to that described for a £ir7t order low pass

filter (and including the same assumptions) .

aAssuming the general characteristics

¥ v 20y + y = £ 1.5.34.

(2nfg) 2 25k,

(i.e, a unity gain filter with natural frequency £, Hz. and damping factor { )+ then
the following recursive algorithm may be derived:

y(N) = Kl.y(N-l) + Kz.y(N-Z) + Ka.(f(N) 4+ 2. £(N=1) + £(N=2)) 1.5.35.
¢
Where:
K 2.(1 - (2nfoh/2) 2
l- . n°/2)
(1 +(2nEgh + (2n£oh/D)%)
2
K, = -(1 ={2nf h + (2n£,h/2) ) 1.5.36.

(1 +{2nfon + (27£oh/2) %)

Ky = (27£n/2) 2
(1 +(27fh + (22£ch/2) %)

; Equation 1.5.35. may be converted into a pratical double integration algorithm by
i (see equation 1.5.34.,) The function resulting from

dividing the factor K3 by (2»fg)
ithm is the true double integral of the data seguence (within

application of this algor
the limitations imposed by the trapeszoidal rule), but filtared by a second order high
pass filter having a natural frequency £o Hz. and & damping factor {.

; Equation }.5.35. may be converted to a true double integration algorithm by dividing Kj
1 by (27fy) 4 and then setting £, = O. This ylelds,

g(N) = 2.y(N-1) - y(N=2) + %?[9(N) + 2.3(0-1) + §(N=2)] 1.5.37.

which is the standard result for double intsgration assuming trapezoidal intecration.

|
|
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1,5.2,3, The General Form for Digital Filters

The results of section 1.5.2.1. and 1l.5.2.2. are two examplaes of the more general
algorithms

Q
yN) =  £(N) + 3 {b(i).y(n—i) + c(i).f(n-iq. 1.5.38.
i=1

where Q is the order of the filter. The coefficients may be selected tc yield low pass,
band pass, or high pass filters to any order. "

1.5.3. Transducer Correction Filters

Many types of transducer possess the secondary (but not necessarily undesireable) charac-
teristic of filtering the signals being sensed. Examples# are linezr and angular)accel-
erometaers, pressure transducers and rate gyros. When this proves to be an embarrassment,
and when the characteristics of the signal are to be described in the frequency domain,
then the effects of the filter(s) can be removed most easily after the frequency domain
description has bsen cbtained. The situation is rather more complicated when other types
of analysis are of interest. When such is the case, then it may be desireable to ramove
the offects of transducer (and any other) filters in the time domain prior to analysis.

In principle, the objective of time domain filter correction 18 ¢o subject the signal in
question to a synthesised filter having precisely the “inverse" properties of the un-
wanted signal filter. As an illustration, suppose that the transducer acted as a second

order low pass filter having the form

« 20 % + x = y(t) 1.5.39,
(2n£g) 2 2nf,

where y(t) represents the unfiltered signal, and x represents the signal as output by the
transducer. It is clear that y can be reconstructed provided that the first and second
derivatives of x can be computed, and provided alsc that the natural frequency (£, and
damping coefficient ({ ) of the transducer are known.

one method of estimating the first and second derivitives of a sample data sequence, using
only "past" data is to construct a parabola passing through the current point and the
previous two points. The parabola may then be differentiated twice to yield

x(1) = 1 .[3.x(1) - A.x(i=1) + x(i-z)] 1.5.40.
2h ‘

and (1) = 1 .[x(i) - 2.x(1=1) + x(1-2)] 1.5.41,
2
h

These can be subsituted into equation 1.5.39. to give, after some rearrangement,

yi) = x(i).[l + 38+ _1___2_3
2zf5h (27£5h)
- 2.x(1-1).l 28+ F
27 h (anfoh) 2
+ x(i=2).[__¢ + 1 1.5.42.
22 b g ?]
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A few words of caution are necessary at this point. In the majority of cases, signals
presented for processing are corrupted by *nocise" (spurious signal components) which
has been introduced after the transducer. When, as is usual, the bandwidth of the noise
extends to frequencies Where the transducer output is attenuated significantly, then
components in this region will be amplified when the signal is corrected by the method

outlined above.

When the presence 0f injected noise causes problems, then a less ambltious procedure may
be adopted in which it is asgumed that the acceleration term in equation 1.5.39. can be
neglected (tha term becomes insignificant at very low frequencies)., Here, individual
samples can be assumed to be connected by straight lines to yield:

(1) = ;.[x(x) - x(i-l)] 1.5.43.
h

which, from equation 1.5.39., ylelds the following correction formulas

y(i) = x(i)Jl + 24 - x(i=l).__2§ 1,.5.44.
27f h 2xE h

The examples outlined above are intendaed to illustrate the approach to be followed
when it is necessary to correct data in the time domain for the effects of filtering
introduced during the measurement process. It must be emphasised that the approach is
fraught with difficulties, some of which have been noted, so that the technique should

be considered only as a last resort.

1.,5.4, Optimal Filters

The filters described in the preceeding Sections, in general, make no explicit use of
any knowladge which may exist about the processes which gave rise ¢o the signals to be
processed. When such knowlaedge does exist, and appropriate additional measurements are
avallable, then the various components of a signal can be separated in a satisfying, and
often highly reliable, way using tle concept of optimal filters.

The simple example shown diagrammatically in figure 1.25. can be used to illustrate the
principle of optimal filtering. It is assumed hexe that the measured output y(t)

consists of a random component n(t) added to a daeterministic component. The deterministic
component is the function u(t), filtered by the system having a transfer function H.

If the function u(t) can be measured at the same time as the signal y(t), and the system
transfer function is known precisely, then the deterministic component of y(t) can be
computed and subtracted directly from y(t) to yleld n(t).

Practical complications arise when the parameters of the transfer function, H, are not
known accurately. 1t is then necessary to apply the measurements to the task of estimat-
ing at loast some of the parameters of H. This can be achieved, under certain circumnst-
ances, by minimising the mean square value of the random component estimated by subtract-
ing the computed output of the system from the measured output y(t).

The principle of optimal filters was originally published in 1960 (reference 1.8.,) and was
first applied to the solution of complex navigation problems. However it is now being
used in a wide variety of applications, and publications on the subject are axtensive.
References 1.8. to 1l.1ll. describe typical applications in aircraft flight testing.

Input u(t B Output y(t)

Noise n(t})

Fiqure 1,25.
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1.5.5.  ILnterpolation

1y considered to repraesent discrete values of a

of data samples is normal

an independent variable (for example, time or freq- -
not, be considered to be exactly represent-
ariable is almost always assumed to be known
r the majority of techniques described in

A sequence
function at corresponding values of

uency.) The samples themsalves may, Or may
ative of the function, pbut the independent v
exactly. The latter assunption is required fo

this mangal.

is the process in which a number of consecutive data samples is used to
prescribed values of the

value of the undexrlying function at one or more
independent variable. Examples in which interpolation may be regquired are:

- aligning ldmples*obtained from the various channels of a sequentially
sgqp}gg3diqital measurement system

Interpolation
estimate the

- modifying the frequsncy interval betwesn successive estimates of a

frequency responss function.

The process Nay involve the conscious removal of unwanted signal components (noise)
by filtering: In any case, interpolation requires that a suitable function be chosen

which Gescribes the behaviour of a selected group of samples.

omments made in Section 1.4.4.) that an infinite number

ecisaly a particular sequence of samples. As a

It may he demonstratad (see the ©
interpolation problem generally

of functions exist which describe pr

consequence no exact, or even “Lest", solution to the
exists unless the form of the required functiou can be specified from physical consider-

ations. A corollary to this statement 1s that the selection of an interpolation function
will automatically impose constraints upon the results obtained from the process.

tion is to present geveral interpolation techniques and to discuss

The purpose of this Sec
their relative merits. The selection is by no means exhaustive.

1.5.5.1, Linear Intergolation

1t is assumed in this case that the signal alters its value linearly between each pair of
gamplaes. Clearly this is not a particularly satisfactory asgumption because it implies
that the derivative of the signal takes the form of a histogram, as shown in figure 1.26

with an abrupt change of value at each sample point.

Y
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\{' ' It is required to find the vnlun'o! the signal y at a point x given two sanplas yq At Xg
; and y) at xy, as shown in figure 1.27, assmuming that a straight line connacts the two
g : samples. ,
E. | Y
E . ’ (*loyl) ‘
L \
t : , o
- | | | o
S ‘ (x ) / .
8 o'¥o _ o
% \
a
o ,
o W
-—
i x
Figure 1.27. - |
; ‘ ' The slope of the line is given by:
| gy = NY¥o , 1.5.45,
: dx X, " % '
: Hencet y = %im(x -x) + ¥,
| \‘ - ::"1 - o) . (x - xo) + Yo 1‘5.‘6.
111 - xo)

When the interval between samples of a data seqguence y(l) is h, and it is reguired to
ow data sequence y(i), each element of which is delayed by k.h. (k= 1) with

generate a n
respect to the original sequence, then squation 1l.5.46 can be used to derive:

" yid) = (L= K.yd) + kyti+1) 1.5.47.

+

This is the relationship which is most commonly used to align multiplexad sequances in

which the multiplexing process introduces known time delays between one channsl and

another. It should be noted, however, that the alignment can be effected in the frequency

1 domain if the data are to be described in that way. For example, if the frequency res=-

4 ponss function (FRF) of one sequence relative to another has been estimated (see Section
2.4.3.), and the time delay of the first relative to the second is kh, then tha phase of

the N-length FRF should be corracted as follows (see Appendix Av2.2.)8

: e(i) = o(i) + k.360.1i i = O(1)N-1 degress 1.5.48.
: N

The modulus of the FRF is unchanged. ,

iy .
i
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& It is to be assumed here that the interpolation function has the gensral form:

Yy = a + bx + cxz 1.5.49.

i In order for thid to be usaful as an interpolation function it is necessary, in general,
for the values of the parameters &, b, and ¢ to vary between successive pairs of samples,
or at least between groups of three sanplas, the minimum number required to compute the

paraneters. ' S

A quadratic interpolation function which passes through three sets of coordinates (Xg:Yg)
(%1,y)) and (x2,¥2), a8 shown in figure 1.28., has parameters which ars given by:
. e N Lot

a = yo - b.xo - 0.3: . ‘, . 105.50.

2,2 2. .2
bow (d-xd)yg-yy) - o- ¥l ¥ 1.5.51,

("!1 - xg).(xo - %)) = (x5 = x3) . (g ﬁ‘:‘:‘i‘) .

{

G o= kg = Ky elyg = ¥y) = % = Xy)e Uy T Vo) o 1.5.52.

(%y = az) .(xg - xi) - (xo - "1) (% - "2’.

The apparent complexity of these equations may be reduced conuiderably by assuning a
constant interval of h batween successive samples, and by veplacing x by (x = %),

, Then the :oxprun.onl for the paramsters become: °
a = Yo } 1.5.53.
b = }_- (4ey, = ¥, = Y ) . 1.5.54.
2h h [ 2 . |
c = }_ o(y +Y -2.Y ) ‘ 1.5.55.
th -] 2 1 |
so that:
y = ¥ vk WUw T ey = ¥) ¢ .gzotyo + ¥y = 2 1.5.56.
where
kK = x-Xx
-

An alternative formulation may bs derived by replacing x in equation 1.5.49. by (x = "1) ¢
rather than (x = xo). This yields the following expression for yt ‘ v

- - z -
y y, ¢ %. (yy yo) + %.(yo 23y1+y2) 1.5.58,
whaze
k = X =X
1 (-1<k<l) 1.5.59.
—_

The mathod of interpolation described sbove has the unntutaccoﬁ chu‘uitoruuc that
ternative samples, as

the derivative of the function is, in general, discontinuous at
shown in figure 1.29.{curve A.)
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This characteristic may be improved somewhat by using a degenerate form of the spline
described in Section 1l.5.1.4. In this application the spline is to bs fitted between ‘a'
successive samples, is to behave in a quadratic manner between each pair of samples, and
is to have a derivative which is continuous for all values of ths independent variable
zithinigound;:icl implied by the group of selected samples. The form of the function

s again to be:

Y - a + bx + cxz 1.5.60.

and e = %§ = b ¢+ 20x 1.5.61.

Here, the values of the parameters are defined if the deflection (y) and slope (8) of
the spline at each node (sample) are known.

The deflections are, of course, the values of the samples themselves, whilst, for a 5 node
spline with samples spaced h apart, the slopes are given byt

‘1 -
h. 01 - 0.5 0.5 0 Q 0 . 1 1 0 0 O . yl 1.5.62.
92 : 0 0.5 0.5 O (o] 0=1 1 0 O Yy
03 0 Q 0.5 0.5 0 0 0=1 1 O Y3
L1 (o] 0 =1 2 =1 0 0 0 0 0] ¥g
An interpolated wvalue may then be calculated as:
y = y(i) + (h.0(d)).k + (8(i41) - 9(1)).h§2 1.5.63,
whexe k = x = x(i) ’ x{i) € x < x(i+l) ‘ 1.5.64.

h

The effect of using a quadratic spline is shown in figure 1l.29, (curve B). It Qill be
obsexved that, for the example presented, the quadratic spline generates a function
which deviates considerably between samples.

1,5 3 Cubic Interpclation, .

The rather unsatisfactory characteristics of quadratic interpolation may be improved
considerably if cubic interpolation is employed, particularly if the spline described
in Section 1,5.1.4. i3 used. For a time history, the cubic spline ensures that
acceleration (the second derivative of ths function) is continuous and varies linearly
betwesn one sample and the next. In the absence of other information, the cubic spline
has considerable assthetic appeal (ses figure 1.29., curve C), but it should be recalled
that the results produced by its application are only estimates, in general, and the
;ddi:égnal conputation required as compared with, say, linear interpolation may not be
ustified.

For the record, an interpclation algorithm based upon the cubic spline and interpolating
between samples y(i) and y(i+l) using samples y(i-1) to y(i+2) inclusive can, for squally
spaced samples, be obtained from the following:

vk o= L1k, k¥, k3 AL {yu-0 1.5.65.
y(1)
y(i+l)
y{i+2)




J- }
}‘A
] N ‘ 42
{
; % wheze: A - %. o 15 o0 © 1.5.66,
s 151 a7 =3 12 =2
12 =12 3 =3
4 ) =5 0 9 5
F and where k is as defined in equation 1.5.64.
f
3 )
;
i(.
"’“ y 4 (xllYI)
i (xo’yo)
S
| .
SN
Q x
:
F1 Fiqure 1.28
o
:
8
A Y4
——— Curve A Quadratic
Interpolation
=== Curve B Quadratic sSpline
'—ve- Curve C Cubic Spline

Fiqure 1,29 T1llustration of Three Types of Intergglation
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1,5.6, Decimation

The term dacimation is used to describe the process in which the interval between adjacent
samples of a data seguence is increased. The sequence resulting from decimation has
fewer samples than the original. Decimation may, therefors, be used when it is reqquired toi

- reduce & data sequence to a more manageable length,

= adjust the time interval between samples of a time domain sequence 8O that
tha interval between estimates is more appropriate after the sequence has

besn transformed into the frequency domain,

~ perform “octave band® freguency domain analysis.

The effect of decimation is to reduce the folding frequency of the sequence (see Section
1.4.) It therefors follows that, if aliasing is to be avoided, any frequency componants
which might lie above the new folding frequency must be removed before decimation is

attempted.

The tools required to effact the necessary filtering and, possibly, interpolation have
besn introduced in the preceeding Sections.

[P I




AR i

e

MR oniemii i A

T e,

44

CHAPTER 2 ANALYSIS TECHNIQUES

2.1, Introduction

The purpose of this Chapter is to introduce the techniques more commonly encountered when
analysing random data. The techniques are explained at a heuristic level and, where this
is possible, the mathematical specifications of the techniques are developed from this
explanation. Mathematical development of the specifications from statistical principles
is relegated to Appendices or, where this is considared to be beyond the scope of the
Volume, references to publications which contain tha appropriate development are included,
Also included are expxessions which allow estimates to be made of the reliabllity of

results obtained from each technique.

2.2, Fundamental Concepts

Experimental data is frequently categorised as being either deterministic or random. In
an ideal world there should be no problems in daciding whether data obtained from a trial
1ies in one category or in the other: deterministic data is obtained from experiments in
which all the variables are measured and/or controlled, whereas random data is obtained
from experiments in which certain variablas cannot be measured and therefore cannot be
controlled. In the former case it is possible to fit functional relationships to the
data on a point-by-point basis, but useful information can be extracted in the latter case
only by averaging the data in an appropriate way.

0f course, the real world is by no means ideal and data obtained from flight trials
contains, in general, both deterministic and random components, The reasons for this are
that it is not possible to control all the variables which may contribute to the measure-
ments and that even if this were so, no element in a measurenmsnt system performs exactly
in the manner it was designed to do. In this situation flight test data is often
categorissd as being deterministic or random as much according to the manner in which it
is to be analysed as to the character of the data itself.

This Volume is devoted to the analysis of random data which, in the light of the ahove
gtatements, means that it is concerned with ways by which the relevant characteristics

of the data may be expressed in terms of averages computed from the data. 5Such averages
may be more or less representative of the phenomenon under investigation, and, where this
48 in doubt, the trials should be organised so as to ascertain whether or not this is the
case. Moreovar, the precision to which averages can be estimated depends upon the
averaging time and upon the properties of the signal being averaged., No average should
be considared to be complate without an estimate of this precision. The remainder of this
Section is devotad to the properties of randcm signals and, in general terms, to the
implications of those properties.

2,2.1. Stationary Random Processes

A formal definition of a stationary process is included in Appendix D. The definition
involves ensemble averages which ares notionally computed from sample measurements extract-
ed from a large number of indepandent trials records at a particular instant in time.

The process is said to be stationary if the expected values of the averages do not

depend upon the chosen instant in time. Two “degrees" of stationarity are identified:

- A weakly stationary process is one in which the ensemble mean value and the
ans e suto~correlation function are each indepsndent of time.

= A strongly or strictly stationary process is one in which all ensemble
moments and joint moments are In*.pcnd.nt of time.

b e M eade URRA ! RSOSSN T e i Lo A . . ot L . . s
e aeadoaala T PO T GO P SOG AUprip. | RV




SRRSO TRER ST LA S oEE A v T e

- .

- - .

R

]

i

r

g
P
e
!

45

Strictly stationary processes therefore represent a subset of weakly stationary processes.
It is normal to presume that a process which is demonstrably weakly stationary is also

strictly stationary.

An alternative, and subtly different, concept of stationarity involves sample averages
(computed from a single trial) rather than ensemble averages. The definitions of sample
stationary processes are similar to those for ensemble stationary processes, with the
term “"sample” replacing "ensembla® wheraver it occurs. In engineering circles, the use
of the term stationary normally implies sample stationarity. This is bacausa the
hgpothclin of sample stationarity genexally is easier to substantiace than the hypothesis
o

ensemble stationarity.

The ensemble view of stationarity is equivalent to the sample view for most practical
purposes, although the values to be expected from estimates of the identifying averages

may be different.

in the vicinity of the intersection of the horizontal and

Pressure measurements made
Tetailed aircraft can be used to illustrate the concept of

vertical tail surfaces of a
stationarity.

For the purposes of the illustration it is assumed that the pressure measurements exhibit
a D.C. component (a non-zero mean value) which is proportional to tailplane setting angle
(function of aircraft c.g. position, equivalent airspeed, Mach Number) and a random com-
ponent caused by boundary layer pressure fluctuations., In straight and level flight the
power spactral density (Section 2.4,1.) is assumed to be proportional to talilplane
setting angle, eguivalent airspeed, and Mach Number, Several possibilities can be

considered:

a) Samples cbtained at arbitrary times during a number of flights. No
constraints have been placed upon the controlling parameters, so that the

process is non~stationary.

b) Samples obtained only at nominated values of equivalent airspead and Mach
Number. No constraint has been placed upon tailplane setting angle, so that

the procass is non-stationary.

¢) Samples obtained only at nominated values of equivalent airspeed and Mach
Number. It is further assumed that the c.g. position remains constant
during a £light, but not batween one flight and another. The process,
for a particular equivalent airspeed and Mach Number, is stationary.
However the sample statistics will vary between one £light and another,
80 that the identifying averages for the ensemble view will be different

from those for the sample view,

d) Samples obtained only at nominated values of equivalent airspeed, Mach
Number, and tailplane setting angle. The process, for particular para-
meter values is stationary. Further, the statistical avarages obtained
from one flight will be representative of all flights.

It is interesting to note that, if the power spectral density of the random component of
pressure did not depend upon tailplane angle, then cases b and ¢ would have been equive
aient to case d provided that the D.C. components of the measurements had been removed

prior to analysis.

The practise of selecting samples of a random process according to the values of a number
of controlling parameters fraguently results in a stationary ensemble. When this occurs,

the process is more properly referred to as conditionally stationary. The majority of
random processes encountered in the real wor a nto this category, provided that
the appropriate controlling parameters can be identified and measurad or controlled.
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2.2.2. krgedic Random Processes

hich have the characteristic that the axpected
expected values of the corresponding ensemble

- Conditionally stationary random processes W
more properly, conditionally ergodic

-, : values of sample averages are equal to the
’ ! averages are termed ergodic randon processes oX,

random processes.

e The example given in Section 2.2.1. 1llustrates that a conditionally stationary process

' can often be regarded as a conditionally ergodic process, but that it may be necessary
to impose additonal constraints upon gample selection. Incidantally, case d of that
example is a conditionally ergodic process and, with the D.C. component ramoved from the
measurements, 80 are cases b and c if the power spectral density of the random component

E. . is independent of tailplane setting angle.

The fact that a process is conditonally ergodic (and therefore conditionally stationary)
means that ensemble characteristics can be estimated from sample characteristics, so that
a complete description of the process can, in principle, be obtained from a single flight

trial.

D R i

Normal Distribution

2,2.3.

Many of the techniques developed in this Chapter are founded upon the assumption that the
: amplitude probability digtribution is Normal (or Gaussian), the properties of which are

[‘ given in Appendix L. In a great many practical applications this is a valid assumption,
: so far as can be ascertained by measuxements, and is supported by the Central Limit
Theorem (see Appendix D.). This states that, under guite general conditions,
a number of mutually independent variables will have an amplitude probability distribution

which tends to the normal distribution as the number of variables becomes large.

A signal which has a Noxmal amplitude probability distribution and is demonstrably weakly
stationary, is also strongly stationary because the amplitude probability distribution is

.
L completely described by the mean and RMS values.

.
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2.3, Time Domain Analysis Techniques

Many descriptions of the characteristics of random data can be obtained by performing
simple operations on the data. Such descriptions are generaily of the single parameter
variety (for example, mean and mean square values) but may include descriptions which

are a function of signal amplitude (such as amplitude probability density functions). At
a more complicated level, descriptions may be obtained which are functions of relative
time (e.g. autocorrelation functions). All of these functions either can be computed
relatively simply from the time histories of the data, or are themselves intrinsic
functions of time. Descriptions of the techniques which may be considered to fall into
this category are referred to as Time Domain Analysis Techniques and are the subject of

this Section.

2.3.1, Mean and Mean Square Averages

The mean and mean square values repraesent the most rudimentary descriptions of 2 random

signal.

The mean value is simply the average value of the signal, l.e.

u, = lim 1, (T y(e).dt 2.3.1.
T T o
or, for an N length sampled data sequence,
N
= lim _]_.|. Z Y 203.2-
'uy N~ N i=o 4
In practical terms, N must remain finite, so that equation 2.3.2, reduces tos
7 >
lu' - l. y 203.3.
v N i=o i

and 2.3.3, constitutes an estimation error., Such an error
hose properties depend upon the value of N and
the way in which ¥y varies as N is changed. 1In particular, the variance of the error

depends upon the variance and the power spectral density of yj and upon the avaraging
time (See Appendix E). An ostimate of the error is often obtained by assuming that

Yy represents a Normal distribution white nolse segueance band limited at the folding
frequency, and having the correct variance (wee figure 2.3.14).

The difference between 2.3.2.
is, in its own right, a random gignal W

§ PED

Figure 2.,3.1 Agsumed

Distribution of Power for

Estimating Exrors.

frequency
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When this is the case, the variance of the error is given by:

A 2
var (f,) = Oy 2.3.4.
N
where 0‘!2, is defined by eqguation 2.3.6.
The mean square value is given by:
‘szr = lim 1. fT y2 () .dt 2.3.5.
-0 T o

Quite clearly, the quantity defined by 2.3.5. is dependent upon the mean value of the data
sequence., It is often convanient to use a quantity related to 2.3.5., but with the.mean
value removed.

This is termed the variance and is defined by:

¢ = um 1 " (e - po et 2.3.6.
T+® T © -
or the sampled sequence equivalent:
2 ¥ 2
Ty = lim 1 .5 (yg - ,uy) 2.3.7.
N-®@ (N=1l) im0
which may be written, after some manipulation,
N
2 2 _ 2
a.Y = lim ) T ¥ ,ay 2,3.8,
N-+%w (N-1) i=o0
The practical form of this, where N remains finite is given by:
32 - 1 > 2 - Nl 2.3.9
y . Z yi ”Y ededs
(N=1) dim=o N-1

The variance of the difference between 2.3.9. and 2.3.8. is obtained from Reference 2.2.,

ass
2.3.10.

Var <a§) - 2.0
(N=1)

)

A b et ik
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A nunber of points are raised by these results:

E : 1. The definition of mean square value contains the divisor (N - 1). The
S i latter could have used the divisor N, but this would have resulted in a
' : “biased" estimate, rece reference 2.3.

; ' 2. 1In certain of the equation nemely 2.3.4., 2.3.9., and 2.3,10,, true mean
k- : values, rather than estimates (denoted by the symbol "A ") are required.
. ! Of course routines implementing these relationahips must use the

L ' estimated Values, but this will result in higher uncertainties in the
L . parameters concerned.

3. The variance of the estimates is, in each case, a function of the variance of
the data and the power spectral density of the data, The asinple relationships
of 2.3.4. ond 2.3.10. are based on the assumption of Noxmal probability distr-
ibution and a uniform power spectral density. If more than average snergy in
the data is concentrated at low frequencies, then the relationships as stated
will underestimate the variance erroxs.

4. The variances of the estimated errors (equations 2.3.4. and 2.3,10.) indicate
that in each case, the KMS of the error {standard error) falls increasingly
slowly as averaging time is increased: doubling the averaging tima decreases
the standard error by only 30 percent (sea, for example, figure 2.3.2.)

4 Standard Error (% RMS Value)
100 4

80 4
Figure 2,3.2, Standaxrd Error of

Mean Value Estimates as a Function 60
of Number of Samples, N.

40 4
20'
. o' Y v '—"
* 1 10

100
Number of Samples

2.3.2, Amplitude Probability Distributions

Mmplitude probability distributions are an important property of random signals. 1In
practise they are usually computed in order to justify (or othexwise) the aasumption of
Noxmality.

The foundations of probability theory, as applied to random, stationary time

! histories are devaloped in Appendix C. The Appendix defines the amplitude probability
and amplitude probability density functions for a single random signal, and shows how
the various central moments of tha signal can be used to describe its characteristics,
The Appendix continues to discuss the properties of the Noxmal distribution, the
transformation of probability deasities, and ends with an introduction to joint prob-
ability density functions.

[p——

The central function of interest is the anplitude probability density distribution.
This can be implemented very easily for an unscaled sampled data secuence, as followss

a) Set up a null N x 1 array, where N = 2P and where p is the number of
bits used to convert the signal.

b) For the 1th sample in the data sequence Yo caompute:

SN P2 ki i e s bt e 0t o b e s A ot el T
" : .- o ZOn el L e o e e Lk A
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kK = oy i+ 2.3.11.

P ]
L SR 3

N
2

where y; is the !il!’ of the 1th sanpls., Dependent upon the hardware used,
one of the following two statements will hold:

0 g yl < N 2.3.12.
-N ¥y < N } 2.3.13.
y S TLc< oy

1f, and only if, the lattar statement is true then the component shown in
brackets in equation 2.3.1l. should be included. It therefore foliows

that

o< k < N 2.3.14.

o] Add one to the (k + l)th element of the N x 1 array.

d) Repeat b) and c) for each sample of the M-length data seguencs.

e) Divide the array by M.

The resulting N x 1 array represants an amplitude probability density estimate normalised
so that the value of the interval between one quantisation lavel and the next is unity.

It can be converted to an actual APD b{ dividing each element in the array by the physical
value represented by the quuntisation nterval. A flow diagram of the above is shown in

figure 2.,3.3.

Set up a Null A:rayAA kwyll) +N+1
2

A(Nxl1) —
sot 4wl Alk) = A(k) + 1

Givens y(4i) i= 1(1)n

-N N
5 ¥« 5

Dy = guantisation intexrval
in physical units.

O‘,m

Figure 2,3,3, Flow Diagram for Amplitude Probability Analysis.
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Estimates of APD functions obtained from the foregoing algorithm are subjsct to two types
of error. The firat is a statistical uncertainty which is a function of the character of
the signal, the interval between estimates (quantisation interval in the “raw" state) and
the averaging time. Specifically, the variance of this uncertainty when the signal has
white noise characteristics over a limited bandwidth B Hz is approximately (Reference 2.2.)¢

2B.T.Dy

where Dy is the interval between successive estimates and T is the averaging time in
seconds. It should be noted that the reliability of the estimates decreases as the value
of the APD decreases.

The second source of eryor is a bias error which may be introduced because the probability
density estimate for a particular level is obtained by grouping together values which fall
into a finite interval around that level (typically, the quantisation interval). It is
demonstrated in Reference 2.2. that an approximation to the bias error is given by:

b(p(y)) a (o) dp*(y) 2,3.16.
24
where P () - a’p(y)
dy2

The following cbservations may be found to be useful:

= The quantisation interval may be too fine to give reliable estimates of
probability density (depending upon the length of data sequence available).
When this is the case, the statistical errors may be reduced (at the expense
of increased bias error, see eguation 2.3.16) by integrating across a number
of intervals.

- An illuminating presentation of APD functions can be cbtained when a Hormal

digtribution is expected by plotting log(ply)) against y.mod(y). When the
diztribution is Normal, a triangular function is obtained (see figure 2.3.4.).

= The APD function can be used to estimate the RMS value of a signal even when
the measurement/acquisition system is heavily overloaded. This is achieved
by assuming that the original signal has a Normal distribution, that the
mean value is low, and that the measurement system does not change the
distribution (essentially, no latch=ups). Under these conditions the
_maximum achieved value of the APD is givan byt

Pm (Y) - 1 2.3.17.
ay.ﬁ

or oy a 0.4 ' 2.3.18.
Ppax (¥)

= The amplitude probability function can be cktained by computing the running
integral of the APD, viz:

k=1
P(k.Dy) = Dy.{plo) +2 Z, P p)} k= o(l)N-1 2.3.19.
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The statistical moments of the signal may be obtained by computing the
weighted running integral of the APD, for example :

R . ' I N=-2 .
: | M, = ww“l{%Uqﬂww)+mwn]+2?Hm§ﬂ¢u& 2.3.20.

where M, is the nth statistical moment. The results obtained for higher
moments should be treated with caution, however, because the value of
depends increasingly upon less reliable information as n iz increased (the
outlying values of APD becoming increasingly important, see equation 2,3,20).

10+
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Figure 2.3.4. A typical Amplitude Probability Density
Distrxibution
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2,3.3, Probability Density Distribution of Peaks

The distribution of maxima (or minima) in a sampled data sequence may be of interest to
; structural engineexs who are concernad with the problems of assassing the fatigue life
o ; of a structure. This is particularly so when the data represents structural strain or
W . loads applied to a structure.

e T R e

The usual algorithm for computing estimates of peak distributions assumes that each data
point in the sampled sequence represents a maxinmum or minimum value. Thus the data is
s : assumed to have been ccmpressed Ly removing all data elements which do not constitute a

' : turning point. The algorithm proceeds in a manner reminiscent of that used for computing
c amplitude probability density distributions:

R AR R

a) Set up & null N x 1 array, whera N = 2P and where p is the length of the
converter field.

b) For each even sample (if the sequence starts with a minimum) ox for each
odd sample (if the sequence starts with a maximum) compute:

k = y, §+ N1 2.3.21,
RS

where y; is the value of the appropriate sample. Observe that:

0 < ¥y < N 2.3.22.
Qr =N Y, < N 2.3,.23.
7 <1< 3

The bracketed component shown in equation 2.3.21, should be included only
if the latter statement is true. Thus:

O<Ck<N 2.3.24.

i, c) For each computed value of k, add one to the (k + l)th element of the N x 1
' array.

: ' d) Divide the array so obtained by the total number of peaks tc obtain the Peak
Probability Density distribution.

A flow diagram of the algorithm is shown in figure 2.3,5, Estimates of the Peak probabil-
) ity density distribution are subjact to both statistical and bias erxrors in just the same

(I : way as Amplitude Probability Density distributions. By comparison with 2,3,15, and

2.3.16., and under the same assumptions, the variance of the statistical exxor is given bys

-

var { p, (v)) - Bp{¥) 2.3.25.

B.T.K.Dy

whare K is the “compression" factor.

whilst the bias error is given bys

~
T i T WP I LW o gt

b [ py () - Dyz-pm (¥ 2,3.26.
24
where pm (y) - dzopm (y)
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Here again, the statistical reiiability of the estimates may be improved, at the expens
of an increased bias error, by integrating across & number of intervals.

Given: y(i), i = ()M

Nc¥Yc¢ N
3<T<3
Dy = Quantisation
Set up a Null Array :::::Y‘l in physical
A(Nxl})
1=l

k=y(al) + N+ 1
2

A(k) = A(k) + 1

A(i) = 2.,A(4)/M.DY

Figure 2.3.5. Flow Diagram for Peak Probability Density Analysis.

2.3.4. Range/Mean Distributions

s are intended specifically to provide strain or load information

Range/Mean Distribution
damage and/or estimating the life of a structure.

for evaluating fatigue

Tha algorithm for estimating the distribution is a direct extension of the one for
estimating Probability Density distributions of peaks. In this case the Density array
18 an N x M matrix, with the N rows davoted to equally spaced values of range and the
M columns devoted to egually spaced values of mean value, Here again the algorithm
opaerates upon compressed data, each element indicating a maximum or minimum vealue. It
works as follows, commencing with a null arrxay of dimensions N x Mi

a) For the Zith sample compute:
3 o |$2n - Y+ 2.3.27
‘. -
ko= Pe21) ¢ P+ y i+ B ; 2.3.28.
2 . 22

W
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where the bracketed term is included if:

A
=N Yy < N 2Q3u29.
3 ¢ L <3

b) add one to the slament in the (3 + 1)™ row, and (x + 1) column of the
range/mean matrix.

Q) repeat for all pairs of sanplaes in the data sequence.

a) divide the range/mean matrix by the number of pairs of samples to cbtain
the bivariate probability density distribution.

The statistical reliability of the estimates may be improved, at the expense of increasing
the bias error by integrating across a nunber of intervals.

The results produced can be affected seriously by the presence of low amplitude noise. For
this reason it is normal to reject reversals having a lower range than a nominated “gate"
valus. Even so, as pointed out in Reference 2.4., the Range/Mean Distribution provides

a poor estimate of fatigue damage except in special circumstances. .

2,3,5. Rainflow Analysisg

Rainflow analysis is designed to provide a batter estimata of Range/Mean Distributions
than the method described in Section 2,3.4. The principal cbjective is to include the low
frequency, large amplitude reversals as well as the more frequent low amplitude occurences.
This is achieved by “"remambering®” each peak until it is equalled or exceeded by another,
and only counting a range (pair) when a closure (complete reversal) is obtained.

Algorithms for implementing Rainflow Analysis can be rather complicated and may require
large quantities of computer storage. The most elegant implementation known to the
author is detailed in Reference 2.5., to which the interested reader is referred.

2.3,6, Autocorrelation Functions

The concept of using the mean square value to desoribe a stationary signal can be extended
logically to one in which the mean value is computed of the product of the signal and the

same signal, but delayed by a spacified time. The purpose of this is to characterise the

manner in which the current value of the signal depends upon its values at previous points
in time. If the relative time delay is varied, then a description of this characteristic

can be compiled which is a function of the time delay. This function is known as the

Autocorrelation Function. Specifically,

Ry(r) = Lim 1 J-Ty(t).y(t—s-'r).dt 2.3.30.
T-® T o

A more rigorous derivation of the autocorrelaticn function is included in Appendix A,
which also states the connection between the Autocorrelation function and the Auto-

covariance function,

It may be cbserved that, when the time delay T is zsro, then equation 2.3.30. degonerates
to an expression for the mean square value, (c.f. equation 2.3.5.). Hence:

- 2 '
Ryy(o) oy 2,3.31,
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It turns out that Ryy(r) is never greater than Ryy(o).

Also, a simple change in variable ( t' = 't +7T) in equation 2.3.30, leads to the fairly
obvious, but important, conclusion that:

Ryy('r’ - Ryy("‘l') 2. 3. 32.

Thus the Autocorrelation function can be said to be an even function of time delay.

It is reasonable to assert that, for a random signal having a zero mean, future values of
the signal will depend to a decreasing extent upon the current valus. More formally, the

Autocovariance function,

Kyy(-r) - 0 as T - ® 2.3.33

Further, the Autocorrelation function of a periodic signal will also be periodic. This
follows from the definition of a periodic signal, i.e.

where T is the period of the signal.

Phus the Autocorrelation function provides a mechanism for filtering out the periodic
components in a signal (where the mean value is here seen as a periodic signal having an
infinite period). It should be noted that the periodic component of a signal will not,
in general, have the same waveform as the periodic component of its Autocorrelation
function; the periodic component of the latter will always be such that its various

fraquency components will be in phase.

Estimates of the Autocorrelation function of a signal can be cbtained by using an anal-
ogue analyser (figure 2.3.6.) or by operating upon an N-length sampled data sequence
representing the signal. In the latter case, equation 2.3.30, is most commonly mechan-
ised by using an approximation to the tropezoidal rule for integration, which gives:

y{n).y(n = k) 2.3.35

Mz

(k) = _1_.
Ryy (N =K) n=

.

For reliable results, the maximum value of k should be less than tsn percent of N.

Estimates of the Autocorrelation function nay also be obtained using the Discrete Fourier
Transform, a method which can be more efficient, computationally, than the *direct”
method of equation 2.3,35. Details of this are prusented in Reference 2.7.

When the Autocorrelation function of a signal is very complicated it is sometimes usaful
to elucidate matters by filtering the data selectively prior to computing the Auto-
correlation function. This may be effected upon a sanpled data sequence by digital
filteriny (section l1l.5.), or, when the Discrete Fourler #x&ub!orn is used, by weighting
the Fourier coefficients. When it is required to filter the data a number of times, then
the latter technique is by far the more efficient.

Autocorrelation estimates computed using equation 2.3.35 are subject to a statistical
error which depends upon the characteristics of the data and the length of the data
sequence (averaging time). The variance of this statistical erroy may be estimated by
assuning the data to have white noise characteriatics, band limited at a frequency of
B Hertz., It is shown in Appendix k. that this results int




57

-

Vu{lg”(r)} a ‘iT;T'x‘-'(a; . Rf,y(-r)) 2.3.36.

. ~ It is also demonstrated in Appendix E that the bias error introduced by equation 2,3, 35,
S . is zero. This is not the case for estimatas obtained using the Discrete Foucrier Transform,
2 i . and for this reason thée direct method is to be racommended for estimating Autocorrelation
o functions despite its computational inefficiency.

2.3.7, Crosa Correlation Functions
- ) : The Autocorrelation function provides a description of the way in which the current value

of a signal dopends upon its values at previous points in time. When the joint properties
of the two signals are of interest, it is reasonable to extend this concept to cbtain a ]
description of the manner in which the current value of one signal depends upon the values
of the other signal at various points in time. Formally, this idea may be expressed as:

b
. R.,(z) = lim 1. x(t) y(t = 7).dt 2.3.37.
¢ Xy Ta T fo

This constitutes a definition of the Cross Correlation function. The expression is
derived in a more rigorous way in Appendix D. It can be shown by making the substitut-
% ) ion ¢t' = ¢t -7 in equation 2,.3.37., that:

ny(‘l,') - Ryx(-'l') 2030380

way, in general, for negative time delays than it does for positive time delays. 'The Cross
Correlation function is therefore an asymmetric function of time delay. It is sometimes
useful to compute the symmetric and anti-symmetric components of the function separately.

;
|
,r
1 i It wmay be reasoned that the behaviour of one signal depends upon the other in a different
; ,
r 0
' ' These are, respectively, as follows:

am = w[Rym o+ Ry m) —
BT = h[Rgn - R (-7
1 or:
| am w hfRgm ¢ R ] 2.3 t0.
S BT = [Rey(m) = Ry (D ]
] |
- ! As i3 the case for the Autocorrelation function, it can be shown that:
: R, (T) - o as T -+ ® 2,3,41,

xy

for most cases when y(t) is a random signal,

P T L

. : 3 Estimates of the Cross Correlation functiop can be obtained by using an analogue analyser
3 - (figure 2.3.7.) or by operating upon an N-length sampled data sequence representing the
%' : siynal. Since, howaever, the function is an asymmetric function of time delay, a complete
: description requires both positive and negative delays, or a reversal of the inputs, For
1 a sampled data sequence, the most commonly used algorithm is based uponi

N
R (kh) - l . x(n) .y(n - k) 2-3;‘2.
xy N=k ggk

e b Sk T s e




o A e e

58
and
‘ N
(kh) L] 1 . (n).x(n = k) 2.3.43,
Ryx =K ng-:kY

A

Once again, reasonably reliable results can be
than ten percent of N,

obtained if the maximum value of k is less

Estimates of thae Cross correlation function may also be obtained using the Discrete
Fourier Transform.. This route is here even more efficient relative to the dirsct method
than was the case for Autocorrelation functions. Details of the method are presented in

Reference 2.7.

Statistical errors assocliated with estimates cbtained by using equations 2.3.42. and
In this case, under the

2.3.43, are similaxr to those for the Autocorraelation function.
same assumption of white noise band limited at B He:tz.. Appendix E  gives the variance

of error as:

2 2 2
‘ . - + L] [ ] L]
Vax{nxy(r)} z.xla.-r(ay ol “xy("’) 2.3.44

It ig also shown that no bias is introduced by equations 2.3.42 and 2.3.43. This is not
true for estimates obtained using the piscrete Fourier Transfoxm and this method, despite

its efficiency is not to be recomnended.

y(t) MULT Ryy (1)
PTIME
DELAY
T
Fiqure 2.3.6. A _Simple Analogue Autocorrelator.
y(t) N MULT Rey (1)
. TIME
x(t) DELAY
T

Figure 2.3.7. A Simple Analogue Cross Correlator.
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2.4, Fraguency Domain Analysis

Much of the interest in describing the characteristics of random data stems either from-a
requirement to express those characteristics by a functional relationship (e.g. the meas=—
urement of atmospheric turbulence) or from the need to ninimige its effects by designing
guitable filters (e.g. by installing delicate instruments on appropriate anti-vibration
mounts). In either case, presentation of the detailed characteristics of the data in the
fregquency domain is normally much more immediately informative than the equivalent time
domain descriptions, for two reasons, Firatly, engineers tend to think and to express
themselves in frequency domain terms. Secondly data which is broad band in character (i)
is characterised by relatively few points in the time dowain. This means that quite large
changes in the frequency domain characteristics can be almost indiscernable when, for
exanple, those characteristics are described by the Autocorralation function (see Chap=

tar 4-).

This chapter is devoted to the two major frequencj domain descriptions of random data, the
power spectral density and the cxoss spectral density. A discussion on the derivation of
frequency response functions is included, and the chapter is concluded by a Section relating

frequency domain and time domain methods of presentation.

2.4.1. Power Spectral Analysis

The power spectral density of a random signal can be defined as the rate of change of mean
square value of the signal with respect to frequency. One way to vigualise this concept is

to imaygine that the signal is input to a narrow pand unity gain bandpass filter. The out=
put. of the filter may he squared and averaged, (figure 2.4.1.). The mean square value so
obtained is then divided by the bandwidth of the filter. The rate of change of mean square

value (power spectral density) at the centre frequency of the filter is then obtained
conceptually by reducing the bandwidth of the filter to zero.

Of course, it is not possible to create a filter with zexo bandwidth, but the circuit shown
in figure 2.4,1. is reprasentative of one type of analogue power spectral analyser. The
complate PSD function for a signal may be obtained from such a circuit either by arranging
many similar circuits in parallel or, for reasons of economy, by varying the centre
frequency of the band pass filter. 1In the latter case, the data must be re-analysed for

each new selected value of centre frequency.

y(t) B.P. MULT

Figure 2.4.1. A Simple Analogue Power Spectral Analysex.

in fact the circuit shown in figure 2,4.1. is rarely used for analogua power spactral
analysars. The technique most commonly implemented uses the signal being analysed to
modulate a carrier. The modulated carrier is passed through a fixed narrow bandpass
filter, and the output from this is squared averaged and scaled in the usual way. In
this case the signal bandwidth is swept by altering the frequancy of the carrier, rather
than the filter. The principle of cparation of the heterodyne analyser is shown in

figure 2,4.2.
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The majority of digital power spectral analysers use the same principle as the analogue
analyser shown in Figure 2.4.1. Here, however, the bandpass filter is simulated by
computing the Fourier series of a fixed length portion of the sampled data sequence,
calculating the mean square value of the modulus of the Fourier coefficients obtained

from a portion of the data sequence, and dividing by the effective bandwidth of the
tfilter' represented by the Fourier seried estimater.- An introduction to Fourier series
is contained in Appendix A. The concept that each Fourier coefficient, as defined by
equation A.l.12., represents the output of a digital bandpass filter is rendered plausible
by equation A.1.10. This states that the original signal can be reconstructed by summing
a series of sinusoids of different frequency (i.e. frequency components), each weighted
by the Fourier coefficients appropriate to that frequency. For the justification that

the coefficients can be used to estimate the power spectral density, the reader is referred
to Section A.2.10. This, together with the results presented in Section A.3., provide an

estimate for the power spectral density function as follows:

v 2
ny(k.Af) - g% chl | 2.4.1,

k=0(LN=-1
2

N=lw
where, Cy - > Y- 8%P [- i.271.k.n ] 2.4.2,
n=o N

For reasons which will become apparent later, the estimate given by 2.4,1, is unreliable,
and it is normal to improve this by computing the average of a number of independent
estimates. This averaging process is eguivalent to the integrator shown in figure 2.4.1.

The power spectral density estimator given by equation 2.4.l1. contains N/2 frequency points
equally spaced at an interval of Af = 1/hN, It is therefore a constant bandwidth estim~

ator, each 'filter' having a bandwidth Af.

It should be observed that there is a subtle differance petween the Fourier coefficients
as defined in eqguation A.l.12. and the coefficients (defined by a similar equation) of
2.4.2, 1In the former, y, is assumed to be periodic, and N is chosen so that the integra=-
cion is evaluated over an exact number of periods. 1In the latter case N is chosen arbit-
rarily. It turns out that the band pass filter defined by equeation 2.4.2. has excellent
properties when the data happens to be periodic gver the N-length sequence, but it is
rather less good when this is not so. The reason for this disparity in performance is
due to the shape of the pass band of the "f£iiter® defined by 2.4.2., which can be shown

to be (Reference 2.2.) of the form:

H(f) =  Sin mET 2.4.3.
neT

The shape of this function is shown in figure 2,4.4. The function has unity value at
the centre frequency and has zeroes coinciding with the frequency interval 2.4.1., that is:

Af = 2.4.‘.

2.

h.N

A sinusiodal signal y, whose frequency coincides with the centre frequency of one filter
(=K. Af, say) will be ?nterpreted by equaticn 2.4.2. as follows: '

k=K 2.4.5.

= 0 k ¥ K
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where A is the awplitude of the sinugoid.

Howaver if sinudoidal signal has a frequancy exactly midway butween two centre frequencies,
equation 2.4.2. will give:

L) : . Ck = A.E. Sinﬂ‘K-ﬁ-“-k! 2.‘.6.
- 2 7m(R+k=k)
5 where (K+%).Af is the frequency of the sinusoid and A is its amplitude.

Equation 2.4.5. clearly shows that equation 2.4,2. represents a perfect filter when a
sinusoidal signal coincides with the centre frequency of one filter, ie. when the sample
length contains an exact number of periods., When this is not the case, however, the

filter performs rather poorly and, at worst, behaves like a second order bandpass filter.
This is easily shown from equation 2.4.6., where the filter output values are proportion=-
al to the inverse of |K + k = %¥| . (It should here be noted that equation 2.4.6. describes
the worst case freguency response function of the filter, since it can be viewed as
describing the response of one filter as the sinusoid is stepped across its pass band) .

o . .

A considerable amcunt of effort has been devoted to improving the shape of the ‘filter®
described by 2.4.2. This has resulted in a large number of different proposals which
can leave the potential user in a state of some confusion. It is hoped that some clarif=-

ication can be obtained from the following observations:

RN A A

| ' - Frequency domain averaging will not improve the characteristics of the
filter implied by equation 2.4.1, and 2.4.2., though it may be useful for

1 ’ other reasons.

TR LL IR TR TS A

: . ) - It can be inferred from the above that the undesirable effects of the filter
- are caused by discontinuities (of amplitude, slope, etc.) between the and of
X one "perliod” and the start of the next - ie. between the end and beginning of
S the same data requence, since this is assumed to be pericdic.

- 7ime domain weighting which removes the discontinuities noted above also
! modifies the spectral shape of the data by distorting the data sequence.
This distortion is least when the rate of change of the normalised welghting

fPunction with respect to time is small.

application of equation 2.4.2. may have additional undesirable characteris-
tics in same applications. For example a sinusoidal function factored by

g the "80 - 20" cosine weight proposed in Reference 2.6, and shown in figure
¥ 2.4.5., results in a spe.trum containing side lobes, The reason for this is
that the modified form of the filter shape described by equation 2.4.3. has
maxima which are not spaced Af apart or a multiple of this.

E : - The equivalent filter which results from time domain weighting followed by

IS baaie i o i

In the light of the above cbservations, the most satisfactory "£ix" for improving the
characteristics of PSD function estimates obtained from 2.4.1. is to weight each

N-length sample of Yo bys

T

.. Win) = 1.(1 - coz ?.7t.n) 2.4.7.
1 , 2 N
;
!A
%‘
5
{},
g
_:1 _— »:'_"_‘A PLTR ) o CT T T AU oo o T v T L TS T . R ewin x’.'.g‘,,u__‘,,_h__
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Figure 2.4.4. Filter Shape corresponding to a DFT of Unweightad Data.
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Figure 2.4,5. One Proposal for Weighting Time Domain Data Prior

to Transformation.
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when the weiyhting function defined by equation 2.4.7. is used, the power spectral density
estimates obtained by 2.4.1. must be multiplied by 8/3. '

The filtering of equation 2.4.2, i8 most efficiently achieved using the "Discretes Fourier
ywransfoxm®, also known as the “Fast Fourier Transform®, The algorithm for this is descr-
ibed in Appendix B. The efficiency of this algorithm 1s1remarkable, improving upon the

obvious alyorithm by a factor N/p where N = 2P, the length of the data used in the trans-

form.

v

al density of & random funct-

An alternative digital method of estimating the power gpactr
ction (Section 2.3.7.) as followsi .

ion is to determine the autocorrelation fun

Rylm) = lim 1. f"' yit) .y (t-T) .dt 2.4.8.
Y T-+0 T o
or, using trapezoidal integration upon an N=length sanpled data gequences

2.4.9.

N
(kh) = 1. vyt = K
Ryy (N = %) Ex

where the maximum value of k ghould normally be less than ten percent of N.

tained from the autocorrelation function using the

The power spectral density can be ob
Weiner-Khintchine relation:

T
£ ' .cos nET.47 2.4,10.
Gy tf) = Lm Ay Ryy (%)
or, ayain using trapezoidal inteyrations
v
2.4.11.

man
ny(nAf) = 4h. kzé y(k).cos 4&%

where Af = _1 ., and the double prime indicates that the first and jast terms in the geries
2hm

must be halved.

£4{1lter acting upon the autocorrelation

ies estimator of equation 2.4.2, Here
the characteristics of the

y the functionm:

Equation 2,4.11. may be looked upon as & bandpass
function in rather the same way as the Fourier ser
again similax difficulties arise and, in order to improve
filter, the autocorrelation function should be weiyhted b

Wi = L.[1 + cos7k 2.4.12.
2z [ ™ ]

or by a similar function having the propertiass

2.4.13.

W) = 1. and Wim) % O

jon has fallen from favour

power spectral density funct
inferior toc the sdirect”

phiy method for estimating the
to some extent, because the computational efficiency is greatly
method utilising the piscrete Fourier Transform.
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Estimates of power spectral density are subject to two types of error., The first is a‘,‘
statistical error arising from the necessity to obtain the estimates from a finite length
of data., The second is a bias error which stems from the finite bandwidth filter used

. to separate the various frequency components of a a;gnal.

s a T T O

The variance of the statistical error is a function of the averaging time, as noted above,
but it is also a function of the number of statements to be made about the data; which
is equivalent to the bandwidth(s) of the analyser filters. Specifically, the variance

of the statistical error is given by (Appendix E):

Var[ny(f)] + GAyy() K : 2.4.14.
Bg.T = K ,

t

where By is the “equivalent statistical bandwidth" and T is the averaging time. " N

: |

)

R For the digital analyser specified by equation 2.,4,1., the bandwidth-time produst is

% - unity. This is equivalent to taking a single reading of a random phencmenon, a startling

i ¥ though not unreasonable conclusion, bhearing in mind that the Fouxler coefficlients are

t simply a reversible transform of the particular sample block of data. Two metilods are
available to reduce the statistical error to sensible proportions, The first is to

£ obtain M independent estimates of the PSD function by analysing different samples

; extracted from the gata. If this wethod is uded then the variance of the statistical

1

§

error becomest:

var G (f) & Glyy (£) : 2.4,15,
—Xﬂ—M .

The alternative method for effecting a reduction of gtatistical error is to average a

number of consecutive spectral estimates, thersby effactively increasing the analyser

. bandwidth. Then if L spectral estimates are averaged, the variance of the statistical
o . error becomes:

var Gy (£) % G2yy (£) 2.4.16.
L

The two methods of improving the estimates noted above are sensibly interchangeable. That
is, for a given length of racord, the variance of the error can be halved either by aver-
i aging pairs of spectral estimates or by re-analysing, taking half the previous number of
samples for each estimate, and doubling the number of independent estimates of the PSD

function.

L e T T

. Incidentally, the use of "Hanning" to improve the £ilter characteristics does not affect
equation 2.4.15. The increase in bandwidth so obtained is countered by & reduction in the

effective integration time.

3 ' i Bias errors can arise when the power spectral density changes value rapidly as the fregq-

A : uency is varied. The shape of the actual PSD function is averaged over the finite band-
widths of the fi.ters, and this can cause “amearing" of that shape. Specifically, the
bias error is approximated by ( Reference 2.2.):

: & ? " o .
r b ny(f) Be ny(f) 2.4.17
b i 24

[
- A 2
A whare Gt (5) = d4a“Gyy(f)
o ! Yy ar?

Thus bias errors are significant only when the curvature of the PSD function differs
significantly from zero.

SO VRPN O
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A great many of the properties of a random signal may be deduced directly from
function. For example:

The mean square value:

@
o = [ Gy tf).af
o

2
Y Y

The expected number of zero crossings per unit of time:

v o= 2. [Beyyier.a] ¥
Q

)
Ty

The expacted number of level crogsings par unit of time:
N = N_.exp = 2
v o "!I
2.0&

The expected number of maxima per unit of time:

v o= [ (Prloyyn.ar] ¥
[«]

o
* £2.ayy(£) Jat
(]

The relationships quoted above ha
contains explanations of these and other useful relationships.

2.4.2, Cross Spectral Analysis

The cross spectral density function represents a descri

its PSD

2.‘.18.

2.4.19.

2.4.20,

2.4.21,

ve been derived by various authors, Reference 2.l.

ption of the joint propexties of
considered to be a logical exten-

two random signals in the frequency domain, and can be
Cross spectral density (CSD) functions are

sion of the power spectral density funoction.

only rarely useful in t|
to estimating frequency response functions (see Section 2.4.3.).

spectral analyser is shown in figure 2.4.6.

90%
PHASE
Lag

» L

|
[\

y(t)

\

Fiqure 2.4.6. A Simple Cross Spectral Analyser.

heir own right. Thay are, however, frequently computed en-route
A simple analogue c¢ross

Co=Spectrum

Quad=Spectrum
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The circuit shown in figure 2.4.6. is romarkably similar to the circuit for a simple
power apectral analyser shown in figure 2.4.1l., but is complicated by the fact that, on
average, the relationship between x(t) and y(t) may not be in phase (i.e. have zaro time
delay). Therefore both in-phase (or coincident) and quadrature componants must be com-
puted. As was the case for the powar spectral analyser the centra freguencies of the two
narrow band pass filters must be varisd over the fragquency range of intexest in order to
compile a complete estimate of the CSD function.

pigital cross spectral analysers are similar in concept to the analyser shown in figure
2.4.6, Howaver the bandpass filters are simulated by computing the Fourier series of
fixed length blocks of the two sanpled data seguences, in exactly the same way as for
the power spectral analyser. (Note, however, that each pair of sample blocks must com=-
mence at the same point in time). An estimate for the C8D function may be deduced from
Appendix A ast:

* -~
ny(W) - %ﬁo(xck)u(yck) [} k - 0(1)%1'1 2.4.2‘0
N"lu
where: «Cx - T x(n) .exp -1.2mm) 2.4.23,
ns=o N
d Nz.,-l' (n) 1,27k 2,4.24
ands c - Ty (n) Jexpf=i.277kn 4,24,
y'k fmo ( N )

The similarity between equations 2.4.1. and 2.4.22. is obvious.

The estimate of cross spectral density given by equation 2.4.22. is normally made more
reliable by averaging a number of such independent estimates.

The cross spectral density estimator given by equation 2.4.22. contains N/2 equally
spaced frequency points at an intexval of Af = l/hN.

An altarnative method for arriving at an estimate of the CSD function for a stationary
random signal is to determine first the cross correlation function (see Section 2.3.8,)s

Ryy(¥) = Mm L. {F xehayte = T)ae 2.4.25,
T-@T ©

or, using trapezoidal integration upon a pair of N-length sampled data sequencesi

N
Ry, (kh) = 1. SUxid).y(d = k) 2.4.26.
(N = k) i=k
NU
‘ndt Ryx(kh) L] 1 . 2 y(i) -x(i - k) 2.‘.27.
(N = k) i=k

where the maximum value of k should normally be less than ten percent of the value of N.

N 1 v,
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The cross spectral density can then be obtained by transforming the cross coxrelation

functions
my .
C,,(ndf) = 4h. T A(k).cos 7mn.k
Y kK=o m
(n£) 4h. T B an.
Q - . B{k) .Sin 7nn.k
xy ng m
wheres Alk) = L[rgt ¢ Ryx (k) ]
B(k) = LRy - Ry (k) ]
and where: ny(if) - ny(f) - i-Qxy(f)o
At = 1
2h.m

2".28.

2.4.29.

2.4.30.

2.4,31.

2.4.32.

and the double prime indicates that the first and lagt terms in the series are to be

halved.

The raw estimates defined by 2.4.28. and 2.4.29, may be refined by weighting the even and
odd functions A(k) and B(k) of equations 2.4.30. and 2.4.31, in exactly the same way as

for PSD estimates., Equation 2.4.12. is satisfactory for this purpose.

Cross spectral density estimates are subject both to variance errcrs and to bias errors.

These are introduced by the finite averaging time and non-zero filter bandwidths.
Reference 2.2. quotes estimates of these erxors as:

var cxy(f) & Gxx(f).Gyy(f)
B_.T
a

Var Qxy(f) < Gxx‘f).zegf)

Be.T

4 v,
b eyt & Bel.Che)

4
b agy(® & Bel. @ (f)

where: S a3cxy(£) o for wxample.

at

2,4.33,

2.4.34.

2.4.35‘

2.4.36.

B_ is the “equivalent statistical" bendwidth of the filter, and * is the averaging time,

afl before.

deda O3
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2.4.3. Frequency Response Functions

. . If a linear system having a single input is forxced by a signal applied to that input,
: then a signal representing the response of the system will be dependent upon the character
! of the input signal and the propexrties of the system being excited. Specifically, if the
’ input is sinuscidal at frequency £ and has a unit amplitude, then the output will be sinu-
soidal, having an amplitude and phase rslative to the input which is defined by H(if), the
: frequency response function of the system. Tt will be noted that, in general, H(if) is
’ ‘ a complex function of frequency and is a property of the physical characteristics of the
[ linear system. These ideas may be extended to the case where the input y(t) is a station-
s . ary random signal. It turns out that three statements can be made about the charxacteristics

~ - —of the output aignal x(t) (Reference 2.l.). These are:

- the output is a stationary random signal,

=

] -  the PSD function of the response is a function of the PSD function of the
3 input and the system frequency response function,

B

3 :

; - the CSD function of the output relative to the input is a function of the
P power spectral density of the input and the system frequency response

; function,

g Specifically:

N 2
- G (8) = | HUD]| %6, (5) 2.4.37.

and: G, () =  H(if) . G (£) 2.4.38.

xy YY

The frequency response function of the system can be obtained from equation 2,4.38, as

. H(if) = Gxy(if) 2.4.39.
| . Gyy (f)

Tt was noted in Section 2.4.2. that the CSD function acts as a filter, rejecting those
components in either signal which are not coherent (i.e. which are not related to one

‘ another). It seems reasonable, therefore, to use equations 2.4,37. and 2.4.38. to
. justify (or otherwiss) the implicit assumption that x(t) and y(t) are related functions
7 of time, and hence frequency. This is effected by computing the square of the medulus
' of the ratio of the two estimates of frequency response function, s01

b -Lancocid

axy(if) 2 = viH) & 1 2.4.40.
Gxx (£) . Gyy (£)

The quantity Pz(f) is known as the coherance fuaction. If its value nowhere differs
significantly from unity, then a linear frequency response function relating the output
to the input certainly exists, and is defined by eguation 2.4.39,

A set of experimental results for which the coherence function is everywhere close tu
unity is found only very rarely. Low values of coherence may be caused byt

- no frequancy response function

~ a *node” in the frequency response functicn

|
|
i
; - 'ggi;e' contaminating either the input signal, or the output signal, or
! t

I

|

{

3
i
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~ a non-linear frequency rasponse function.
A small amount of measurement system noise is normally to be found in experimental
results. This is usually well distributed and causes the ccherence fuuction to “follow"
roughly the square of the modulus of the frequency response function. Further invest-

igation is called for when this does not happen, ie. when the cohe:enco‘rémnins low
even when the modulus of the frequency response function is large.

Possible causes of a low coherence in this situation are:

= garious contamination of the signals,
= the system has another, independent, input,

« the input power spectral density has a low value in the region of the peak
under investigation,

= the system is non-linear (if the system is a physical structure, does it
rattle?)

The resolution of these matters can sometimes be helped by assuming that the low coherence
is due entirely to the addition of noise to one or the other channel, Then under the
asgumption that the noise exists only in x(t),

2
G (f) = G (B [1 - ¥ (6] 2.4.41.

and if all the noise is assumed to be contained in y(t), then:

B

- - b2
G} (£) Gy (). (1 pén 2.4.42.

If either of these noise power spectral densities is a reiatively smooth function of
frequency, then it is usually safe to assert that the appropriate signal contains the

majority of the noise.

Frequency response functions are computed from estimates of power and cross gpectral
densities, both of which will, in genexal, contain a statistical uncertainty and,
possibly, a bias error., It therefore follows that estimates of frequency response
functions will contain aimilar errors.

It can be reasoned that bias errors can arise from:

- bias errors in the estimates of power and cross spactral density functions,

- noise included in the measurement of the input signal,

- contributions from other inputs which are correlated with the measured
input (it can be shown that other independent inputs do not cause bias).

A detallad study of the statistical uncertainty in estimates of frequency response
functions is included in Reference 2.2. The result 1s neither concise nor positive,

and is therefore not included here.
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An assessment of blas errors is also necessarily inconclusive because of the range of
possible causes noted above. One useful observation can, however, be made. The sactions

devoted to describing algorithms for estimating power and cross spectral density
roving the characteristics of the

functions (2.4.l. and 2.4.2.) include proposals for imp

analysis filterx. The effect of these improvements is to increase the bandwidth of the

filter. Irrespective of whaether they are to be preferred for power spectral analysis in

particular, the use of these improved filters can increase the bias error of frequency
It is, therefore, to be

response functions significantly, as shown in figure 2.4.7.
recommended that they be omitted when £requency response functions are of interest, part=-
icularly if the structure under investigation has lightly damped modes,

160
140

120

CENY_E
°
o

o o4 e 12 16 20

Figure 2.4.7. Percent Exrrxor in the Estimation of Filter
Banawidth as a Function o Analysexr to Filtexr

Bandwidth Ratio.
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of Signa

This Section introduces techniques which can be used to carry out the equivalent of
arithmetic operations on random signals. In general, the techniques are intended to
yiela frequency domain descriptions of the results of an azrithmetic operation, using

as operands frequency domain estimates which can be cbtained direstly from measurements.

of errors in the results

peen made to include in this Section estimates
to such errors can he

although in some cases, bounds
presented in Appendix E.

No attempt has
obtained from such operations,
deduced directly from the results

2,4.,4.1. The Sum of Emndom Signals

The case under consideration here is shown diagrammatically in figure 2.4.8. That is:

M
x(t) - ¥, (t) 2.4.43,
2Tk

ormed into the frequency domain, when the linearity prop-=

Equation 2.4.43. can be transf
(see Appendix A) gives:

erty of the Fourler tranaform

. M
F_(if) = F. (1f) 2.4.44.
x kz:l Yy

Each side of,equation 2.4.44. can be multiplied by the complex conjugate of Fx(it).

denoted by Fx(if):

M M
F_(if) JFH (L) - F. (4f) . F* (if) 2.4.45.
X x k-z-‘i Yy k-zl ¥y :

It may be deduced from this expression that the psp function of the Sum of Random Signals

is .given byt

M M
G, (£) - G (i) 2.4.46.,
X% jgl kgl ¥4¥x
which may be simplified to yield:
(e ol (£ 5 5 1:]
G ) - G ) 4+ 2,Re. G (if) 2.4.47.
o j=1 ¥3¥y [j-z k=1 Y3i¥k

e PSD functions of sach signal; the
{ons between one signal
try properties

on 2.4.47. is the sum of th
gum of all possible CSD funct

simplified by making use of the symme

The first term of equati
gecond term is the real part of the
and the other. The latter has been

of the CSD function.
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When all of the signals to be summed are mutually

Two extreme cases axe worthy of note.
ignal and another are everywhere zero, and

independent, the CSD functions between one 8
equation 2.4.47. degenerates to:

M

jgi Gyjyj(f) 2,4.48.

Gxx(f) =

Thus the PSD function of the sum of a number of mutually independent signals is equal to
the sum of their individual PSD functlons.

The second extramé cage worth noting occurs when all signals are identical. 1In this
case equation 2.4.47. reduces to:

(£) 2.4.49.

Gxx(f) - | M.Gyjyj

as might be expected from equation 2.4.43.

y it

¥, (t)
. x(t)

Yoy (T

P 1 it

Yy (t)

Fiqure 2.4.8. The Sum of a Number of Random Signals.

can be obtained by multiplying

An alternative expression, which may be more convenlent,
This yields:

equation 2.4.44. by the conjugate of the transform of one signal.

M
Fx(if.).t';j (4f) = > Fyk(if).v;j(if) 2,4,50.

k=

M
or, G (1£) - G (£) + G (L£) 2.4.51.
¥y* ¥3¥3 [ &1 v ] IR R

This states that, for M mutually independent random signals, the cross spectral density
function between the output and any input is real and is egual to the PSD function of

that input.
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2,4,4,2, The Sum of Filtered Random Signals

The case shown diagrammatically in figure 2.4.9. can be stated, by comparison with the
case described in Section 2.4.4.1l., asi

M
Fx(if) - #; Hk(if).Fyk(if) 2.4,.52,
¥y (6) aily (16) -
E x(t)
Yy (] o Hy (15) [

Figure 2.4.,9. The Sum of a Number of Filtered Random Signals.
An argument similar to that followed in Section 2.4.4.1l. can be used to yleld:

M M
G, {£) = > ¥ H,(4if) JHE(LE) .G (if) 2.4.53.
XX jml k=l ) k ijk

which may be written, after some manipulation:

G, () z"[ u, (16| %6, (0 2.R ZM jz.l H (1£) JHY(1£).G, , (if)
- . + +R@. [y -
XX 551 3 ¥4¥4 ju2 k=l k 3 Y4¥y

2.4.54.

When the inputs, y,, are mutually independent, the ¢8p functions between them are every-
where zero, and equation 2.4.54, degenerates to i

(£) VMl us)ie, (0 2.4.55
G = P H . se .
xx j=1' 3 ¥3¥3

A second interesting case occurs when the

This result is equivalent to equation 2.4.48.
In this case, equation 2.4.54.

inputs are everywhere identical, as in figure 2.4.10.
becomest

M
- 2
Gy (£) j‘élluj(if)l Gy (8) 2.4.56.
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B, (1£)

x(t)

¥ (£ )m————tmt
M-1 e

HM(if)

Figure 2.4.10.

nt has been oriented towards describing the output signal in terms

} 1s and the (assumed known) frequency response functions which

. describe the filters. When it is required to datermine the frequency response functions

: | of the individual filters, given measurements of the output and the various inputs, then
it is more convenient to adopt a somewhat different development, multiplying equation

2.4.52. by the conjugate of the Fourier transform of any input, so:

] . The preceeding developme
of the various input signa

. I M "
. F_(if) F* (1f) = H (LF).F. (1f).F* (if) 2.4.57.
, x Yy k§1 k Yy Yy
ﬁ [ ¢rom which it may be deduced that:
(if) ZM (1f (1£) 4,58
6. (i - H (i) .G 2.4.58.
Yy k=l k Yy¥y

i Equation 2.4.58. represents just one of M similar expressions which can be constructed.

| Organised in Matrix form, these can be written:

- {Gij(:l.f)} - [Gyjyk(if)] . {Hk(if)} 2.4.59.

n for the individual frequenszy response functions:

which may be solved to yield an expressio

-
L | . -1
: {“k‘“) } [ Gijx(m ] 1 {Gij(if)} 2.4.60,

0. is valid whether or not the various inputs are mutually independent.
ndependent, then the matrix of input CSD functions
and equation 2.4.60. caa be written:

Equation 2.4.6
However, when they are mutually i
becomes a freguency dependent diagonal matrix,

H (1F) = Gy (48 2.4.61,

Gyjyj(if)

LA o . gt e 3 - Y
. B e Dl e e i, . MR ; . . .
SR T UL S PN RN RS e : A 3 ' TN
—— PR A SO AU L Wi 2




an estimate of a frequency response function can ‘be obtained without bias from the PSD
function of the appropriate input and the CSD function between that input and the summed

output, regardless of the other inputs.

This conclusion <.  lrms the assumption made in Section 2.4.3., which stated that additive
noise which corrupted a measured output did not bias estimates of frequency response
function, provided that the noise was independent of the input signal.

TAEATR T P mme———

Freguency Response Function Estimates from Closed Loo Measurements

N
»
~

\ This very important relationship states that, when all inputs are mutually independent,
i
i
1
|
!
{

E‘ : The arrangement to be discussed in this Section is shown in figure 2.4.1l.

(t)

r{t) e(t) x=(t) x(t) c(t)
H(if) K(1£) -

Figure 2.4.11.

The system described by K(if) might represent a flight vehicle, and the system described
by H(if) might represent a Stability Augmentation System, an Auto-pilot, or even a human
pilot. It is supposed that the two systems are arranged in a closed loop with two sources
of input. The first, r(t), represents a demand (speed or height demand, for example) and
the second, n{t) represents a system disturbance (e.g. atmospheric turbulence). The
problem is to identify the sy am H(if). A number of possible cases can be considered:-

a) e{t) and x'(t) can be measured.

v This constitutes this simplest case. The problem can be solved by direct
application of equation 2.4.39.:

H(if) - Gex"' (1f) 2.4.62.
| aeeéf‘

\ ' It is worth noting that:

Fx'(1f) - H(if) .Fe(if) 2.4.63.

(I TS,

CIeTEG

or., Fx' (if) = H(if).{Fr(if) = Fo(if)) 2.4.64,

B e
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Multiplying by the complex conjugate of Fr(if) allows the following to be
deduced (see eguations 2.4.45, and 2.4.46.)2

Grx' (if) - H(if).(Grr(if) = Grec(if)) 2.4.65.
Equation 2.4.51. states, in this case, that:
Gre(if) - Grr(f) - Gre(if) 2.4.66.
Hence, from equations 2.4.65. and 2.4.66.,
H(1if) - Grx' (1£) 2.4.67.
Gre(if)
14
or Gex"' (1f) - Grx' (if) 2.,4.68,
! Gee (£) Gra(if)

y response function H(if) can

be concluded that the frequenc
input and the output

the ratio of the CSD functions between one
input and the summed input.

It can therefore
be estimated as
and between one

b) r(t) and x'(t) can be measured.

The estimated value of the frequency response function may be written, £rom

wquation 2.4.67,

A
H(if) - GEX if) 2.4.690
Gre )
This may be expanded to give:
A
H(if) - Gxx' (if) 4+ Grn(if) 2.4.70.
Gre(i Gre )
) 2.4.71.

= H(if) + %_n_&%)
. 14 -]

are independent functions, equation

For this case, provided that r(t) and n(t)
f the frequency response

2 4.69, can be used to provide an unbiased estimate o
. .iction H(if), since Grn{if) becomes zero.

Q) e(t) and x(t) can be mausured.

t signal r{t) cannot be measured, an estimate of the frequency

when the inpu
y application of 2.4.62.:

response function might be obtained b

N
Gee
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A
ox, H(LE) - Gex'(Lf) + Gen(if) 2.4.73.
Gee Gee
A
Hence: H(if) - H(if) + Gen(if) 2.4.74.
Gee(f) .

demonstrates that estimates of the frequuncy response function
{t) and x(t) are biased, since Gen(if) will exist due to the

Equation 2.4.74.
In fact the second term of equation 2,4.74. can

H(1if) using only e
action of the feedback loop.

be expanded to give:

Gen(if) = 1 + H(if) . Gn'n'(£) 2.,4.75.
“Geel(t) K(if) Geeéf)

of e(t) which is due to the noise input n(t).
compared with r(t), then the component of equation

111 also be small, and:

where n'(t) is the component
Clearly, when n(t) is small,
2.4.74. defined by 2.4.75. W

Rig) & HUD 2.4.76.

However, when n(t) is large compared with r(t), then:

fugy & = _1 2.4.77.
(LD

the inverse of the frequency response function of the known systam!

The above example is designed to demonstrate not only the powasr of the technique and
also the dangers which can Lu encountered if the measurement. trial has not been designed

properly.
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CHAPTER 3 PRACTICAL ASPECTS

ithms reviewed in Chapters 1 and 2 represernt only the bare

sing random data. Such a facility may take many
forms, ranging from a general purpose digital computer to a range of dedicated "black
boxes", each designed to fulfil a particular task. It is, therefore, hardly relevant .
to discuss a particulax, or even an ideal, facility for the processing of random data.
It is, however, relevant to discuss in general terms the requirements which are to be.
gought after in any facility, reyardless of the shape of the hardware and the precise

analysis techniques employed within that hardware.

The techniques and algor
bones of part of a facility for proces

Practical mattexs such as how the data and results are archived, how quality assuriace

requirements are to be satisfied, and how the results of the various analysas are pres-

ented do not, in general, affect the precision and quality of analyses. However they
ed to produce such analyses of random data

asgume major importance in a facility design
on a routine basis. These are the matterxs which are introduced in this Chapter.

3.1, Measurement Systen calibrations

er and signal conditioning unit (SCU) system possesses a uwumber of intriasic

Each transduc
Those of direct interest to the analyat ares

properties.

- rest condition (zero offaet)

- genaitivity (gain)

= dynanmic pehaviour (freyuency response characteristic)

om static calibrationg in which the trans-
es of knowi: inputs {normally, though
e¢ input and the agsociated unit out-
latively simple to aexecute,
gned to deduce 4ing

the first two properties may be determined £x

ducer or SCU is exercised by subjecting it to a seri

not necessarily, at steady levels), each value of th
put level being recorded. S+ tie calibrations are normally re

but there are exceptions - ¢ .Jibrating a set of gtrain gauges desi
loads and moments, for example.

difficult to determine with a reasonable degree of

The third property is oftaen much more
tias if the measurements are ex-

accuracy, but is just as important as the static proper
pacted to vary rapidly during flight trials.

calibration information igs likely to be gathered by a number of separate groups within an
organisation and at widely differing times. Also, individual units may be replaced
during the course of a flight trial. The tagk of maintaining reasonably reliable inform-
ation about the overall characteristics of a measurenent system can be formidable anless
the information is handled and logged in a uniform manner. The requirements for tuch a

logging system aret

L)
- flexibility. The system must be capable of interpreting many diffezent

types of ingormation and of converting it inte a uniform format

- tracibility. Overall system characteristics may be deduced from a number
of individual calibrations. It should always be possible to *back=-track"

to check suspect results

o reliability. Standard errors associated with individual calibrations
ahould be propagated so that an estimate of the standard error of each

msagsurement channel can be ascertained.

The information raquired from each individual calibration in ordexr that these requivements

may be satisfied is as follows:

Calibration identifier

calibration date
Transducer/SCU identifier

e L o o Caeen
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h p : = Raw calibration data
- Reduction technique identifier
- Dpeduced properties and associated standard errors

1 ; A calibration data filevtor any trial may then be established by spacifying calibration
and unit identifiers for each measurement channel. An appropriate form for the calibra-

tion data file might ba:

et A B

Flight identifier
Flight date
= Flight racord identifier

- Measurement system specification

« Total zero offset

- 7Total statlic (or nominal) senaitivity for sach measurement

- Total dynamic characteristics channel

’ = - associated standard errors

The above system could becoma very unwieldy if it is used unwisely by breaking down each

measurement channel into the groaatest possible number of elements. A reasonable

approach can be arrived at by dividing each measurement system into two parta. The trang~

ducer and its associated SCU is considered to constitute one unit, and the transmission

. and recording equipment to constitute the other. The last of these can be adjusted so

. that tine dynamic characteristics of each channel are matched, and the overall system be
organised so that calibration levals are recorded immediately prior to, or during, each

. ' trial (see Secion 1,3.3.). Thus tha characteristics of the transmission and racording

1 aequipment can be dafinad by a single dynamic calibration and hy the calibration signals
recorded at the time of the trial., This information must, of course, be reduced and
loggad in a manner similar to that describad abova.

FEATAA T DT R R s el e T R R T D TR AT v e e R
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f‘ ' ’ The calibrations and associated accuraciea of instrumentation systemc have always benn
- a source of irritation to users and quality assurance enginears alike, The above syatem
can go scme way towards alleviating this irritation, particularly if it is programmed

onto a digital computer.

3.2, Data Qualification

5
g
{ The first requirament for data qualification is to select samp.es trom a resording
?f- ' for further inveatigniion. This implies that the analyst has access to 4 *quick

o look" dispiay 2f the relavant purametezs. It follows that an ability to produce such a
display must be a fmature of the analysis facility, It is the experience of the author

‘ that the ideal “"quick look" output is one in which the complate recording is displayed

5 onto no more than two metres of paper. ‘The papsér should include all the information

3 . channcls which are nacessary to make the salection, and the banawidth of the presentation
: should ba consistent with that ~f the data. The result does hobt a)low the details of the
T waveform to be examined, but dows highlight stationary areas of informacion, the distrib=-
R ution of dropouts, certain types of non-lineari:y (@.g. A nsymmetric probability distri-
bution) , points where the recordsr was ewitched on, etc., in faet the majority of the
information required to select appropriate samples "or analydis, One drawback of the
presentation is the difficulty which may we expesicaced ir d~¥ining the precise starting
point for an analysis. Whore riudom data ia concerned, howaver, it is often not necessary
to specify a starting poin% to a procision Letter than -ne seccnd, so that the diffioculty

S é may not be important.

¥
@ é The E£acund raquirement Ior data qaalificatton is to establish, in broad teims, the qualit
- § of the data. This rau b achievod by caefputing from the nominated areas of intarest tria
ﬁ
$
b
\

RMS .ime hictories and ampaitude probability densit'es (Saction 2.3,2.) for selected data
channals. An RMS time hisiory is «hwtalaed by computing the mean square value of a data
channel (S5ection 2.3.1.) for a serles of gamples extractad from the nominated area of
intetest and plotting the square root of the results against the time corresponding to the
mid=point of the appropriate gample. If such analyces giva reasonable results, then this
is normally justificatlon enough for commencing detailed analysis of the nominated areas.
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3.3,  Data Handling

It has been cbserved in Chapter 2 that descriptions of the characteristics of random data
are provided in the form of averages. The extraction of msuch averages may require the.
processing of large quantities of data. For example, a 14 track FM magnetic tape
raecording conforming to the Intermediate Band LRIG standard can contain the equivalent

of ovsr 105 data samples per foot of tape, and the analysis of a complete flight regord
can mean the handling of the equivalant of over 108 data samples. Coping with such

‘quantities of data on a routine basis makes special demands on a processing facility.

ohis section is devotad to a discussion of the reqguirement created by those demands.

The process of daecribing tha charactaristics of random data is inevitably a reduction
process, This is bacause the number of reliable statements which can be made about a
random signal is, by definition, very limitaed compared with the number of data points
(or eguivalent) contained within the data itself. The degree of reduction can be of the
ordar 1000-1, In the majority of cases, random data is recorded prior to analysis, and
when this is the case there seems to be no point in re-raecording the raw data except to
make it more readily accessible to thae user. Indaed, re-recording is an expensiva
process in terms of the cost of effecting the transfer, the cost of the racording medium,
and in terms of the floor area required to store the records. Clearly, when large
quantities of data are involved, there is a cass for making the original record access-
ible and using this directly whenever the data is to be processed.

The philomophy describad above, of analysing the original record, implies that the data
be analysaed "on-line", that is the acquisition module should include the ability to reduce
the data at the same rate that the data is acquiraed. The number of *on-line" reduction
procegses required for the majority of applications is, fortunately, limited and can be
incorporated readily into a dedicated processor or can be provided by a small number of
gpecial purposes units. The routines primarily reguired ara as followsi

-~ RMS and mean values as a function of time
=  Amplitude probability density

- Sample acquisition

= Acqguisition of peak values

« Powaer spectral analysis

- Power and cross spectral analysis.
Secondary routinaes which may be ugeful are:

~  Autocerrelation

- Cross~correlation.

The first two routines are requirged primarily for data qualification purposes, and the
results obtained are not normally required to be archived.

Sample acquisition is required for acquiring trinalent "avents" and short samples of
random data for which special purpose analyses are required. The process involves
aextracting a number of samples (or sampling an analogue signal) at constant time
intervals for each of a ppevified set of data channeis. The exact channels and the
number of samples par chdnnel (or acquisition time) are selected by the operator. The
start of acquisition should be loyic controlled so that it may be triggered by the oper-
ator, by an event (e.g. tape recorder switch on, or a particular recorded time), or by
a nominated data channel exceeding a specified level (the start of a transient).
Flexibility of operation is greatly enhanced if the start of the acquisition can be
advanced or delayed relative to the sensed event. Acquired data is normally scaled to
enginesring units and filed in preparation for “off-line" analysis.

Peak value information may be required when fatigue- relatad calculations are to be
performad upon random data. The acquisition of peak values involves sampling the data
and computing the level and time of cccurence of each sensed maximum and minimum. In
order to inhibit the acquisition of large numbers of peaks caused by noiss, it is
normal to include a "gate® which rejacts peaks within a specified range of tha previous
troug',, and vice versa. This type of acquisition is normally controlled by calling for
a nominated number uf peaks, but limited by a specified overall acquisition time. The
data arrays for each channel contain, on coapletion, the levels of each pesk &nd trough
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and the time of occurence relative to the start of the acquisition. These arcrays are
normally scaled to engineering units and filed in preparation for further *off-line"

analysis.

ctral analysis involves large amounts of proscessing. This activity
efine the performance redquired of an on-line processor. A practiral
digitzl analyser can be designed so as to extract the cross spectral density of two
channels, and the powexr spectral density of each channel from a single DFT. Alternatively
the power spectral denalty of each of two charnels can be computed, and the envelopa of
all individual estimates can ha stored for each channel. The latter function, when
divided by the estimated power spectral density, cepresents ¢ gensitive indicatcr of the
presence of periodic, or near periodic¢,; components and of the presence of non-stationary:

occurances in a signal.

Power and cross sgpe
will' in gmer‘l' (1

o make the best use of the availabla Gata, the acguisition routine should be
sampllng can be continous. This implies

311 be govexrned by the computing powar

In nxder t
interleaved with the procassing routine so thut

that the maximum acquisition ratd of the system
of the processor.

A major disadvantage of on~line primary processing is that pre-processing activities

(sew Chapter 1) must alsc take place on-line priox ta processing. When the data is
analogue, then this iwcay be affected by analogus filters prior to sampling. However, when
the Gata is digital, then hardware must be avallanie to simulata th=z analogue filters.
this can be esfected veing the racursive digital Zfilters described in Section 1,5.2., A
system which can Le used for ali types of on-line processing is shown schematically in

figuse 3.1.

In all cusez, prouesied data should te £iled togethe:r with the relevant analysis para=
metars. Typleilly. tihese migat include: :

= Flight identifier

- Flight date

-  Flight recosd identifiex

= Jalihratinn deta identifier

~  hequisition race

-  Nuaber or smmples puc transfoxrm (if roalevant)
~ Detazils of pre~procesaing filters {high pass, anvi-aliasing, etc.)
- Chaonel idemtafiex

~ Acquisition start time

for each data file
- Length of soquisiticn time

s St 2 W o

- Pra-sampiing gain (if relevant)

Data Presantation

(724
r-3
]

ilowaver high the quality of the original data, and however preclde the analysis tools
used to operate upon the data, the usefulness of the rusulis obtained from &ny trial
depondz upon the way the results are presented. The genexal rules for presentation

of tie results from any analysis &ra:
-  the information should he assitilable
-« ghould include tracibility infoimation

- should contain parameters necegsary forx asnassing the yuality or tue data,

The £irst rule implias that the data precentation should he grephical, in enginsering
units 4nd should include titles which idsntify the record and the meacurement channal
invelved, bearing in mind that tha presentation may be kept longer than the engincer

rerponsible for it. Furthex, tlie presentation should be in a form which highlights thnse
for example, are normally

characteristics of interest. FPower spactral density functions,
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in a log-log forma%.
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This may bz the right presentation in general terms, but the

engineer interasted in examining in some detail the spectral details at high frequency
may be better served Ly a log=lin¢ar, or even a linear-linear presentation. Yet again,

‘an engineer

concarned with the modal damping characteristics of a structure might be

more interestad in a linear-square presentaticn.

Tracibility
ambigulty:

information is nedegaary to identify the following information with no

The raw data record from which the presentation was produced
The calibration information used to scale the raw data
The gsuite of programmes used tc reduce the raw data

The location of the raduced data

The parameturs for assessing the quality of the results vary from presentation to
presentation. Broadly, they ate those parameters which are necessary to estimate the

statistical

and, where relevant, the bias esrrors of the results.

LOCAL STORE

ANALOGUE

ANALOGUE
M.T. U,

DIGITAL
M.T U,

\ SIGNAL
. ADC.
RECOVERY s.ou. |

i, g o

CONYROL N-LINE G. P
s
CGMPUTER

CONSQLE PROCEZSOR

: DAT/ 18 "
A DIGITAL LU,
KECOVERY s.c.U.
-

C

GRAPHICS

. UNIT

Figqure 3.1. A Facility for Processing Random Data,
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CHAPTER 4 SOME APPLICATIONS OF RANDOM DATA ANALYSIS

4.1, Lxamples of Spectral Analysis Computations.

ectral analysis of random data

The results which may be obtained from power and Cross Sp
depend, of course, upon the characteristics of that data, but also upon the various
ible is called upon to make during the analysis. Those

decisions the engineer respons
decisions relate to obtaining a satisfactoXy compromise between the detail which is to
be extracted from the data and upon the reliability of that datail, i.e. between

quantity and quality.

Sections 2.2 and 2.3 include relationships which are intended to assist the engineer
in making the choice of analysex bandwidth which is appropriate for a given length of
record. This Section contains results extracted from analyses of two types of signal.
They are intended to provide a “feal" for the consequences of choosing any particular

th and averaging time. The Section also contains results

combination of analyser bandwid
which demonstrate the effect of *Hanning"™ each block of data prior to analysis.

The signals used for the analysis were a *white" noise source band limited at 1 KHz.,
and a narrow band signal produced by passing the white noise through an analogue filter.
The filter used was a second order bandpass filter centred at a nominal frequency of
159,.2 Hz. with a damping factor of two percent of critical. ‘The behavior of the filter
ig illustrated in figure 4.1.1., which shows the response of the filter in the time

domain to a step input.

. 1.0x10+00
z
3
c
pus
-B.0 .
0.0 0.8 1.0 185 2.0 2.5 3.0%10~01
TIME 8ECS
o 2.0x10+00
(=
s |
&
-
nAAA AAA'\ﬁAAJ A Al i,
LA
-2.0
0.0 0.5 1.6 1.8 e.0 2.9 5.0x%x10-01
TIME SECS
Figure 4.l.l1l. Tha Response of a Narrow Bandwidth
Band Paay Filter to a Step Input.
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The spectral analyser used for the analysis used a DFT algorithm for computing the
power spectral density of each signal and the cross spectral density of one signal
relative to the other. Auto and cross covariance functions were obtained by 4
transforming the appropriate frequency domain results. Data were acquired at 10 /7
samples per second per channel, and the signals were conditioned prior to sampling by
, first order high pass filters having a time constant of one second, and by anti- :
o, aliasing filters cutting off at 675 Hz. with a roll-off rate of 72 dB per octave

3 (signifying 12 poles.) The results were corrected to remove the effects of both

: ’ filters. The parameters used during each analysis are identified on the figures

by the following:

N = the number of samples per channel used in each DFT transform

M - the number of transforms used to compute the information presented

G A e S

H - a "Hanning" marker: O = No Hanning, 1 = Hanned raw data.

The remainder of éhis Section is devoted to a discussion of the results of spectral
analysis and related computations presented in figures 4.1.2, to 4.1.11. inclusive.

4.1.1. The Effect of Varying Averaging Time.

Figures 4.1.2, and 4.l.3. demonstrate the influence of averaging time upon the
reliability of the power spectral density estimates for each type of signal.

Figure 4.1.6. contains the inverse transfoxms of the above reaults.

- Figure 4.1.8. demonstrates the effect of averaging time upon the reliability of
frequency response functions computed from the cross spectral densities.

Figure 4.1.9. contains the corresponding inverse transforms of the cross spectral
densities.

The figures show that the average of around one hundred sample blocks is required

in order to describe the signals with a reasonable degree of reliability in the
frequency domain, with power spectra apparently converging less rapidly than the

. corresponding frequency response functions. In practice, should the quantity of

data available be insufficiant to allow the average of approximately one hundred
transforms to be obtained with the chosen length of transform, then it is to be
recommended that either the transform length be reducad, or frequency domain averaging
be employed. It should be assumed that the dissemination of unreliable results will
lead to mis-interpretation of the data. ’

e e

It will be observed that the auto-covariance function for the broad band signal contalns
information which is not significant after the first few time delays. The function,

3 : . as presented in figure 4.1.6. would not be vary useful to an analyst. A re-plot of

h‘ the first twenty or so milliseconds would be justified if the information was required

= to be examined in detail.

The auto-covariance functions for the narrow band signal illustrate the problems of
interpreting such information. The results contained in figure 4.1.6. are open to
errongous interpretation even after 100 sample blocks have been averaged - at firast
sight the plot indicates that there may ba two modes present separated by approximately
2 gz. gnly after 1000 sample blocks have been averaged is it apparent that just one
mode exista. .

3” ‘ It should be noted that the computed RMS values fox the broad band signal are more
g . i stable than those for the narrow band signal (figures 4.1.,2. and 4.1.3.), a result
anticipated by the expression for thas statistical reliability of mean square value
estimates contained in Section 2.3.1.

It may be seen that the power spectral density estimates for the narrow band signal,
: figure 4.1.3., do not conform to the expected shape at very low levels (a slope of
i 2 decades per decade, or 6 dB per octave, was anticipated.) This is the effact known
! ag "side band leakage® and is causad by using a "hoxcar® data window (individual data
E blocks were not weighted in any way prior to transformation.)
{
i
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4.1.2. The Effect of Varying Bandwidth.

Figure 4.1.4. indicates the effect of analyser bandwidth on the power spectral density
estimates for the narxow band signal. Corresponding information for the broad band
signal has not been included bacause analyser bandwidth is not important for gsignals

of this type.

Figure 4.1.7. contains the inverse transforms of the above results.

Figure 4.1.10. shows the effect of analyser bandwidth on the frequency response
functions computed from the cross spectral densities.

All the results shown in the above figures were obtained using the average of 100
transforms. As the analysis bandwidth was increased, the averaging time was reduced
accordingly to keep the bandwidth~time product constant.

Estimated power spectra for the narrow band signal (figure 4.1.4.) vary significantly
over the range of bandwidths presented, the perceived peak amplitude reducing from 2
approximately 0.43 units“/Hz at a bandwidth of 0.6975 Hz. to approximately 0.21 units“/Hz
at a bandwidth of 11.1607 Hz. This effect is accompanied by an increase in amplitudes
at off-peak frequencies to maintain roughly a constant RMS value. Thus as the analysis
bandwidth was increased, the apparent damping of the mode increased.

The apparent increase in damping with increased analyser bandwidths is carried across
to estimates of the frequency response function (figure 4.1.10.) Also apparent from
these results is a decreased level of cohaerence as the analyser bandwidth is increased.

The increase in apparent damping is due to a bias error caused by the spectral
averaging effect of individual analyser filters. The effect was predicted in
Section 2.4.3. (The relationships shown in figure 2.4,7. were deduced experimentally
from the results presented here by estimating the apparent system parameters using
frequency domain identification.) The observed decrease in coherence is associated
with the finite length of data used to calculate each DFT. The excitation of the
narrow band filter by an event extends for a significant length of time. The result
is that the cause and effect of a particular event could be in different transform
blocks, thereby reducing the estimated coherence between the two signals.

The auto~-covariance functions contained in figure 4.1.7. reflect the comment made

with regaxd to the affect of analyser bandwidth upon estimates of power spectra.

Here, however, the effect of decreased block length is demonstrated moIe explicitly:

the maximum time delay which could an be achieved using an analyser bandwidth of 11,1607
Hz. was reduced to 0.0448 seconds {compared with 0.7168 aeconds for a bandwidth of

0.6975 Hz.)"

4.,1.3. The Effect of Hanning.

Figure 4.1.5., which should be compared with figure 4.1.4., demonstrates the effect

on estimates of power spectral density of "Hanning" each block of raw data prior to
analysis. The comparison shows the improved “gide-band leakage® properties which are
associated with Hanning (see Section 2.4.1.) Observe, however, the increase in apparent
damping particularly at high analyse) bandwidths: the perceived peak amplitude at a
bandwidth gf 11.1607 Hz. (0.21 units“/Hz without Hanning) is reduced to approximately
0.16 units®/Hz. The effect is reflected in the auto-covariance estimates contained in
figure 4.1.7. which demonstrates the apparent increase in damping in a more dramatic

way.

Figure 4.l1.11l. contains estimates of frequency response function using Hanned raw
data. They should be compared with the equivalent aestimates presented in figure
4.1.10, which were obtained without Hanning. The conclusions to be drawn are similar
to those noted above for power spectra. Here, however, the effect is more serious
with an obvious drop in the coherence function at frequencies closa to the natural
frequency of the filter. It should be noted that, at frequencies outside this
problem area, the effect of Hanning was to increase estimates of coherence.
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Thus the effect of applying a Hanning window to the raw data blocks is, apparently,
to improve the stability of frequency response function estimates in areas which do
not include resonances, but also to increase the bias error at frequencies close to
a resonance. In general, an analyst would be most interested in the shaps of &
frequency xesponse function at frequancies close to reschLRnoss: ‘thes

not normally be used when frequency response functions are the primary chjective of

an analysis.

In Summary, the results provide an insight into the comsequances of sssuming particular
values of averaging time and analyser bandwidth upon the resulting sstimates of power
spectral density and frequency response functions. They indicats that Sasaing should
not nomally be adopted for computing cross spectra, and that the wee of Eassing for
power spectral density estinates does not improve the estimstes sigaificaatly, provided
that sufficient data is available to achieva a reliable aveisge.

ariance functions for aerrow bamd signals conwecys

It is also observed that auto-cov
only slowly to a result which is free from potentially aisleading ambiguities.
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4,2, The Measurement of Atmospheric Turbulence.

Atmospheric turbulence is specified in terms of three orthogonal components of velocity.
For the duration of particular atmospheric conditions, an adequate description of the
turbulence is often considered to be provided by the amplitude probability density, the
power spectral density and the spatial autocovariance function of each component of
velocity. When viewed from an aircraft travelling through the turbulence, the description
can usually be described by the amplitude probability density and power spectral density
of the vertical and jateral aircraft axis-related components, since the scale of
turbulence is usually larxge enough in relation to the size of the aircraft to justify an
assumption of perfect gpatial correlation., Further, gust velocities can be assumed to

be Normally distributed everywhere except at altitudes less than approximately 100 metres.
Under these conditions, atmospheric turbulence can be described by the power spectral
density distributions of the vertical and lateral components of gust velocity. The
methods by which these may be' deduced from flight measurements are the subject of this
Section. For the gake of simplicity the exposition is confined to the,vertical component
of gust velocity. However, results equivalent to those presented here can be deduced
directly for the lateral component.

The measurement of the vertical component of gust velocity from a moving platform is
complicated by the fact that the platform jtself can translate relative to its mean
trajectory. The measurement 18 normally made using an incidence vane mounted on the
vehicle. These are then corrected using measurements obtained from locally mounted
inertial transducsrs. Specifically, using the notation shown in figure 4.2.1.,

« B + St('-é)dt-&c 4.2.1

<€

The constant of integration, C, can be neglected since only the dynamic component of
gust velocity is normally required. Hence,

w = VB + X"'(‘z‘-vé)dt 4.2.2
o)

The evaluation of equation 4.2.2. is difficult to implement pecause any offset vwhatsoever
in either of the inertial measurements will result in the integral term wdrifting” away
without limit. A practical compromise can be obtained by replacing the integrator by a
ijow pass filter (see Section 1.5) and setting the time constant of the filter to a value
which is below the frquency range of interest.

The vertical component of gust velocity may thus be extracted from measuremants of

vane incidence, acceleration and pitch rate at the vane mounting point, by implementing
eqguation 4.2.2. as shown in figure 4.2.2. The integrator is replaced by a low pass
f£ilter, and the vane incidence measurements are high pass filtered (using the same

time constant as that used in the low pass filter) to maintain the validity of the
reconstitution. The circuit can be described in the frequency domain, as follows,

w.if/f0 = V.B.if/fo0 ¢ g'z'-vé) 4.2.3.
1 + if/fo 1 + if/fo 1 + 1f/fo

It is clear from aguation 4.2.3. that the reconstituted gust velocity is viewed through
a high pass filter having a half power frequency of fo.

’

The circuit shown in figure 4.2.2, can be used to process the measurements elther
during flight prior to recording, or after replaying the recordings prior to processing.
If it is used in flight before recording, then the circulit effectively reduces the
number of parameters to be recorded, but difficulties can be caused by the need to
factor two channels by the true airspeed of the £1light vehicle. These difficulties

can be eased somewhat by computing the gust angle, w/V, rather than the gust velocity,
when only one parameter, vane mounting point acceleration, has to be scaled.

Typical results which have been obtained by applying the circuit shown in figure 4.2.2.
to the task of reconatituting the lateral component of gust velocity are shown in
figures 4.2,3. to 4,2.6.
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e vertical component of gust velocity is to

An alternative method of extracting th
domain using the relationships developed

process the meagurements in the frequency
in Section 2.5 (equation 2.5.54.) to yield

Gt = Vlagn]? ¢ Gyt + vioggtf)
TH? Tnen

+ ?‘f"m{mB(m'GEB(m - 1VHG(48) .Gaglif) = Fl‘!.cié(u)} ‘2.4,

the vane (HB) have been included for

ponse characteristics of
ig, of course, unity.

Here the fregquency res
For a perfect vane Hp

the sake of generality.

It is interesting to note that equation 4.2.4, can be used to calibrate an incidence
vane dynamically from measurements obtained during manoeuvxes executed in still alyr
conditions. Satisfactory manoeuvres are those which excite the short period pitching
mode in a random fashion. The frequency response function of the vane may ba estimated

by computing:

HB(if) = i.(Gﬁi(if) - V.GBé(if)) 4.2.5.
2% V.GBB )

btained from such a trial are likely to provide good results over the

The results O
frequency range 0.5 to 1.5 Hz for a conventional aircraft.

!

Sign Convention

Figure 4.2.1.

Incidence (B)
-————————————m}*—+ >P4 v }*

Pitch Rate (9)

vert. Acceleration (%)

Figure 4.2.2. Analogus Gust velocity Reconstitution Circuit
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4.3. The Analysis of Records from Flight Flutter Trials.

Flight flutter trials are conducted in order to demonstrate that an aircraft is free
from structural instabilities. Such instabilities can ocour as a result of coupling
petween the flexible modes oi an aircraft structure and the aerodynamic forces induced

when the modes are excited.

The objective of a £light flutter trial is, therefore, to excite the flexible modes of
the aircraft under investigation, or at least those w:des which are considered to be
eritical. A trial is normally designed to covexr a range of airspeads and airsraft
altitudes. During the periods of excitation, simultaneaus racordings are taken of
the excitation force {(when appropriate) and the responasas of accelernmeters ounted
at strategic points around the aircraft = normally close to the extremities where

modal displacements axe greatest.

The recordings made during a trial are required to yield the natural frequency and
damping coefficient 'of each mode of interest. When sufficient accelerometer
measurements are available, then estimates of the shape of each mode may be required.

A number of methods of excitation and techniques for analysing the measuvrements have
been proposed and implemented in an effort to achieve estimates of parameters toO the
required accuracy. The difficulties in achieving this arae that the estimation of
natural frequency and, in particular, damping coefficient is an exacting task, and
the measurements are often corrupted by the presence of one or more of the following

gources of noisze:

- control surface movement induced by the pilot or autostabiliser

- jet exhausts

- mechanical components (engines, pressurvisation units, etc.)

- propellor or fan nolse
- boundary layer pressure £luctuations

- atmospheric turbulence

Reference 4.1, contains a comprehensive survay of the techniques which are employed

to execute, and to analyse the results of, flight flueter trials. Howeverxr, the problems
which may be encountered by the aeroelastician during the course of a gseries of flight
flutter trials are faced by any engiueer seeking to obtain information about the transfer
function of a dypamical system from experimuntal measurements. Such measurements will
contain, either by accident or design, random components which must be processed in
order to elicit the required information. 1t was therefore considered to be relevant

to include a discussion of the issues involved in the volume, with special reference to

the analysis of flight flutter trials.

4.3.1, Excitation by Atmosgheric Turbulence.

Atmospheric turbulence can excite an aircraft structure to a detectable level over a
wide frequency bandwidth. It is for this reason, coupled with the fact that no special
excitation equipment need be inatalled in the aircraft, that atmospheric turbulence has
been considered as a means for exciting an aircraft for flight f£lutter trials.

Atmospheric turbulence can often be considered to be perfactly correlated spatially
(see Section 4.2.) This implies that the wing span of the aircraft is small compared
with the average wavelength of the turbulence, and that the aircraft passes through a
point in space pefore the gust velocity obtaining at that point can chande its value
significantly. when this is the case, then the power spectral density of the response
of a point on the aircraft can be described succinctly as,

2
G (f) = | H(LE) [ 2.6 (D) 4.3.1.

where Gr(f) is the PSD of the response
wa(f) ig the PSD of the gunt velocity

and H(if) is the transfer function of the aircraft
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The transfer function ingludes components due to the zerodynamic forces in addition to
those due to the characteristics of the aircraft structure, If the former, and the
value of the PSD of qust velocity, change comparatively slowly with frequency, then
their combined effect upon the response PSD can be assumed to be constant over the
range of frequencies close to a resonance of the gtructure., The shape of the response
PSD over the range of frequencies can then he used to identify the natural frequency

and damping coefficient of the structural mode.

Several tachniques have been used to identify the parameters. These include:

a) Half Power Frequencies.

When a mode is well separated from its neighbours, then ite behavior resembles that of
a single degree of freadom system. The natural frequency and damping coefficient of
guch a system can be estimated from the values of the two frequencies, f and £,, at
which the value of the PSD is half the peak value, provided that the syslem damfiing

is low and the PSD of the excitation is substantially constant over the frequency
range of interest. The parameters can be calculated using the followina expressions.

£° - £, + fl (natural frequency) 4.3.2,
e
2
z - £ - fl (damping coefficient) 4.3.3.
izo

bt Direct Identification of the Parameters.

The simplest zlgorithm which can be used to identify the parameters is based (as above)
on the assumption that the modes are well separated, and the mode under investigation
can be represented by the transfer function of a single degree of freedom system.

When this is the case, the respcnse PSD in the region of the mode is given by

2
Gr(f) - K. (£/£)) + A + B(1- (f/fo)) 4.3.4.

- (e + 218t/£_| 2

The parameters, including the dummy parameters A and B introduced to account for
possible contamination from adjacent modes, can be identified using precisely the
principle proposed in Section 1.5.1.3, It will be helpful, when deriving exprassions
for the rate of change of error with each parameter, to recall that

where D is the derivative operator.

The idealisation represented by equation 4,3.4. requires saome explanation. It vas
assumeé for this that the response PSD was estimated from accelerometer data. A
bandpass filter formulation was adopted to take approximate account of the shape of

the PSD of gust velocity. Paramster B is optional, and may often be omitted without
detriment to the results. Equation 4.3.4. can be extended tc include two (ox more)
modes, thereby enhancing the applicability of the technique to situationa where modes
are grouped togethex. When this course of action is adopted, it is generally sufficient
to assume uncoupled modes (i.e. assume nO off-diagonal damping elements.)

¢) Identification of Auto-covariance Functions.

The auto-covariance function of the response of a single dagree of fresdon system
excited by white noige can be used directly to identify the natural frequency and
damping coefficient of the system. After the first cycle or so (during which the
function way be contaminated by noise and will contain information about the response
of the system at frequencies well away from resonance), the reduction in amplitude

of successive poaks or troughs in the response will follow, ideally, the law

4.3.6.

Peak Amplitude = K.exp(=2nak)
where k is the peak (or trough) number.
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Thus a plot of the logarithm of peak amplitude against peak number can yield the
damping coefficient. The resonant frequency of the system can be computed simply

by averaging the time between successive zero crossings having a positive (or negative)
slope. The natural frequency can then be obtained as

£° = fr 4.3.7.

——————

(1 -s%h®

The analysis of actual data is rendered rather more complicated by the fact that a
number of modes will, in general, be present in tne auto-covariance function of a
measured response. When this occurs the normal procedure is to filter the function
using a narrow bandpass filter (see Section 1.5.2.) centered upon the frequency of
interest. The possibility of exciting transient responses of the filter is reduced

by reversing the direction of time, so that the filter processes the auto-covariance
function in the order of decreasing lag number. The technique was devised by Mazet

for analysing measured responses obtained after a structure has been excited impulsively
(see reference 4.1l.)

The only advantage offered by the technigue is that it is relatively simple to calculate
the p:rameters manually. In all othex respects the mathod described under b) is
superior.

d) Random Decrement.

The principle of the Random Decrement technique is discussed in Reference 4.6. The
results yielded when the technique is applied to the analysis of records obtained

fram flight flutter trials are similar to those derived from computing auto-covariance
functions, and the comments which have been made with regard to that technique are equally
applicable here. A possible advantage of the Random Decrement technique is, however,

that slightly more stable results can be extracted from a given length of time history
provided that suitable "gate" conditions are chosen.,

Four methods of extracting natural frequencies and damping coefficients using atmospheric
turbulence as the source of excitation have been outlined. Of these, the second method
has proved to be reliable and economical when applied to PSD estimates, However, it
should be remembered that the data has already been reduced an¢ the results will, in
general, contain bias errors as well as variance errors (see Section 2.4,) In fact it
can be shown that only auto-covariance functions which have been computed directly and
Random Decrement signatures are capable of yielding unbiased estimates for, in particulsr,
damping coefficients, Even here, the use of filters to isolate particular modes will
introduce a bias error.

The minimum averaging time required to obtain reliable PSD estimates can be deduced
from the examples presented in Section 4.l. and the results presented in figure 2.4.7.
From the latter, assuming that the raw data is not to be “Hanned® and allowing a ten
percent error in estimates of damping coefficient, the required analyser~-to-filter
bandwidth ratio is O.4. From equation 4.3.3., the required analyser bandwidth is thus

B = O0.8f s 4,3.8.
The averaging time is given by
T - M-N.h ‘-3.9.

where M is the number «f transform blocks usad to obtain the PSD. Equation 2.4.4, can
be used to write

T = MB ' 4.3.10.
go that, from equation 4.3.849

foﬂ.' - WO.B ‘03.11.

o e SRR -I' .
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The examples presentad in Section 4.1l. suggest that moxe than ten transforms should
be used to obtain a reliable PSD estimate. Thus, 1f M is chosen to be twenty, the

required bandwidth and averaging times are given by

B = O.8LF
4.3.12.

T = 25/f£ 8

The application of equitions 4.3.12. to two typical examples ylelds:

Natural Danping Analyser Record
Frequency Coeificient Bandwidth Length
5.0 0.02 0.08 250

40.0 0.02 0.64 31.3

I+ is evident from the above that long runs at each nominated speed and altitude are
Such runs may be difficult to achieve,

required to realise stable PSD estimates.
Furthermore, the aexistence of adequate levels

particularly at trana-sonic airspeeds.

of turbulence at the required altitude cannot be guaranteed. These facts mean that

atmospheric turbulence is only rarely used as a primary source of excitation for flight
and confidence in, the techniques outlined

flutter trials. However, the possession of,
above can permit flight flutter trials to procead in conditions which would otherwise

be unacceptable.

4.3.2. Excitation Source which can be Measured,

A number of the methods of excitation which are ugsed in flight flutter trlall permit
derived from measurements ox measurad directly.

the force applied to the structure to be

These include inertial exciters and pyrotechnic sources.

when tha input can be repeated (not necessarily exactly) then the methods described
in Sewtion 2.4. can be used to derive frquency response functions, even though the
gource is not necessarily random. This is an application in which a knowledge of

techniques used for analysing random data can be used to reduce the effects of random

components in an otherwise deterministic signal.

As an illustration of the procedure, suppose that an inertial exciter 1s used to drive
the aircraft with a swept frequency sinusoidal force which can be measured. The response
of an accelerometer mountad on the aircraft can, in the frequency domain, be expressed

as
Y(if) m  H(if) .X(if) + N(if) 4,3.13.

where X is the DFT (discrete Fourier transform) of the measured force
{assumed to contain no error)

N is the DFT of all unwanted response signal components

ig the DFT of the total acceleromater response
(including unwanted components)

and H is the transfer function of the aircraft.

An estimate of the frequency response function 1s given by dividing equation 4.3.13. by

the DFT of the input:

Yii!) = H(if) + N(if)
X(1iL) X(1£)

Quite clearly, the estimate of the frequency response function so obtained will be
unbiased only if N(if) ig zero at all frequencies. However, equation 4.3.13. can

equally well be writtent

4.3.14.

4.3.15.

Y(1£) .X*(if) = H(if) X(L1£) .X¥(if) + N(if) .X*(if)
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It will be observed that:

Y(if) X*(i£) is proportional to the cross spectral density of the rasponse

and the input force
X(1f) X*(if) 18 propor-ional to the power spectral density of the input force
N(Lif) X*(i£) is propertional to the cross spectral density of the "noise"
and the input force. )

If the unwanted signal components represented by N(if) are independunt (i.e, are not
correlated with the input force), then the last term can be reduced by computing the
power and cross spectral denzities using, in each transform block, the results obtained

from a different trial to obtain, ultimately,

ny(if) - H(if).Gxx(if) 4,3.16,

from which an estimate of the frequency response function can ke derived.

lication, the filtering property of cross spectral analysis iz
used to reduce the unwanted components of the measured acceleration, even though the
input force is deterministic, For best results, the force time history should be
similar in each trial. When this can be arranged, the cohersnce function derived
from the power and Cross spectral density estimates can provide an insight into the

levels of noise, the repeatability of the responses, etc.

Note that, in this app

The technique described above ocan, of course, be used equally well when random or
impulsive force inputs are used. When a deterministic input is used, then the length
sen so as to include the whole of tha response to

of a transform block should ba cho
the input, or at least that part of the responne which is discernable.

Once an estimate of the transfer (or, more properly, frequency response) function
sed to estimate the natural

has been cbtained, then identification methods can be u

frequency, damping coafficient, and rxesponse amplitude of each mode., In fact, if a
number of acceleromuters are used in the trials, then the frequency response functicn
of each can be used collactively to obtain estimates of the natural frequency and

damping coefficient, and individually to obtain estimates of the mode shape.
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4.4, Applications in Evaluating Aircraft Handling Qualities.

The task of designing an aircraft so that it is capable of fulfilling its primary function
: and, at the same time, possesses the qualities necessary to enable the pilot to fly the
. aircraft accurately and safely, is a perennial problem which has attracted the close atten-
‘ tion of aircraft demigners since before the first mannad f£light. The problem can be
described as assuasing the stability of a non-linear, adaptive sensing and feedback
mechanism (the pilot) situated in a "noisy" environment controlling a non-linear system
(the aircraft) using a redundant set of control parametars. when aircraft were flown
manually with few aids, the designer used heuristic criteria based, to a great extent, upon

past experience.

v The introduction of powered controls and stability augmentation systems (SAS) gave the

i designer some latitude, but the advent of automatic flight control systems (AFCS) has

; : potentially removed most of the constraints within which the designer has, in the past,
{ Lt had to operate., However, the pllot of an aircraft equipped with AFCS is no longer

1 flying the aircraft; it is nore accurate to say that he is flying the AFCS. Thus

1 the designer is presented with more flexibility but, at the same time, he i3 presented

: with a more complex control problem to solve.

4.4.1. Evaluation of Aircraft Ride Qualities.

whilst it is not obviously connected with the aircraft handling problem, the ride quality of
an aircraft can affect the overall safety of operation of, in particular, large transport
alrcraft. Indeed, several near accidents have been attributed to pilot disorientation caused
by severe motion of the f£light deck whan the aircraft encountered atmospheric turbulence.
Tncidents of this type stimulated studies into the two factors which affect the ride quality
of an aircraft: the responte of the aircraft to atmospheric turbulence and the reaction of

f
|
:
i
E
E, ! the pilot to that response.

o ‘ The problem was investigated in some depth at (what was then) Hawker Siddaeley Aviation Ltd.,
Hatfield in 1965. A program to compute the symmetrical response of a flexible aircraft to
atmospheric turbulence was developed. The subjective *tranafer function" of a pilot was

i agsessed exparimentally using twanty volunteers: an attempt at determining an objective

l transfer function by measuring the task performance of the volunteers was successful mainly
in demonstrating the remarkable adaptability of the human servo system. The results of the
- subjactive experiment were used to determine a frequency dependent weight funotion which

v could be used to weight calgulated aircraft responses. The RMS values of the weighted

g spectra were used to asgess the ride qualities of several existing and proposed designs.
R the study highlighted the need to keep the fuselage fundamental bending mode frequency

Studies :1m11ar to those outlined above have been reported elsewhere, notably in references
4.2 and 4.3.

4.4.2. Evaluation of the Pilot Describing Function.

It is often required to evalute the performance, and particularly the stability, of an
aircraft incorporating an AFCS before the aircraft has flown. This evaluation is often
performed by qualified test pilots using a ground baged flight simulator into which models
of the aircraft and the AFCS have been incorporated. The value of such an exercise can be
questionable in marginal situations particularly when the visual and motion cuea presented
to the pilot are not exact.

Attempts have been made to overcome the problens associated with subjective evaluation of
the handling qualities of an aircraft by modelling mathematically the function of the pilot.
since a pilot is essentially a non-linear adaptive element producing an adequate model of
his function is not an easy task. Those which have been produced to date have been, in the
main, quasi-linear model estimated from the meagsurements made of his response to a range of
tasks. The random measurements have bean analysed using the techniques described in Section
2.4. to produce an equivalent transfer function applicable to the particular type of task.
Reference 4.4. contains a description of the methods which can be used to derive models of
pilot performance and presents results which have bean achieved.

4,4,3. Evalnation of Handling Qualities.

The problem of optimising tha performance and handling qualities of an aircraft/AFCS has
received attention in flight test establishments. Difficulties arise becausa deficiencies
in handling qualities may only becoue important during exacting phases of a flight, such as
landing, combat manceuvres, etc. Analysis techniques are therefors required which are
capable of describing the performance of the various elements of the system from
measurements obtained during such exacting phases.

AT o - I'. I
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The solution adopted at AFFTC is to require a pilot to execute specified manoeuvres, such
as a precision tracking manoeuvre, whilst various aircraft parameters are being racorded.
The measured parameters include steady state, oxr slowly changing, components and theae
are removed from the records by pre-processing (see Section 1) to leave a random remnant
which can be used to obtain estimatea of frequency response functions between various
elements of the system. The frequency response functions are then examined in detail to

evaluate the handling qualities of the aircraft.

The technigque offers the attraction of providing linearised system characteristics whilst
the alrcraft is being axercised in a representative way, but it may be difficult to obtain
sufficiently long records from one manoceuvre. Nevertheless, considerable insight into
understanding the factors influencing the handling qualities of an aircraft has been gained
from such f£light trials (see reference 4.5.) and the technique promises to become a power=
ful tool for optimising the handling qualities of an aircraft during critical phases of a

£light,
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4.5. The Reduction of Random Meagurements to a Form Suitable
for Certi {cation Trials,

A structure will normally be subjected to loads caused by a variety of phenomena during
the courae of its service life. The design organisation may be regquired to demonstrate
that the structure is capable of withstanding the various loads for the duration of its
gervice life without catastrophic failure. Such a requirement would normally be satisfied
partly by calculation and partly by conducting ground trials on one Or mors specimens of
the structure. Before either calculations or the design of ground trials can proceed,
details of the characteristics of each source, and of its probability of occurence must
be obtained.

Certain types of sources produce a randomly varying load which is not predictable
theoretically. Examples are runway and road surface undulations, boundary layer turbu-
lence, control circuit loads induced by a pilot, jet exhausts, etc. In such cases the
loads, or at least the xesponse of the structure to the loads, must be measured and
reduced to a form which can be used for predicting the life of the structure.

The techniques which are described in Chapters 2 and 3 are, in the main, applicable to
stationary measurements, and sometimes only to measurements also having a Gaussian
amplitude probability density distribution. pifficulties of interpretation can occour
when these conditions do not apply. Two cases are considered in this section. The
first is concerned with the reduction of conditionally gtationary data to a form which
can be used for the specificaticn of ground clearance trials. The second case is
concerned with the more contentious situation when the assumption of conditional
stationarity cannot be justified.

Case 1l. Conditionally gtationary measurements having a Gaussian APD.

When the RMS value of a random signal varies with parameters which can be controlled,
but at any fixed set of parameter values the PSD is invariant, then a description of the
signal can be compiled by computing a series of PSDs, each obtained from measurements
recorded at constant values of the parameters. The PSDs, when asgociated with prob=
abilities of occurance of the appropriate values of the parameter sats, can be used to
gpecify a suitable ground test. Examples of phenomena which can be described in this
way are jet exhausts and boundary layer turbulence. The freguency pandwidths of these
phencmena are often such that it may be assumed, at least for fatigue purposes, that the
normalised PSD (PSD divided by the mean square valus) is invariant. .This assumption
can permit a major simplification in the specification of a ground trial by using a
knowledge of the fatigue properties of similar structures to compute a test tine at

one RMS value which will produce the same damage as that accumulated by application

of each of the components for the appropriate time. As an i{llustration, suppose 2 set
of measurements is reduced to the followingt~

RMS value Proportion of time
(percent)

Suppose also0 that

-3

T
Ty = (RMS1)
T, ( RMS )

Then & test may be specified having a RNS value of 0.8, the appropriate PSD, and a time
(as a proportion of real time) given by

0.57 ( 0.1/0.8 )3 = 0.001
0.10 ( 0.5/0.8 )3 = 0.024
0- 2 ( 008/0.6 ) = M

0,061
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The resulting test would be conducted at an RMS level which is not uarealistic, but which
would occupy only 6 percent of real time. The degree of conservatism of the teat would
depend upon the chosen value of the power index (a lower value giving a more severe test).

It is worth noting at this point that increasing the test RMS value to a level which is
not encountered in sexvice merely to reduce the test time, is somewhat hazardous for two
reasons. The power index is normally a function of RMS valus and can change sharply when
a significant amount of plastic deformation occurs. Bolted and rivetted joints ars non-
linear elements; if they are made to “work® in an unrepresentative manner, the rasultant
*springing” of rivets and fretting of the lapping surfaces can dramatically alter the
stress levels and cause pramature failure of the structure.

Cuse 2. Non-Stationary Measurements.

when the RMS value of a random signal varies with parameters which cannot be controlled,
then the method described above can be used only with difficulty (and with sone uncertainty
regarding the validity of the results obtained.)

An alternative method is suggested by the assumption, frequantly invoked in the design of
fatigue tests, that the order of application of load is immaterial, It seems reasonable

to suppose that, if suitably short lengths of record could be selected and transposed, a
signal of the type under consideration could be converted intc one having a finite nunber
of stationary segments. The method outlined above could then be used to compile a suitable
fatigue test., It remains tc devise a method of estimating RMS values for and the lengths

of each stationary segment.

It is assumed that sufficient data exists to constitute a representative sample of the
phenomencn (or response to the phenomenon) and to define the APD to a sufficiently low
value of probability density. In the majority of cases, the estimated APD cbtained from
the data will have a leptokurtic form (the probability density of both very low and very
high excursions will be gresater than that expected from a Normal distribution.) When this
is so, the APD can be idealised by the sum of N weighted Normal distributions:

N
Q(Y) - ; Ki' ___l__l.xp ( :13 ) ‘cS.l.
i whar  (2nd

The success of the idealisation 1is measured by a "cost function" having the form

R = um 1L (¥ [{e - (bl % 4.5.2.
!-»c': X S-!L{ et} {P(Y}] Y

wWhere £ {A} is any suitable function of the argument A. A particular form of equation
4.5.2. which has proved to be successful 1is

¥ Aoy 12
R L 1 109 ( ) - 109 ( ) da ‘0503.
4 j_y[_ ply by ] “ay

Whers ¥ is chosen to be suitably large. This may be written, when the estimated APD is
a discrete function of y,

- S - A 2
R -, jgu[loq {pt3ay)} = log{p(3ay)]] | .54,

In practise, equation 4.5.4. must be modified to take account of possible null estimates
of probability density. Thess are amitted, and the divisor 2N+l adjusted accordingly.

In principle, equation 4.5.1. can be substituted into 4.5.4., and the cost function
differentiated with respect to sach of the unknown parameters to obtain estimation
eguations. However, difficulties can arise with this general formulation bacause the
structure of each cowponent of 4.5.1. is idontical, so that very good initial astimates
of the unknown paramsters are required for the process to converge.

e cpdparne L
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An implementation which has been used successfully, and is a drastic simplification of
the method cutlined above, assumes that S
a) Three components of equation 4.5.1. are sufficient to idealise an APD.

b) The RMS values of the three components have the fixed relationship

o = th - 4V3

c) The value of the greatest RMS value, 01. is to be chosen by the user,

With these assumptions, the problem is reduced to estimating the valuss of the three
weights K, KZ and K3.

If equation 4.5.l1. is siuplified to read

ply) = s (K+M)1.exp:13.2(u'2) 4.5.5.

Where ¢ is the greatast RMS value and (x+Ax)1 are the required weights, then the line-
arised estimation equations aze given by

[k} = [g:a'rn ] "l.l;‘,u'r {109 pty) = log fa(y)l] 4.5.6.

where H is a 1 x 3 vector, the ith element being given by

_L « QXp -yg.z(zl-z) : ‘05.7.

A —
plys)

3 202
The presence of Ply) in the H vector means that the estimates given by equation 4.5.6.
are approximate only, and the estimation procedure must be repeated until the 4K
vector approaches zero. Suitable initial values must be chosen for Ka It is

suggested that the maximum value of the measured APD te used for K3, ith K, = x,/Lo

The weights K, are estimates of the proportion of the original signal having an RMS
value equal t8 the appropriate ot if they are multiplied by the averaging time,

then they bacoms estimates of timi spent at each RMS value. It should be noted that,
in general, the sum of the weights is not unity, the actual value being dependent upon
the chosen Maximum RMS valus and the shape of the measured APD. Normally, the sum
turns out to be less than unity, implying that sections of the signal have an RMS value

which has besn idealised as zerxo.

The “best® maximum RMS value for a particular signal may be determined by repeating the
procedure for various asssumed RMS velues, and using the cost function (equation 4.5.4.)
to indicate the success of the resulting idealisation.

An example of the application of the technique is shown in figure 4.5.1, The data
originated from measursements made during road transportation trials, and was reduced

to an APD using the algorithm described in Section 2.3.2. This was idealised using the
above technique for a range of assumed maximum RMS values., The idealisad function for
one assumed RMS value is shown in the figure as a dashed line. The derived test time
(expressed as a proportion of real tims) and the "fit" parameter (squaxe root of the cost
function) are shown as a function of maximum RME8 valus in figure 4.5.2. ‘

A power spactral density of the process may be estimated by computing the *Normalised".
PSD, that is, each P8SD estimats is divided by its mean square value prior to averaging

The result will have a unit mean square value; thus a suitable test PSD can be obtained
by multiplying the Normalised PSD by the square of ths test RNS value.




’ H
E A number of assumptions are implicit in the above ahalysi-. They include:
; « The measurements which are available are assumed to be representative
. of the service environment and of sufficient length to obtain a reliable
. estimate of the APD
‘l -~ The spectral shape of the phencmenon is independent of the RMS value
|] - The shaps of the APD is independent of frequency. '
|
‘. Within these assumptions, the technique providess a method of reducing non-stationary
| measurements to a form which can yield a specification for ground clearance trials
{ which is compressed in time, but which is realistic in terms of fatigue damage and
maximum induced excursions (loads.)
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Figure 4.5.1. Measured APD and a Three Component
Gaussian Idealisation.
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APPENDIX A.
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b \ The Fourier Series and Fourier Transform.
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A good working knowledge of the principles of the Fourier gseries

ier transform is esgential for developing routines for

| | analysing random data and for understanding fully the results

I produced by guch routines. 1In recognition of this fact, Appendix

o A contains an outline of the principles of both the Fourier geries

and the Fourier transform. The gtrong relationship between the

e applied to sampled time sequences is demonstrated,
ich may be useful to the

techniques to specific tasks.
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A.l. The Fourier Series.

A signal y(t) which is everywhere finite and is gﬁriodic over a time T can be represented

by a Fourier series comprising the weighted sum ol sine and cosine functions.

Specifically,
=<}
y(t) = a, + 2. Y (aj.cosmft + bn.sin2nntt)
n=l
where £ = 1/T

a. = 1. fT y(t) .cos2mmtt.dt
T ‘o

and b, = L ;T y() .sin27nfe.at
T o

Equation A.l.l. can be written more succinctly by recognising that

cc8 8 + i.8in @ = exp(ie)

Thus
o
y(e) = Y cpeoxp(27inft)
==
where o, = 1.7 y(t).exp(-27intt).dt
T "o

- a, - L.bn

I1f y(t) is represented by an N~length sampled sequence such that

v(3) = y(h.3)

where n is the interval between guccessive sanples

and N = T/h

then equatiors A.l.6. and A.l.7. bacome, assuming trapezoidal integration,

(N/2-1)
y(j) = Y c(n) .exp{2zini)
n==N/2 N
(N=1)
- X c(n) .exp(2zini)
n=o N
(N-1)
and c(n) - 1.y y(3) .exp(=-2zaini}
N e N

RO T T N T T TPy, s AN

A.l.1l.

A.l.2,

A.l.3.

A.l.4.

A.l.5.

A.l.?.

All.e.

A‘l'g.

A.l.lo.

A.l.ll.

A.l.l2.
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#.1.10. nave been changed. The reason for this may

Note that the summation limitcs of
be found by examining equation A.l.12. If kN is added to n in the exponential term,
then it will be observed that .

exp(-y_ijéaﬂ‘in - exp(-aa%m) A.l.13.
since exp{-2nijk) = 1 for all i,3,k
Hence c{n+kN) = c(n) A.l.1l4,

formation is obtained by setting n<O or nsN-1, This may be seen as &

Thus no new in
The maximum £requency corresponding to n = N/2-1

re-iteration of the Sampling theorem.
is given by equation A.1.10,, 80 that

fmx. - (O.STN- 1) Hz. Anl.lSo

The moduli of the coefficients c(n) of equation A.l.12, define the magnitude of each
sinusoidal component contributing to y(i). Thus a segquence containing the moduli of
c(n) can be interprated as a frequency “gpectrum” of amplitudes spaced 1/hN Hz. apart,
and equation A.l.12. can be looked upon as defining a »filtering® process since its
action is to separate out the frequency domain components which, taken together, form

the time domain sequence y(3) .

ved that the coefficlents c(n) completely describe y(3) by virtue of

It is to be obsex
They therafore constitute a definition of y(i).

equation A.l.ll.

A.2. The Fourier Transform.

If a signal y(t) is everywhere finite and of finite length, then the concept of the
Fourier series can ba extended to the gituation where y(t) is aperiodic. The relevant
expressions, which are eguivalent to equations A.l.6., and A.1l.7. are:

gley = 76 .expamitt) .af A.2.1.
-0

A2.20

where (L) = [ y(t).exp(=27mife).dt
-0

these expressions, which are known as a Fourier pair, may be
for the Mourier series coefficients c(il,
y spectrum completely describing

A formal derivation of
found in Reference A.l. As was the "ase
the function Y(if) can be interpreted as a £requenc

the time domain function y(t).

Y (if) im a complex fanction which may be written:

where Rif) = J T y(t).comamit.at A.2.4.
-l

and 1 = [Tyt .sin2nfe.dt A.2.5.
-

Thus, if y(t) is real, R{f£) and I(f) are, respectively, even and odd functions of

frequency, i.e.

R{£) = R{-f) and I(£) « =I(=f) AJ2.6.

or Y(if) - Y*("i!) 502010
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It therefore follows that

lranl = (R + 13O 5 - x(eif) A.2.8.

A.2.9.

toTTETERATIS AT AT S e T T

Cd and o(f) = arctan %{%} . o= -8(=£)

A number of useful properties of the Fourier transform can be deduced by manipulating
eguations A.2.1. and A.2.2. The more important of these are listed below.

] A Ae2.1s The Superposition Theoren.

1s, yl(t) and yz(t), can be written, from equation A.2.1.,

The algebraic sum of two signa

awy(t) + buyylt) = j'ia.Yl(it).oxP(Znitt).df

B
' v [TbaY,(10) cexp(2mite) At
«»id .

1
' [Play (18} + b.¥,(if)).exp(2nite) .df A.2.10.

-l

or a.yl(t) + b.yz(t) Cmm> a.Yl(it) + b.Yz(it) As2.11.

; [ The Fourier transform ig therefore a linear operator.

A.d.2 The Shift Theorems,

T . 1f the time origin of a signal is moved by T, such that y(t) becomes y(t=1), then

equation A.2.2, becones

o0
A.Z.lz.

gr(ig) = y(t=T).exp(=27ift).dt
o0

write t! = t=T

then equation A.2.12. becomes

- | ) = f7y(e) cexp(=2riL(E4m) AL A.2.13.
-0 '

i or, Yr(if) = Y(Lf) cexp(-2wiLT) A.2.14.

Equation A.2.14. states that the introduction of a delay T in the time domain
constant rate of change of phase with

) translates, in the frequency domain, to a
! frequency, given by
%% - =217 radians per Hz. A.2.15.

! The complementary relationship can be developed to ylield:

[+ o]
y'(e) = j'wY(i(t-p)) Jexp(2ift) .dt A.2.16.
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S
or, y'(t) =  y(t).exp(27ipt) A.2.17.
Lo {
o, é A.2.3. The Multiplication Theorem.
[ H .k
. E Whan it is intaegrated over all time, the product of two signals, yl(t) and yz(t.),
. : can be written:
® ® w,
; { yy (&) Yy (R) dt = f y]_(t) { Yz(u).exp(zm.!t).df .dt A.2.18,
; -0 - -0
, - [ Y (i5) Jaf. | yl(t) .exp(2nift) .4t A.2.19.
, -0 2 -l
i
8 ©
g = [ Y, {if).¥,(-if).af A.2.20.
o 2 1
E' o
. & - f Yz(if) .Yi(if) .d: I\.2.21-
| -0
]
' ©
! and, by symmetry, - fw”l‘“) JX§(48) .af A.2.22.
g
3
s
i : A.2.4. Parseval's Theorem.
2 [ , When y;(t) = yp(&) = y(t), then the multiplication theorem becomes:
) o 2 0 "
.. f y(t) .dt - JTH(LE) WX (if) .df
E“ . . - -
- (Trus | tas A.2.23.
-0
This is known as Parseval's theorem.
Ae2.5. Time Scaling.
1f time is scaled, such that y(t) is replaced by y(kt), k greater than zero, tﬁen
equation A.2.2. may be written:
voif) = [Ty(kt).exp(-2mife).dt A.2.24.
-0
Let t! - kt
then eguation A.2.24. bscomss
[ <}
Y (if) = y(t') .exp(=2 ift') .dt A.2.25,
'[-oo P JY— “x
or Y' (i£) - 1l.¥Y(if) A.2.26,
¢ E —E .

e U e sl e P

el rdm bt L ey WY
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Ac2.6. The Transform of Time Darivatives.

From equation Ae2.14ys

gte) = [ZY(LE) cexp(mife) df
-0

i
- -]
~ so that gdy(t) = { 2ti£. Y (1£) cexp(2nift).df A.2.27.
t -0D '
i
. It follows that, in general (provided that the transform exists),
:
; dly(t)  <m=> (271 £t) VLY (L£) A.2.28.
g ae®
E) [N
|
F= * A.2.7. The Transform of Freguency pexivatives,
: The above argument can ba used to derive the transform of frequency derivatives,
provided that the result exists, to yield: . )
" dMY(LF) <we> (=271 f) Doy () A.2.29.
ae®
f:{ A.2.8. Conjugate Functions.
4
¢ If y(t) is a complex function of time, then, from equation A.2.1.,
w0
yioy = ¥ (if) coxp(27mift) (df
=©
o
w [ (R(£).cos2nmift = I(f).sin2xift).af
-0
+ 1. [S(R(D).ain2mife + I(E).cos2mift).of
-0
(¢ o]
then yr(e) = J (R(£) .cos2nift =« I(f).ein2mift).Af
-l
- 4. [C(R().sinznift + I(f).cos2mift).df
-0
or, y'(t) = Y*("L!) 302.30.
It follows from equation A.2.30, that Y(if) is an gven function if y(t) is real.
conversely, Y(if) is an odd function 1f y(t) is imaginary.

VT IY PR o i s i ' o
Y 9 v Lo e 3. \ L
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As2.9. The Convolution Theorem,
The convolution of two signals, yl(t) and yz(t). may be written:
(t) = By (%) ¥, (E=x) dx A.2.3),
¥ j_ nxey |
From equation A.2.2.,
R K
Y(if) - I Qup(-”fift) . I Yl(x) oyz(t-x) Jax.dt A.2.32.
- - ‘
0 ©
- Y. ) axp(=2mift) .yz(t-x) .dt.dx A.2.33,
-c0 -30 )
Equation A.2.14. can be used to write
yun = 7y (%) .exp(-2ALEx) Yy (48) dx A2.34,
-qd
Hence:
The converse expression may be developed in a similaxr way to yield:
- <]
(t) . (t) Cmm> Y (13) IY (15-18) odx A.2036-
AFRALALY! fLh 2
A.2.10. Power Spectral Density.
The autocorrelation function is defined as:
Rlz) = lim. 1. [T y(t).y(ter).de A.2.37,
Tsx 2T =T
A convenient device to remove the limit in this expression is to presume that the
signal y(t) is contained within sowe time 27, say. Having made this assumption,
equation A.2.37. beccnest
R(x) = L. [Cy(E).y(ten).at 2.2.38.
2T ‘=®
The shift theorem may then be used to obtain:
- =]
R(r) = 1. j¢Q1t).oxp(2nitt). ) Y(L£) Jexp(2ifr).Af.4¢ T Re2.39.
2T =% =00
which, from equation A.2.7., may be written:
R(x) - .;.[wY'(it).Y(if).oxp(Znitr).dt A.2.40,

2T =®

s e ——— A—— i a———
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© 2
ry 2nifr) .af A.2.41.
- j_wlx_*;nw |uw( )
- I”‘ygg)‘?upumm.dz | A.2.42.
ol T
when y(t) is & stationary process.
The expression
A.2.43.

lim. ‘!_éj_g)lz - Cly(f)

TN

ctral density functlon. The limit which
ustified by arguing that, although the

ely the definition of the power spe
a time of 2T, no bound was placed upon

inserted in equation A.2.43. can be ]
umed to be contained within

is precis
has been
signal y(t) was pres
the value of T.
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A.3, The Discrete Fourie ransfo. DFT) .

If a signal y(t) is sampled at discrete points in time, each h apart, then equation
A.2.1. can be writtent

ym = foyus .exp(2miifh) .af A.3.1.
-0

The exponential function, expi2 ijth), is pericdic in the frequency domain, having
a fundamental period F = 1/h. Equation A.3.1. can thexefore bs writtent

0 (k+1)F
y(3h) - 2 { Y (4f) .exp(27nijith) .af A.3.2.
km=c0 ° KF

o .
F $ y(i£+ikF) cexp(2AL)fR) .af A.3.3.
© ku=®

|

The eéfect of replacing & signal by & sampled sequence is thexeforse equivalent to
replacing the Fourier transform by1

o
 ILE A B Y Y(L£+ikF) A.3. 4.
km=0

In tho special case when the transforw is zero everywhere except in the region
corresponding to k=0 (i,e. NO aliasing), then equation A.3.3, becomes?

gy = fF (L0 cexp(2niImn) -&f A.3.5.
o

when the transform Y(if) is itself a sampled sequence, then trlpczoidal integration
can be used to write equation A.3.5. as follows:

N-l
y(jh) = Y Y(inf') .exp(2ziih) A.3.6.

1.
hN n=o

vwhere, £* = 1
hN

Similarly, it can ba demonstrated thats

N-l
Y(inf') = h. ;Z y(jh).cxp(-:g:jn) A.3.7.
=0

1f eguation A.3.7. is modified by multiplying the right hand uidi by £', then it
becomes?

N=1
Y (inf") = jZ y(3n) .oxp(-zﬂujn) _ A.3.8.
=0

1-
N

and hencet

Nel
yi{jhy = Y ¥'(inf’) .oxp{2z4in) A9,
n=o0 N
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Equations A.3.8. and A.3.9. are identical to the discrete Fourier seriss equations
A.1.12. and A.l.11., respectively, and are known as the DFT pair. It is therefore

clear that the DFT is, in fact a Fourier series estimator, but with no constraints

placed upon the selection of the fundanental period T.

The DFT pair have & number of properties which may be found to be useful. These

have been extracted from Reforence A.2, and are listed below, It is convenient to
adopt a shorthand notation for these in which equations A.3.8. and A.3.9. are writtent

N=1 =-jn
Ya) = 1. ZY““%j n = O(1)N=1
N Jj=o
N=1 in
and y(3) = T Y{n).Wy 3 = o(l)N=1
n=o
whare Wy - oxp(gﬁz)
Hence Y(n) <w=> y(3)

1t is assumed that y(J) 1s periodic such that:

y(=3) = y(N=])

A.3.1. The sumgggsition Theoremn.

Lat yl(j) <med> Yl(n)
and yz(j) <mw)> Yz(n)
Then ¥in) - I..Yl(n) + b.!z(n)

where y(3) = awy(d) + b.Y,(J)

A, 3,2, The Symmetry Theorem,

The symmetry theorem states that:
y(=3) <==> Y(=-n)

Thus y(3) is even if, and only if, ¥(n) is even. Conversely,
(3) is odd if, and only if, ¥Y(n) is odd.

A;3,3. Conjugate Funrtions Theorem,

The conjugate functions theorem states that:
y*(3) <m=> Y¥(=n)

or, y*(=3) <m=> Y¥%(n)

A'a.lo.

A.3.11,

A.d.12,

A.z.la.

A.3.14.

A.3.15.

A.3.16.

A.3.17.

A.3.18.

Thus. y:j) is real (imaginary) if, and only if, ¥(n) is even (odd) . Coriversely,
n .

) is real (imaginaryl 1f, and only if, y(J) is even {odd) .
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* ' It can also be deduced thats
f a - yij) is real and even if, and only if, ¥(n) is real and sven
' " - y(3) is veal and odd if, and only if, Y(n) is imaginary and odd
1l : - y(3j) is imaginary and even if, and only if, Y(n) is imaginary and even
! r and - y(§) is imaginary and odd if, and only if, ¥(n) is real and odd.
‘ 1
i As3,.4, The Shift Theorems.
‘ From Section A.2.2.,
| | -
\ y(3=k) <m=> Y (n) '“Nnk A.3.19.
o | Conversely.,
r
S
: \ y(j)-w';j<-> ¥ (n-m) A.3.20.
E“ A3 5, The Delta Function.
:
. Let d represent the delta function. Then,
' da(j) <==> 1 A.3.21.
’ N
. i ) and 1 <mu> d{(n) AJ3.22.
L A,;,G, Intggtlt!.onl
N=1
. yo) = Z ¥(n) A.3.23.
l n=o
f . N-1
L '1 and ¥ (0) - l- Z Y(j) A3.24.
& N J=0
' ; Ag3,7. The gonvolution Theorem.
‘ it yi(j) <==> Yl(n)
{
{’ and yz(j) <mm> Yz(n)
§ Then,
& -1
1. T ¥ (k) .yplick) == ¥, (n), ¥, (n} A.3.25,
, ® keo
t similarly, Nl
i . <md> ¥ .Y ot A .2 .
Hence,
]
iv' N =0 n=o

) ,
--a-w-w..__i
e R
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A.3.8, The Doubling Theorems.

Two doubling theorems may be deduced. These are:

a)

Let Yl(i) = y(I <ma> ¥1(n) jen = O(L)N=L
and yold) =y == Y,(n) 3,m = 0(LN-1
Then,
28-1
=-2nj
Y(Zn) - l- Y(j)lw
2N Jgo N
N-1l N=1
- - =2nN
e LS e L Tyl
2N $=o 1 N 2N j=o 2 N 2N
- %_'( Yl(n) + Yz(n) ) 5.3.28.
Thus the even terms of a DFT are the average of the terms obtained by transforming
separately the first and gecond halves of the time sequence.
Also,
2N-1 -
Yianl) = Lo 3 y(d g2
2N J=o
N=1 N=1
- LS oy v 1 Ty (3) M w3
2§ §eo Ot N 2N I 4m0 2 N "N
Hence, from eguation A.3.20.
Y(2n+l) - Lo Yl(n+¥) + Yz(n+k) ) A.3.29.
2 .
The odd terms of a DFT are, therefore, the average of the “half interval® terms
theoretically obtained by transforming separately the first and second halves of
the time sequence.
B) Let y () = y(@@) <= Y0 jon = O(1)N=1
and ¥p() = y(2i+l) == ¥,(n) 3,n = O(1)N=1
Then,
2N-1 _
Y o= L3 v
2N Jj=0
N-1l N=1
-2nJ =2nj=n
2N j=o L 2N j=o 2N
-n
- %.( Yl(n) + Yz(n).w2N ) A.3.30.
Similarly,
A.3.31.

Y(N4n) = %.( Yl(n) - !z(n).W;n)
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A number of interesting facts emerge from a study of the doubling theorens:

- The effect of doubling the length of a data sequence by adding zeros
to the end of the sequence is seen, by setting ¥j(n) = O in equations
A.3.28, and A.3.29., to be to halve the frequency interval between
estimates of Y(n), with the Y(2n) estimates being identical to k!l(n).

- The effect of doubling the length of a data cequence by adding a zero
between each y(j) is seen, by setting ¥2(n) = O in equations A.3.30. and
2.3.31., to cause estimates of ¥Y(n) to be halved, and to be repeated
such that ¥Y(n) = Y(N+n).

- If N is a power of two, then equations A.3.30. and A.3.31, can be used
as the basis for computing the DFT of a data sequence, starting from
a unity value of N. It turns out that the number of operations required
to compute a DFT is dramatically reduced if this principle is employed,
Algorithms so constructed are termed wfast Fourier transforms”, see
Appendix B.

As3.9, The LFT of Two Real Data Sequeices.

AL o e e e ettt

Let yl(j) <> Yl(“)
and yz(j) <mmd> Yz(n)
Write yi3) =y (3 o+ iyl

Then the suparposition thevrem states that
Y(j) <ms> Y(n) - Yl(n) + 1Y2(n)
But, from equation A.3.18.,

Y* (N~n) - Yl(n) - ivz(n)

Hence:
!1(n) =« l.( ¥(n) + Y*(N=n) ) A.3.32.
2
and Yz(n) - %.( ¥(n) = Y*(N~n) ) A.3.33.
2
or, Yz(n) - %.( Y*(N-n) = Y¥(n) ) A.3.34.

Equations A.3.32. and A.3.34. provide the means for computing the DFT of two real
data sequences from a single entry into a DPT routine. Similar expre:sions may be
evolved for imaginaxy data sequences.

ROy S
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APPENDIX B.

A ————————

The Fast Fourier Transform.

thms have been devised in orxrder
aer particular circumstances,
ttributes of a particular type

A bewildering variety of FFT algori
to attain a maximum of efficiency und

for example to make best use of :he a
of computer. All guch algorithms employ the strategy expounded in

Section A.3.8., and all make assumptions regarding the length of

the data sequence to be trunsfurmed. It is generally agsumed that
some power of an integer

‘the length of the seqguencé is equal to
that the most efficient alg=-

number. There is evidenca to suggest

orithm assumes & length which is equal to a power of eight.
However, the majority of algorithms are based upon binary or
*power of two® lengths, i.e. N = 2p. The reasons for this accord
are that binary algorithms are relatively simple to understand and
encode, the resulting algorithms are compact, and they offer the
user the greatest choice of N for a given gize of computer store.

Two binary algorithms are daveloped in this appendix. The Cooley~
Tukey algorithm deserves attention because it was the first to be
published in modern times (Reference B.l.), whilst the second,
known as the Sande-Tukey algorithm (Reference B.2.) is a logical
development of the first which may be preferred in particular

circumstances.
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g ‘ B.l. The Cooley-Tukey Algorithm.

; R .

§ The Cooley-Tukey algorithm is based specifically upon the second doubling algorithm of

: Section A.3.8. Re-stating this as a starting point, but with 2N replaced by N:

1

\ if y (3 = y{23) <==> Y, (n) jon = O(1)N/2-1 B.1l.1.
and Yz(j) = y(2j+l) <m=> Yz(n) jon-= O(1)N/2=1 B.l.2.
then Hm o= L¥ym o+ ¥ St B.1.3.
and Y(iem) = L Y () - ¥, (n) Wg" ) - B.l.4.

2 2

Before the transforms Yj(n) and Y;(n) can be calculated, the series y(j) must be
partitioned into two series y1(3) "and y2(j) containing, respectively, the even and
odd terms of y(j) as defined in equations B.l.l and B.l.2,

The transforms ¥Y)(n) and Y;(n) may be calculated separately by again applying equations
B.l.3. and B.1l.4., but this time replacing N by N/2. Before this can be effected, the
two series y;(j) and y2(j) must be further partitioned as defined in equations B.l.1l.
and B.l.2. (With N/2 replaced by N/4.)

The partitioniny can be continued until N single element patitions have been obtained.

At this point the argument is reversed, and the required DFT i obtained using successive
applications of equations B.1.3. and B.1.4., it being noted that the DFT of a sinyle
element seguence is egual to the value of the element (see, for example, equation A.3.27.)
i.e.

y(o) = ¥(0) N =1 B.1.5.

The partitioning process quite clearly alters the order of the data sequence y(j).
The precise nature of the alteration is inaicated in figure B.l., which shows, for
a 16 element sequence, the values of the suffices j after each partition.

(3 =) 0(1)15

0(2)14 1(2)15

; o(4)12 )14 1{4)13 3(4)15

ANRVANA

o(8)8 4(8)12 2(8)l0 6(8)14 1(8)9 5(8)13 3¢8)11 7(8)15

Figure B.l., The effect of partitioning on the
order of a Data Sequence (N = 16,
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It is not clear, at first sight, how a simple algorithm couid be devised to arrive at
the required order shown in figure B.l. However, if the initial and final orders are
written in a binary format, as shown in figure B.2., it becomes clear that the parti-
tioned sequence contains elements stored in “bit reversed" orxder, that is the relative
address of the partitioned sejuence can be determined by laterally inverting the binary
address of the original sequence. Note alsc that the re-ordering involves sorting only
one pair of elemants at a time; it can therefore be affected in situ.

Original Order Partitioned Order
Decimal ' Binary Decimal Binary
G 0000 o] 0000
1 0001 8 1000
2 0010 4 ‘ 0100
3 001l 12 1100
4 0100 2 0010
5 olol 10 1010
6 0210 | 6 0110
7 0lll 14 1110
8 1000 1 0001
9 1001 9 1001
10 1010 5 olol
11 101l ] 13 1101
12 1100 3 001l
13 110l 11 1011
14 111¢ 7 0lill
15 1111 15 1111
Figure B,2. Comparison of Original and Partitioned
pata Sequence Urders (N = 16).

P 3 S T S L P R
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The final process in implementing the Coolay~-Tukey algorithm involves applying equations
B.1l.3. and B.l.4. successively, as illustrated below:

First Steps

Yl(Zn) = 0.5( y(2n) + y(2n+l) )

!1(2n+1) = 0.5( y(2n) = y(2n+l) ) n = O{l)N/2-1
Second Step:

¥, (4n+k) = 0.5( Y;(dntk) + ¥, (4n4k+2) .w‘z"‘ )

Y, (4ntk+2) = 0.5( ¥ (4n¥k) = ¥, (4n+k+2) WG ) n = O(1)N/4-1
Third Step:

¥, (8n+k) = 0.5( ¥,(Bn¥k) + vz(en+k+4).w;k )

- k= 0(1)2
Yy (Bntktd) = 0.5( ¥p(Bnek) = Y2(8n+k+4).w4k ) n = 0(1)N/8~1

Bte,

Note that the weigbts can be obtained from the sequence wﬁj. j = O0{1)N/2-1
by recognising that w; - wgkn/p.

Note also that the first three steps shown above is, indeed, all that is required for
the case when N = 16,

A flow diagram for the partitioning process is shown in figure B.3. and that for the
final process leading to the DFT is shown in figure B.d.

B.2. The Sande-Tukey Algorxithm.

The Sande=Tukey algorithm may be developed by reversing the argument used for developing
the Cooley=-Tukey algorithm. Referring once again to Section A.3.8., egquations A.3.3l.
and A.3.32. can be manipulated to obtain the alternative expressions:

Y (m) = ¥(n) + Y(Nn) n = 0(1)N/2-1 B.2.1.

Y ) = (¥ = Y(Hm) ) oWy n = O(1)N/2-1 B.2.2.
vwhere,

Yy (n) <>y (d) = y(23) B.2.3.
and Yz(n) <mm> yg(j) - y(2j+1) B.2.4.

Equations B.2.l. and B.2.2. are applied successively. At each step the rumber of
partitions is doubled, and the length of each partition is halved, until N = 1,

The result, noting equation B.l.5., ig the IDFT of Y(n), but the order of the result
is "bit reversed." The sequence y(3j) may therefore be obtained by applying the
algorithm shown in figure B.3. as the final stage.

A flow diagram for the Sandy-Tukey algorithm is shown in figure B.5.
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}

Given: y(3), 3 = O0(1)2n=2 (assumed to consist of an N-length complex:
sequence.) '

- Start.

f o - 2 )
i; . - N
no
W
o

Tl t= y(p)
T2 1= y(p+l)

y(p) 3= ylq)
y{p+l) 1= y(g+l)

y(q) = Tl
{ y(q+1)z- T2

r > q no qisq=1r
? r = r/2 J

<
?

Fq

Figqure B,3. A "Bit Reversing" Algorithm,
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(assumed to consist of an N-length complex

Givens yiide 3 = 0(1) 2N=2
. sequence.)
C(r) = cos 21, ¥ ™ 0(1)%—-1
N

SR
|

S(r) = sin 27x, * = o(1)N=1
N 2

i .
W= =1 for DFT, +1 for IDFT

k t=m O
r

(4]

C(r)

s(r)
. ni=k )

mi=n+dq

L‘ { ' w1 1w y(m).C = Woy(m+l).S
72 1= y(m+l).C + W.y(m) .8
y(m) 3= y(n) = Tl
. : y{m+l) 1= y(n+l) = T2
k., y(n) 1= y(n) + Tl
: \ y(n+l) 1= y(n+l) + T2

) Cns-nd-zl)

L yeas -~ /n ; 2

no

k tm k + 2
r tm ¥ + p/4

L

i
;
}
'\
\ no
i Figure B.4. [The Cooley=Tukey FET Algorithm.
A
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Givent y(3)¢ J = O(1)2N=2 (assumed to consist of & N-=length complex
sequence.)
C(r) = cos 21, x = 0(1)§?1
N

s{(r) = sin 27, T = O(1)N=1
N 2

W= =1 for DFT, +1 for IDFT.

k 1= O
¢ = C(n.q)
(: S = S(n.q;)

" {
m 1= 2p.K + 2n 1

L e TR ST

. T1 3= y(m)
. T2 1= y(m+l)
' v T3 1= y(p+m)
. T4 1= y{p+m+l)

y(m) 3= T1l + T3
y(m+l) = T2 + Té
y(m+p) t= (T1=T3).C = W.(T2-T4) .8

Ly(m-bp#-l) = (T2-T4) .C + W.(T1=T3).5 ]
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B,3, Comments.

S ————————

The fast Fourier transforms which have been developed in this Appendix can each be
used for effecting both the DFT and the inverse DT (IDPT). The logic of this state-
ment can be seen by examining equations A.3.8. and A.3.9., It can he seen from these
that the DFT and the IDFT are identical except for a scale factor (1/N) and a minus
sign included in the exponential function for the DET. In practise, it is common for
the scale factor to be omitted altogether from FEFT routines, leaving the user to make
the appropriate adjustment. When this is the casa, the only difference batwean the
DET and its IDFT is tha exponential texm. The f£iow diagrams shown in figures B.4. and
B.5. indicate the necessary adjustment required far each type of transform (and omit

the scale factor.)

The algorithm to be preferred for a particular spmlication will depend upon personal
praferences and, perhaps, upon the facilities affrrded by the computer instruction
set, even though the number of arithmatic operitisns required by the two algorithms
is identical. Certainly the Sande~Tukey algorithis han proved to be slightly more
efficient on one 16 bit word-length computer. It should also be noted that when
spectral analysis is to be sffected in a "real tims* anvironment, then the bit rever-
sal routine can be entered “off-line® if the Sande~Tukey algorithm is used.

The bit reversal algorithm shown in figure B.3. can be implemented as stated in any

high level languagse. It will, however, be very sluw., It is to be recommended that

the bit reversal calculation at least be executed in machine level code, taking adv-
antage of logical instructions which are available uat that level.

The efficiency of the FFT routines described in thic Appendix is normally quoted in
comparison with the time reguired to achieve the sae result by implementing equation
A.3.8. or A.3.9. directly. The exact speed ratio will depend upon the characteristics
of the particular computer used, but will be of the oxder

loggN & 0.01 for N = 1024.
N

An additional benefit afforded by FFT routines is superior accuracy by virtus of the
fact that fewer arithmetlc operations are involved, leading to snaller “rounding®
errors.

The restriction that the length of a date sequence must be a power of two for the

FFT alyorithms desoribed may be overcowe by adding a suitable number of zeros to a
seguence of arbitrary length. The justification for this procedure can be implied from
the results of Section A.3.8. The resulting transform must be weighted to account for
the fact that data was present for only a proportion of the original sequence.
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APPENDIX C.

R ————

Some Proceduras which make use of the DFT,

for computing estimates of PSD and
and estimates of auto and cross
of PSD and CSD using the DFT as

This Appendix contains procedures
CcSD from arrays of sampled data,
correlation functions from estimates

a filteriny slement.

It was decided to present the procedures in a formal high lavel lang~
uage. The author recognised that Fortran is the scientific language.
most widely used. However the clarity of Fortran code leaves some-
thing to be desired, particularly to engineers who are not fully
conversant with the language. It was therefore decided to adopt Algol
60 as the language for this Appendix, partly because it is relatively
easy to understand, and partly because it is probably the most popular
scientific language apart from Fortran. The author apologises to
adherents of other languages for their choice but, as no idiomatic
tricks have been employed in the procedures, they anticipate that such
enthusiasts will experience 1ittle difficulty in effecting a suitable

translation.

been designed to present the various steps in a

logical manner and with a degree of clarity. It is worth noting,
therefore, that the procedures would translate into grossly ineffi-
cient code if they were to be compiled exactly as they have been

presented here.

The procedures have
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Cel- A Procedure to the PSD of a Single Data Sequenc

Procedure PSDA (y ,N,M,H,h) Result: (Y); comment Note that semicolons are used to
! ) terminate every statement)

value y,N,M,B,h;  jnteger N,M,H; real h;  array y (012#N*M=1] ,¥ [OzN=11}

begin gomment This procedure computes the N-length PSD estimate of the 2NM-length data
sequence y. The result is presented in Y. H is a hanning marker, and is

set zexo if hanning is not required., a 4N-length workspace array (yw) is
used. The sampling interval is assumed to be h sezonds, and N is assuned

to be a power of two;
integer j,m; gcomment Declare counters used in the procedure;
gesl pli pii=3,14159265359; comment Declare and set pij
array yw(O34*N-112 comment Declare the workspace array}

Step 1 comment Clear the result array (it is used as an accumulator) ;

for ji=0 step 1 until N~1 do ¥i]j) t= O;

on—

for mim0 step 1 until M-1 do
begin comment Start of the block loop}

Copy the next 2N data samples into the odd elenents of the workspace

Step 21 gonment
array. Clsar the even elements;
for jiwo step 1 until 2*K-1 do begin
yw(2%]] 1= y[J+m*N])

ywl2%341] = O
and;

comment Halve the first and last slements;

ywl0) 1= 0.5*ywI(O]; ywi4*N=2] 1= O.5%yw [ d*N=21;

Step 33 comment Weight the data if hanning is required;

if H = O then goto Step 4;
for jt=0 step 1 until 2*N-1 do yw[2*]) 1= 0.5%*yw(2%j} *(1-cos (pi*I/N))?

|

Step 43 comment Compute the DPFT of yw(3), 3 = o(1)4n=-1 with W = =1 using the Sande-
ggkoy algorithm, figure B.5., followed by the sorting algorithnm,
gure B.3.}

FFT (yw,2*N,~1)1

comment Form the square of the modull of the complex result and sum into

Step 53
the accumulator array}
for ji=0 step 1 until N-1 do
Y1 = X[} + ywl2%3) dywi2¥]] + ywi2*j+l]) *ywi2#j+ll;
gnd; of the block loop. 6&teps 2,3,4 and 5 are sxecuted M times.
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F’ ‘ : Step 63 comment Correct the results if hanning was used;

' Af H = O then goto Step 7}
t : for ji=0 step 1 until N-1 do Y3 ) = Y(31*8/%

\ Step 7 comment Compute the Energy, or mean square amplitude, spectrum;
1 for ji=0 step 1 until N-1 do Y(3) sm 2*0¥{31/((2*N=-1) *(2*N=-1) *M)}

Step 8: corment Compute the PSD estimate by dividing by the analysis bandwidth;
for j:=0 step 1 until N-1 do ¥(3] s= Y[J)*2%N*h;

v or

r gnd of the procedure;

|

I

‘1

\ Notes: Only half of the DFT array was used in step 5. This was because the original data

| was real (step 2) and the conjugate functions theoram (Section A.3.3) shows that
the upper half of the DFT array contains the conjuygate of the lower half (in
reverse order.)

The factor (ZN-l)z was included in step 7 because the FFT algorithm did not
perform the necessary scaling (see Section B.3.) The factor 2N-1, rather than
2N, was used becauss the first and last elemants of the data array were halved.

to effect the "bit reversal® sorting once only, outside the main loop. If this
approach is adopted, then the addresses used in step 5 must be modified to suit.

The algorithm described above is simple to implement, but is expensive in torms
of storage used for the FFT (4N locations.) This may be reduced to 2N locations

i
.\ 1f the Sande~Tukey FFT algorithm is used to compute the DFT, then it ic possible
\ by replacing steps 2 to 5 inclusive by the foliowing:
{
1

——
i

Step 2at comment Copy the next 2N data samples into gonsecutive locations of the
workspace array;

for jiw0 step 1 until 2*N-1 do ywij] 3= yljm*N];
comment Halve the first and last elements;

ywlO] = 0.5*ywl0]); yw[2*N=1] 1= 0.5*ywl2*N=1];

Step 3a: comment Weight the data if hanning is required;
if H = O then goto Step 4a;
for ji=0 step 1 until 2*N-1 do ywidl = O.5*ywlj)*(l-cox(pi*j/N));

St p das comment Compute the DFT of yw(j), 3 = O(1l)2N~) with W = «1 using the Sande-
Tukey algorithm, followed by the sorting algorithm, Note that the
length of the DFT is now one half the length previously used in
step 4;

FFT (yw,N,~1):

et N il i i ; RIS . S SO
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Step 5a: comment Use equations A.3.32. and A.3.34.

139

to separate the transforms of the

two sequences yw (2)) and yw(23+l). Then use equation A.3.30. to
compute the final transform. The two processes may be combined,
but they cannot be parformed in situ. Note also that the first
element must ba treated as a spacial case;

for jiml step 1 until N-=1 do

o

egin
S = sin(p#/N)s C 3= cos(pi*i/N) s
Ti = O.S*(ywl2'jl+ywlZ*N-2*j]-S‘(ywlz*j]-yw(z*n-z*j))
+C*(ywl2*N-2‘j+ll+ywl2‘j+11));

T2 1™ o.sw(yw[z*j+1)+ywl2*u—2~j+ll-s'(ywlz*j+11+yw12*n~2‘j+ll)
aC*(ywl[2%31=yw(2*N=2*]1))3

Y(31 t= ¥[J) + TI*TL + T2%T72;
43
cémmnnt Now for the first element;

Yiol = Y[O] + yw|0)*yw(0]s

The real declaration at the beginning of the procedure must now include the additional
workspace locations s,c,T1,Tr2, Further, the workspace array yw nay be declared with
2N elements, rather than the original 4N.

Under normal circumstances, the exponential functions used in hanning the data, computing
the FFT, and those used in step 5a would all be extracted from previously computed arrays

in order to reduce the execution time.
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C.2. A Procedure to Compute the PSD and CSD of Two Data Sequences.

Procedure PSDB(yl,y2,N,M,H,h) Results (¥Y1,Y2,¥3,¥4);

value yl,y2,N,M,H,h} integer N,M,H; real h; array yl[0:2*N*M-1], y2(012%N*N=-11];
array Y1[osN-1], vz2{osN-1], ¥3losn-1], ¥é[osN=1];

bagin comment This procedure computes the N-length PSD estimates of the 2NM-length data

sequences yl and y2. The results are presentad in Yl and Y2, respectively.

The procedure also couputes the CSD of the two seqguences, assuming yl
contains the notional input. The real and imaginary parts of the CSD ars
presented in ¥3 and Y4, respectively. H is a hanning markes, and is set
zero if hanning is not required. A 4N-length workspace array (yw) is
used. The sampling interval is assumed to be h seconds, and N is assuned
to be a power of two;

integer j,m; comment Declare counters used in the procedure;

real T1,T2,73,T4,pi; pli=3,14159265359; comment Declare variables and set pij

array yw[O:(*N-l]a comment Declare the workspace areaj

Step 1: comnent Clear the result arrays {they are used as accunulators);
for ji=0 step 1 until N-1 do
begin
. Yi[j]s=o0; ¥2[3]mo0r ¥3[J] =01 Y4[I]s= O
end ;

for mi=0 step 1 until M-1 do
begin comment start of the block loop;

Step 23 comment Copy the next 2N data samples from yl into the odd elements of the
workspace array, and the next 2N data samples from y2 into the even
elaments of the workspace array}
for ji=0 step 1 until 2*N-1 do
baegin

end;

yw(2%3] 1= yl[3+m*N]s  yw[2¥)+1] 1= y2{3+m*N];

comment Halve the first and last elaomants;}
yw[0] 1= 0.5%yw[0];  yw[4*N -2 ] 1= O.5*%yw[4*N-2];
yw[l] = 0.5%w[1l]s yw[4*N=1] = 0.5%yw [4*N=1];

Step 3: comment Weight the data if hanning is required;
Lf H = O then goto Step 4;
for ji=O step 1 until 2*N-1 do

yw[2*j] &= 0.5%yw[2*3]*(1l=con(pi*j/N) )}
yw[2vj+l] 1= 0.5%yw[2%3+1]*(1-cos(pi*I/N)) s
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Step 4: comment Compute the DFT of yw(j), 3 = 0(1) 4N-1 with W = =1 using the
i Sande~Tukey algorithm, figure B.5., followd by the sorting
‘ . algorithn, figure B.3.?
FET (yw,2*N,=1)3
) : Step 53 comment Separate the two transforms and accamulate the square of the moduli
in Y1 and Y2, and the product of the gsecond and the conjugate of
the first in Y3 (real) and Y4 (imaginary):
. for jimsl step 1 until N=1 do
' . begin
: ’ Tl t= O.5%(yw[2*)] + yw[z*u-zij]);
3 12 1= O.5%(yw[2#3+1] - yw[2#8-2%3+1])s
]
; 3 1= 0.5%(yw[2%j¢l] + yw|[2*N=2%3+1]);
. T4 1= 0.5%(yw[2*N+2%3] = yw[2¥i])s
) Yi[3 ] = Y1[3] + TINTL + T2*T2;
i
f ¥2[§] 1= Y2[3] + TI*TI + T4*T4;
ot ' ¥3[3] 1= ¥3[3] + TIATI + T2¥T4;
o YA[§] 1= YA[3] + TI¥T4 = T2HT3;
' end;
comment Compute the first elements;

i ' vi[o] s= ¥1[0] + ywl[o]*yw[o]; ¥2[O] = v2[o] + ywil]l*yw(1l]:

. y3(o] s= ¥3[0] + ywlo]*yw([1]s
. 1
end; of the block loop. Steps 2,3,4 and 5 are executed M times;
Step 6: comment Correct the results if hanning was used;
if H = O then yoto Step 73
for ji=0 step 1 until N-1 do
begin
Y1[3 ] == YL[3]*8/3s v2{) ] s= ¥2(3]1*8/3;
va[3 ] s= ¥3[3]%8/3; va[3] s= ¥4[3]*8/3s
end;
; Step 73 comment Compute the Energy spectra and cross spectrum;
i for ji=0 step 1 until N-1 do
;
begin
: yiij) = 2%Y1[3]/ ((2¥N=1) * (2*N=1) *M) s
' v2[3] 1= 2%%2[3]1/((2*N=1)*(24N-1) *M} s
¥3[3) 3= 2#¥3[ 4]/ ((2%N=1)* (2¥N=1) *M)
Ya[§] 1= 2%¥4[3]/((24N=1) * (2*N-1) *H) 3
end;
Step 83 comment Compute the PSD and CSD estimates by dividing by the analysis

bandwidth;
for jtm=0 step 1 until N-1 do

begi
Red=i y1l3] := ¥Y1[3]*2*N*h; ¥2[3j] s= Y2[3]*2*N*h;

¥3[§] = ¥3[3]*2%N*hs  Y4[3] &= YA[3]*2*N*h;
end;
1 end of the procedure}
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C.3, A Procedure to Compute the Auto=correlation Function from a PSD Egtima

procedure AUTO(y.N,df) 2

value y,N,d4f; integer N; real df; axray ylon-1];

function from an

The interval between
umed to be a power of

computes the N=length auto-~correlation
N=length PSD estimate. The result is raeturrned in Y.
each result element is 0.5/ (N.df) seconds. N is ass
two. A 2N-length workspace array (yw) is usged;

begin comment This procedure

comment Declare the counter used in the procedure;

integer j;

real C,S,pi; pi:=3.l41592653593 comment Declare variables and set pi;

array yw[O:2*N~1];  gomment Declare the workspace arrayj

Step 1t comment Clear the workspace array’

for jim0 step 1 until 2#N~1 do yw(] ] ¢=0;

Step 2: comment Copy the PSD from y (£filling half the workspace);

for j:=0 step 1 until N-1 do yw[j] := yiils

comment Halve the first and last elements;

ywio] = o.5%yw(o]s yw[N=1] t= 0.5*yw[N=1];

Note that the length of the transform has
PSD into both the re2l and imaginary

Step 3: comment  Compute the IDET of yw.
111 have to be corrected;

bean halved by packing the
elements of yw. The result w

FFT (yw,N,1)¢
Only the real part of the result need be

Step 4: comment Correct the result.
the auto~correlation function is real. The

calculated since
corrected result is placed directly in the result array, y?

or jiml step 1 until N-1 do

begin
C := cos(pi*i/N); S = sin(pi*3i/N);
o.s*df*(ywlz*jl + yw[é*N—z*j] + S*(yw[Z*jl -

yw (4N=231)

yli| &=
+ CH(yw(2*j+l] + yw [4*N=2#3+1]))
end;
comment Compute the first point separately}

yl0] 1= df*yw([O];

end of the procedure;
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C.4. A Procedure to Compute the Crogg-correlation Function from a CSD Estimata.
pProcedure CROSS(yl,y2,N,df)}

value yl,y2,N,df; integer N; real df; array yl[O:N-l],yZ{O:N-L];

begin comment This procedure computes the 2N-length cross-correlation function from an
N-length (complex) CSD estimate. The result is real. Fositive time delays
are returned in yl, ané negative time delays ara raturned in y2, thereby
overwriting the CSD estimate. The interval between each result element is
0.5/(N.df) seconds. N is agsumed to be a power of two. A 4N~length
workspace array is used;

integer J; comment Declare the counter used in the procedure;

array ywlOs4*N=11]; comment Declare the workspace array;

Step 1l: comment Clear the workspace array;

for. j:=0 step 1 until 4*N-1 do yw([j] 3= Oi

Step 2t comment Copy the CSD from yl {(real) and y2 (imaginary), £illing half the
workspace;

. ‘for js=0 step 1 until N-1 do

———

begin
ywl2%j] = yll3ly
yw[2*3+1l] 3= y2(3):
end;

comment Halve the fizrst and last elements of each array)
yw(O] = 0.5*ywl(0l: ywll] := 0.5*%ywlll;
yw|2*N-2] = O.5%ywl(2*N=217 yw[2*N=-1] 1= 0,5%ywl 2*N=1]}

Step 3¢ comment Compute the IDFT of yw;

FPT(yw,2*N,1)

Step 4: comment Complete the result as specified at the start;

for jiml step 1 until N-1 do

+ g g ——

begin
yliil s= O.5*df*(yw[2*j]-yw[Z*j+11+wa2*N-2*j]-ywl!'N-2"j+l])1
y2[3) &= O.S*df*(WIZ"jl*Wl2'3+1l+wIZ*N-2*jJ+lez*ﬁ-2*j+1]);

.

end’
comment Compute the first two points gepardtely’
yillo] = ywlO]s y2l0] = yw[O]:

end of the procedurej}
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APPENDIX D.

Probability Measuxres,

yield data whose values cannot be predicted with
The best that can be hoped for is a description ,
which permits an estimate of the probability that a nominated event
will occur using, as the basis for tha estimate, averages obtained
from data produced by the process at some time in the past. The
concept of probability ig therefore of primary importance in the
study of random processes and the techniques used for describing

data produced by such processes.

Random processes
any certalaty.

measures which are most

An introduction to thosa probability !
random data is contained in

frequently eacountered when analysing
this Appendix.

o e R e = S TN
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A collec
function of time y(t) is
observations is termed a gggulation.

1f the number of possible values W

a f£inite range of values, then the probabilit that any
particular value is equal to the liEItIng value of the ratio of the number of
as the number
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undamentals.

D.l. F

ious times of the instantaneous value of a

éion of observations taken at var
finitely large number of such

called a sample. An in

hich can be adopted by the function is finite within
observation will adopt a

uring at that value to the total number of chservations,

observations occ
of observations extends to the whole population. Specifically,

DOl.l

P(y.) - 1im. N(y )
Yo Newr =R

ociated with a chosen value of y_(t). It

Probability is therefore a number to be ass
Note also that, since every obse vation will

will have a value between zexo and unity.
have some value,
Plyy) ™ 1 D.l.2.
yon-w
of possible values which the

gsible values is finite. The
ig therefore zero, presuning

is continuous, then the number
te even when the range of po
ticular value

Wwhen the function of time
function can adopt is infini
probability of the function adopting a par
that the function does vary with time.

This difficulty can be circunvented by defining a different probability measure. The
a value which is lass than, or egqual to, a

probabiliey that a function y(t) takes
rominated value y,. 88Y¥s is called the distribution function or cumulative function

of y,- Thus?

D(yo) - Probability (=w<y< yo) D.1l.3.

The probability that_the function adopts a value between Y., and y;, Says ig given by:
D(yl) - D(yo) = Probability (¥,<¥< Yl) D.1l.4.
The functions defined by equations D.1.3. and D.1.4. are capable of describing both
discrete and continuous functions. Provided that y{t) is everywhere finite, then they
are continuous functions of, raspectively, Yo and y] and Yoo When y(t) is a continuous
function, then the derivatives of the probability functions are also continuous.

3g a function of Y and (yl-yo) = y. Dependence upon the latter

Exquation D.l1.4. defir
tulating the function:

can be removed by pos

py) = lim. D{y +A4y) = p{y) D.1.5.

=

Ly+0 dy
- dn(y)
Y
ply) is known as the grobabilitx density function.
single unction.

probability measure for a

D. 1.6.

It is arguably the most useful

The probability measures introduced above have a number of properties. The more useful

of these are 1isted below:
Yo
D(y,) = ja ply).dy D.1.7.
0 <« D(yo) < 1. D.l.8.
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0o < plyy < 1 o D.1.9.

TTTREET T T

l .
{5' " Iw P(Y' ody - 1l ' Dol-loo
;l: -] : i : o
: '
o In general, the expected value of a function of ¥, £(y), is given byt
;; lew) = ;:o £(y) .p(Y) 0¥ D.1.1%
: T
4
{' The moments of y(t) characterize the shape of 2 probability density function. The nth
. moment is defined as:
| ‘ Mn - J.w yn.p(y) ody D.l.lz.
3 -0
F ..
B It can be deduced that:
ki
- M, - 1, from equation D.1l.10. D.1.137
:
? M, - §, the mean value of y(t) D.1l.14,
Ef " M, - 1'3, the mean square value of y(t) D.1.15.
. My is a measure of asymmetry, OF »gkewnass" D.1.16.
b ‘ .
‘ : M, is a measure of "kurtosis” D.1.17.

sis,

Formally, if M = 0, then M%/M% is a non-dimanlional maasure of skewneds, and kprto

a measure of the “peakiness a probabiliry density function, is given by Mg/Mg. If

oo the mean value is subtracted from y{t), then the resulting moments are known as central

: moments. In generali

‘ M, = J‘Qw(y-i;)n.p(y).dy D.1.18.
It follows that, for example,
cM, = 1, as before p.1l.19.
ch - [¢) Duluzou
D.1.21.

CM, - a:. the variance of y(t)

The moments Of y(t) can be related to the conjugate of the Fourier tranaform of the
density function, as follows:

probability
Let pe(x) = _f_: ply) -exp(iry) .y D.1.22.
e [Pl b dEy + et (g™ * e 1o D.1.23.
- n:
This is called the characteristic function., It may be written:
® D.1.24.

-] -] n n
(y) .dy + ir. ply) dy + ceo(dB)s ply) 8y coe
{ ply).ay [T yeply) Gy (ET) j_g ply) .4y

P*(r) -
-c0
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or, pe(r) = M, o+ 1M + ees +(_1Ea|r,)“.u“ + e D.1.25.
conversely.
oly) = Lo [TEe(r).expl-izy).dx D.1.26.
3 -0
D.2. the Probability pDensity of a Function.
1f a function %x(t) which varies with time is transformed to obtain a new function:
y{t) - £(x) D.2.1.
and £(x) is single valued, then the probability density of yit) is given by!
P (y) bt dx « P (x) D.2.2.
Y ay x
When y(t) corresponds to n values of x(t), 1.8, x(t) is multi-valued, then the
probability density function of y(t) hecomesi
D.2l30

n . g_! . Px(x)

p ly) =
Y dy

As an illustration of the above results, consider the function:

y = A.sin(x)

1f the probability density function of x(t) is uniform, that is,

Px(x) - z}_' 0gxX< 2n
n
- 0, Q>x oOrx xXpen

¢ X = arcein(y/A) is a double valued function (so that n = 2), the

then, becaus
given byt

probability density of y(t) is

ply) = 1.2.0% - y9¥,  -ACy<RA
2n

- 0, -A>y Or Y>A

The above expression represents the probability density function of a sine wave.

It can be shown that, in general,

Gaussian process is itself a Gaussian process.

n-Gaussian

= A linear transformation of a
Gaussian process yields a no

= A non-linear transformation of a
process.
a process

= A linear transformation of a non-Gaussian process yields
original.

having a different probability density function from the
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D,3. Joint Probability Functions.

on D.l. wexe concerned with describing the characteristics
d with the extension of those principles

The ideas presented in Sectil
iables are of interast.

of a single variable. This Section is concerns
to the situation where the joint chacacteristica of two var

Suppose that two functions of time, x(t) and y(t), exist. The functions may, or may
not, be independent of one another. The probability distribution of each function
considerad separately is defined by equation D.l.3. A third probabllity distribution

may also be defined, as follows:

D(xo.yo) = Probability(=®w<y<Y, and -0<x<x°) D.3.1l.

D(xopyo) is known as the joint gtobabilitx distribution function. In a similar way.

plx.,y) = lim. D(x + Ax,y + 4 - D(X,Y) D32,
AX~O Ax.Ay
Ay»o
= iy D.3.3,
Xoy
ig known as the joint grobabilitx density function.
The joint probability density function has the properties:
©
IQP(XOY)-M - P(Y) D.3.4.
j:p(x,y)-dy - plx) D.3.5.
Dlslsl

j”jwwp(x,y).dx.dy - 1
-Q-

In general, the expected value of a function of x and ¥y, £{x,y), 18 given byt

Elf(x,)] = j“:!!(x,y) .p(X,y) .dx.dy D.3.7.

A definition of the cross~correlation function may be deduced from equation De3oTes

as followss

Regl®) = Blx(t) .y(tee)] = _f“j“x(c).y(t+r).p(x(c).y(ur).dx.dy
-y =0 D.3.8.

The concept of joint probability can be extended to gituations where the joint

properties of many variables are of interest.

D.4. Conditional Probability Functions.

The two-variable situation considered in Section D.3. may be taken a step further by
defining a subset of the joint probability distribution as:

D.4.1.

probability (=< X X, given Y,< Y& ¥y

F (xo| Yocyl) -
~—Probabllity (¥o< Y& ¥y




The normalising factor has been intrcdiuvced in order to ensure that the function has
the properiys

f::r(xlyo.yl).dx - 1 D.4.2.

The conditional probability function is derived from equation D.4.1. by letting the
y interval tend to zero. That is:

D(8|y) = lim. F(x +A! ) Do‘oao
, Ay—~o D§y+Ay’-DZy)

Equation D.4.3. defines the conditional robability distribueion. It follows, by
comparison with the results f Section D.1l., thatt

pixly) = _dg&_m
- géf§¥) D.4.4.

defines the conditional probability density function.
Note that if x is independent of y, then:

pixty) = p(x) D.4.5.
and 80 pix,y) - vp(x).p(y) | D.4.6.

Equation D.4.6. can be used to demonstrate the independence, or otherwise, of two
functions x and Y. .

D.5. Stationarity and E;godicitx.

The preceeding sections of this Appendix contain definitions of a variety of probability
measures, each measure, at least potentially, providing a description of one aspect of a
random process. An egtimate of each measure can always be obtained provided that an
ensemble of sample time histories produced by the process are available for analysis.
Whether, or not, such estimates are meaningful (1.e. contribute to an understanding of
the process) depends upon the nature of the process and upon the behavior of the sample
time histories yielded by the pxocess.

Two important classes of random process can be identified for which probability measures
yield meaningful information about the process. These are:

DeSols Stationary Processes.

A stationary random process is one in which the expescted values of ensemble momants and
joint moments do not vary with time. specifically, a weakly stationaix process is
defined as one in which the mean value and the auto~correiation function, as defined by

eguations D.l.14. and D.3.8. rospactIv.ly, are time Invariant. A strictly stationary
process is defined as one in which all moments and joint moments are time invarlant.

D.5.2, Ergodic Processes.

An ergodic random process is a stationary process in which the expected values of
ensemble moments and joint moments are equal to the expected values of the corresponding
sample averages. The class is again sub-divided into weakly ergodic processas in which
the sample mean value and autc-correlation function are representative of the ensemble,

and strictly ergodic processes in which all sample averages are representative of the
ensenble.

T - -1
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} D,6, The Normal pistribution,

It can ba shown that, if a process is the result of many independsnt random causes, none
of which contribute significantly to the overall process, then the probability density
function of data output by the process is Normal, or Gaussian. The probability density
function of a Normal distribution is given by:

-2
ply) = _;.__.exp(-(x =99
Zny

R.GY

Da6ele

The above statement is known as the Central Limit Theorem. Lt is employed to good
effect in, for example, random noise generators which use a‘Geigex counter and a radio-

active source.

It is worth noting that a Normal process which is demonstrably weakly stationary (exgodic)
is also strictly stationary (ergodic) because the probability density function is
completely defined by the ensemble mean value and variance.

The response of & 1inear system to an acbitrary input is given by?
yple) = J‘tmh(t -9) .y, (8) .ds D.6.2.

where h(t) is the impulse responsé function (IRF) of the system. When the IRF extends
over a significant time (i.e. is long compared with the characteristic wavelength of the
input) , then equation D.6.2. can be consideraed to state that tha output of the linear
system comprises the weighted sum of a number of independent processes. It is therefore
to be axpected that, when the input is random, the output of a linear system satisfying
this condition will have a probability density which is more nearly Normal than that of

the input.
mean that stationary data collected from

The properties of random processaes noted abave
guch processes very often exhibit a Normal probability density distribution. This, in
the Normal distribution.

turn, accounts for the importance attached to

The probability that a function y(t) having a Nexmal distribution exceeds a nominated

value,s Ygr is given byt
©
P(y >Y°) - I P(Y) ~dY D.6.3.
A Yo
- L. (© el -y?) .ay D.6o4s
NZ™ 2
2n.ay Yo 2.0Y
agsuming that the function has a zero mean valuse., It is convenient to change the
variable in equation D.6.4. tot
x = 9y.Y D.6.5.
With this substitution, equation D.6.,4. bagomest
Da6a6e

@ 2
P = -, A%
(x>x7) ﬁ# j‘xo oxp ( % )

6.6. is related to the Error Function, and is widely
algoxithm for computing the Error Function.

—y—

The right hand side of equation D.
tabulated. Reference D.l1. includes an

sociated p:obabintiu, are listed in

3 The Normal distribution, and certain useful as
Table D.l.
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o
o '
i Y g
i
£
1
: ‘ L = % pxg) Plx>xg] P [1x1>x,] Pllxl<xg)l
. i‘ oy
: '
. ) 0.39894 0.50000 1.00000 0.00000
. . 0.5 0.35207 0.30854 0.61708 0.38292
ot 1.0 0.24197 0.15866 0.31732 0.68268
& ‘ 1.5 0.12952 0.06681 0.13362 0.86638
‘ ’ 2.0 0.05399 0.02275 0.04550 0.95450
2.5 0.01753 0.00621 0.01242 0.98758
3.0 0.00443 0.00135 0.00270 0.99730
,,? 3.5 0.00087 0.00023 0.00047 0.99953
' 4.0 0.00013 0.00003 0.00006 0.99994
4.5 0.00002 0.00000 0.00001 0,99999
5.0 0.00000 0.00000 0.00000 1.00000

Table D.1l. The Normal pistribution and Related

Probability pistributions.
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D.7, Propertias of Noxrmally Distributed Processes.

assumed, for the purpoese of this Section, that a stationary, randcm
, has a Normal distribution and a zero meaan value. It is also to
they are specifiad, the various time derivatives of y(t) exist.

It is to be
function of time, y(t)
be assumed that, when

D,7.1, The Exgécted Number of Level Crossings per Second.

The probability that the function adopts a value between y and y + dy and, at the same
time, a velocity between ¢ and ¥ + 47 is, if dy and 4} are sufficiently small,

ply 2 .dy.a¢ D.Tel

But, dy = 9.4t (distance = speed, time} D.7.2.

Tha average number of times y is axceeded in time dt is equal to the probability that
the function lies between y and y + dy and also has a positive velocity. Hence, if N
ig the average nunber of times per second that y is exceeded, Y

Hyedt = de. [P 9.plyed) a8 D.7.3.
(]

or, R, - j:y.p(y,y) a9 D.7.4.

This result is true for any probability distribution. For a Normal distribution, the
expected value of the product yYobe

E[y.2] = %E(RYY“))lruo = 0. D.7.5¢

go that y and ¥ are independent of one another. Equation D.4.6. can therefore be

invoked to write:

ply,) = P . D.7.6.
- @
Hence, NY = ply). § g.p(Y) .4a¥ D.7.7.
o
= ply) - & D.7.8
Vs
= -1_- . g_z . exp(__"_lz) Do?ogo
2n o, 202
o Y
It is noted that:
2 - ©
oy £° ny(t).df
and ol . (2n2. [Pl () .af
? A Yy
These results may be subatituted into equation D.7.9. to give:
-]
2 k
£°.6, (£) .4f
'ﬁy - J‘o Yy ..xp(_:xz) D.7.10.
-] 2
I ‘GYY(:) -df 20,

o
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Equation D.7.10. is known as Rice's formula (Reference D.2.) It states that, for a
Normally distributed process, the average nunber of positive going level crossings
per second can be obtained directly once the power spectral density of the pxocess is
known. 1t can be inferred that, for this to have a finite value, the ultimate "roll=-
off" rate of the PSD must be greater than 6 dB pex octave.
Equation D.7.10. is often written:
N - F.exp( =y D.7.11
Y o. L]
Zay
where, ﬁo is the average number of positive going zero crossings
per second.
A "feel® for the implications of the above can PSD
be obtained by considering a process which has
an ideal band limited white noise PSD centered
at £ Hz with a bandwidth £, Hz, as shown in l
tigufe D.1. This has the p}opertyx |
R, = £l + K3/12 ) D.7.12. |
| i ot
where XK = f 1 3 o frequency
7 ol,
o
£
Hence, Fiqure D.1l. PSD of a band-limited
R, -~ £, as £ =~ O white noise process.
and N > £ i1f £, > O
Q o i ‘ PSD

If £f) = 2.f,, the PSD becomes that shown in
figure D.2., and

N, = 0.5773.£; ——
| fraquency

£

Figure D.2. PSD of a low-pass

filtered white nolse process.
D.7.2. The Expected Number of Maxima per Second. filtered white noise process

Tae probability distribution of maxima is governed by the joint probability density:
P(YVY c?)

with a maximuws being defined as ¥ = 0 and § < 0. It can be demonstrated (Rsfarxence D.3.)
that the probability density of maxima for a Normal process is given byt

2,4 2 2
ply)y = (=20 .exp{ -y ] + Z.y |l + ext Y.z ~oxp( =y)
P % P 2= 2 =4
UY(ZN) Zuy(l 2} Zuy 2ay(1 - z%) Zay
D.7.13.
where g = N D.7.14.
Np
and erf(x) = \fZ'.fx axp( -:2) +ar D.7.15.
% ' ©
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§_ is the expected number of maxima per second. Using an argument similax to tha
employed in Section D.7.1., it may be deduced that, ’ )

= - - ® .4 10
N, 2;. b [ £ eGyylf).af D.7.16.
T @ £2.6, (£) .af
I yy 8

For the ideal band limited white noise process shown in figure D.l., the expected number

of maxima per second becomest

Ry, = £ (Ll K¥/2 + x‘eeo)" D.7.17.
(1 + KX%/12)
where K = fl
%
When 51 - 2.50, as shown in figure D.2., this reduces toi
Nm - O.7746.£1 D.7.18.

Equations D.7.ll. and D.7.17. indicate that, for a narrow band process,

£, -~ 0, 1m0 that z - 1 .
or aach positive going zero crossing. In this particular

that is, there is one maximum £
ima becomes, from equation D.7.13.,

case, the probability density of max

pply) = jeexp (_;x;) iy >0 - D.7.19.
%y 20y
Thie is known. as the Rayleigh Distribution.
Conversely, for a broad band process,
and the probability density of maxima becomes:
pv) = 1 _.exp(_=y?) D.7.20.
fy/i; 203

Thus, for a broad band process, the probability density distribution of maxima is equal
to the amplitude probability density distribution,

addidiin b

{ERTITIN 1Y) i i i 21 il it i i
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Error Analysis,

The results obtained from an analysis of random data are never exact.
Thus two selections axtracted from a recording made under nominally
steady conditions will always yield different results. The magnitude
and the character of the differences, or likely differences, between
two such analyses are just as important as the results themselves if
the results are to be interpreted with any degree of confidence.

thod by which the errors

This Appendix contains an outline of the me
imated., The

agsociated with the analysis of random data may be ast

method is then
of the more familiar analysis techniques.

applied to the task of estimating the errors for several
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v E.l. Principles of Errox Analysis

b

E‘ - The result yielded by an attempt to determine a characteristic of a randam process is an

: estimate of that characteristic, A number of similar estimates of a characteristic
will form another random sequence having a mean value and a variance. The Erecision o:i

an individual estimate can be described by the variance of the estimates. The accuracy

of an individual estimate, on the other hand, can be described by the expected value of

the square of the difference between an estimata and the true value, l.e. '

o e[y - £wn?]
. 5Ly -sLBw] + L] - £n?]

- e[ £ -elEw]H?]

A
e 280 -2 EW]).E LEW] - £M)]

» , ‘ + sLElim] - 23] E.l.1.
% ! The first term represents the variance of the randon sequence of estimates. The second

i term is zero becauses

E ! g [ £y - elfw]] = g[Ep] - e(fw] = o E.1.2.
E " the average value of estimates tends to the

The third term will be zero if, and only if,
true value as the number of estimates increases without limit.

§ fore refarred to as a bias error.

The third term is there-

4 *
} 1 The two types of errorx, namely variance error and bias error, are normally evaluated
separately since the firat can be considered to be a shortcoming of the experiment, whilst
the second can be considersd to be a shortcoming of the analysis technique.

It is normal, when presenting estimates for the two types of error, to normalise the
gquare root of the quantitiaes derived above. Thus:

A A
Normalised variance exxox, €y = {plf -slf 2]} E.1.3.
£(y)
A
Normalised bias errocr, €, = &l t8w] - £(y) )2ll§
£(y)
- E[f(m] - 1 E.l.4.
£(y)
k
The Normalised RMS arror, € - {evz + ebz} E.l.5.

B.2. variance Errors

The variance error term of equation E.l1.l. can be expanded to gives

A
EL( €y - L8112 = E[£y?] - 2sCfw e (@) + ELEw] 2

. s[fpn3-elfn]? E.2.1.
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A
S : Write £iy) = L (T g(t).at E.2.2.
. i T ©

? where g(t) is some function of time based upon y(t). Then the first term of equation
E.2.1. becomes:

‘ A
e[fw?] = 1 7 T elg(a).g(n)].db.da E.2.3.
200
T
Substituting b = a + r, equation E.2.3. becomas:
X A -
elEwn?) = 1 T T g[gla).g(a+n)] dr.da E.2.4.
i . : T2 o i
2 = 1 T TR (r).dr.qa E.2.5.
: 20 a9 .
a,
]
E.
f Equation E,.2.5. can be evaluated to yield:
S
? g[8 = 2 T Q-Dp.R () ar E.2.6.
F T ‘o T 9
E Note that Rg(t) is the autocorrelation function of g{t). It may be written:
&" | | R () = K () + 3 E.2.7.
I : g g
S
}A Where K _(r) is the autocovariance function of g(t) and § is the mean value of g(t). Thus,
3 equatioﬁ E.2.6. may be written:
- . )
- e[8p?] = 2 (T a-p. &0 +FDar E.2.8.
g o T 9
2
R = 2. IT (1 - £) +K (t') Jdr + §2 E, 2.9,
T 'o T 9
This may be substituted into Equation E.2.l. to give, from equation E.l.3.,

( £y e = 2 T a- D) kg (x) cax ‘ E.2.10.
o

This is a general result which can be used to estimate the variance error of any function
of y.

e
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E.2.1l, Mean Value Estimates

The mean value of a function y(t) is egtimated by:

A

¥ = LT yir).ae E.2.1L.
T O
Comparison with E.2.2. shows that g(t) = y(t) so that equation E.2.11. becomes:
(T 62 = 2T (1= D) K (0 .dr E.2.12.
v T o m Yy
Note that the autocovariance function K (r) tends to zero at large T for an ergodic
process, &0 that: Yy
E.2.13.

Equation E.2.12. is often difficult to evaluate for a particular application, if only
because the true autocovariance function (as opposed to an estimate of it) cannot be
determined experimentally. As a result, it is normal to assume that the power of the
random component of a data sequence is uniformly distributed over a bandwidth B Hz. The

autocovariance function for a sequence of this type is:

Kpy(f) = @ 2 | sin 27Bx E.2.14.
27Br

When Br > 1, egquation k.2.12. can be evaluated for this function to yield:

y.g, = 0Op_1 E.2.15.

(2Br) ¥
Bs2.2, Mean Syuare Valun lkstimates
The mean square value of a function y(t) is estimated by:
E.2.16,

N2 T2
¢ T Io

Comparison with E.2.2. shows that glt) & yz(t).

The autocovariance function included in equation E.2.10. may Leé written for this case:

R (r) = 52 o ok [y(8) .yt yiten y(een)] = §° E.2.17

An important general relétionship which is relevant here is:

E[Y13“2Y3Y4] = E[Y1°Y2]~E [Y3—Y4] + E [Yl-Y3]‘E [_YZ'Y4]

+ E(y,.v4)-Elvye¥3) - 2.9,.¥,-¥3:¥ E.2.18
Hence, equation k.2.17. cau be writtens
R 2, 2 - -4 _ =2 2
Kg(x) - Ry (o) + Z.Ry (r) 2.y g E.2.19
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But Ryz(o) = §%, so that E.2.19. becomes:

: 2 L o A
Kg(z) 2.Ry (x) 2.y

=4

2)2 - 2.Y

2-(Ky(r) +Y

2 =2 -4 _ o4
2.1(y (r) + 4.y .Ky(r) + 2.y 2.y

-2
2.Ky(x).(KY(r) + 2.9 E.2.20.

Finally, therefore, from =quation E.2.10.,

T

-2 N ‘
. ).Ky(r).{xy(r) + 2.5 }.dr B.2.21..

(‘/’206 )2 - il (1-£
v T I T

When the PSD of the noise is assumed to be uniform over a bandwidth B Hz., and BT®»1,

Ky () = a%sin 27Br E.2.22.
2JBr

from equation E.2.14., equation E.2.21, becomes, for ¥ = o,

(plep? - Ky (o) E.2.23.
' BT
(2 41 ev - E.2.24.
(em) ¥
E.2.3, Correlation Function Estimates

The cross-correlation function of two random processes yl(t) and yz(t) is estimated by

R

T
12(r) - % Io yl(t).yz(t+r).dt E.2.25.

Thus, for this case, g{t) = yl(t).yz(t+tl). The autocovariance function included in
equation E.2.,10. may then be written:

Ry (x) S5 - ELyg(t).yy(tat)) .y, tnindyplestin] - 32 E.2.26.
This may be written, from equation E.2.18.,
2 2
Kglr) = Ky (£) Koplr)  + 2[y; Ky () + 14Ky (0]

+ xn(t1+r).xn<tl-t) +2.¥;.y5[Kppteybr) 4 Klz(tlﬂ.‘)] E.” 27,

This may be substituted into equation E.2.10. to provide a general expression for the
variance error of cross-correlation function estimates. when both processes have a zero

mean value and BT > 1, then E.2.10. gives:

2 T
(Rp,(X) 60 ¢ = %Io(l-%)[xn(t).xn(:) + xu(t1+t).x12(t1-r)].dt E.2.28.
~ 1. [Kn(o) Kyplo)  + xzu(r)] 4 E.2.29.

(1)
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or, when Klz + Oy

€, = L. [1 + 012.022]“ E.2.30.
(2BT)
K" (%)

It way be noted that the Normalised variance error for autocorrelation function estimates

is, when Kyy(r) + O, given byt

4
€, * _L_.[J.+ Oy

s ]" £.2.31.
P
(2BT) Kyy™ (F)

When r = o, equation E.2.31. reduces to equation E.2.24.

Note that the axpressions for the Normalismed variance error for auto and cross correla-
tion functions are, unlike previous results, dependent upon the value of the appropriate

function. In fact

2 E.2.32.

€, >~ ® as Kyy - 0

Therefore it is not really appropriate to normalise the error in this case.

He2ede Power Sgectral Dengity Estimates

Estimates of power spegtral density are subject to a variance error which may be evaluated
from f£irst principlaes. Precisely the same result may be obtained by recognising that PSD
estimates are obtained by computing the mean sgquare value of the original signal aftex it
has been selectively filtered (see Section 2.4,1.). The normalised variance error for

mean sguare value estimates is given by aquation Eo2e244,

€ - 1 E.2.33|

v ——
{BT)

This expression describes the normalised varlance error for a PSD estimate, provided that
B i8 interpreted as the effective analysex, rather than the data, bandwidth.

when PSD estimates are obtained from discrete Fourier transforms (see Appendix C),
eqguation E.2.33. takes & particular form sincet

B - 1 and T - h.N.M,
T.R

where M is the number of transform blocks used to obtain the PSD estimate. Thus the

normalised variance error can be written:

E.2.34,

This surprisingly simple result states that no useful information is obtained if only
one transform is used to complaete the PSD estimate. This is not unreasonable when it is
considered that a DFT is just another way of describing the original data., The rasult
also indicates the large quantity of data required in order to obtain reasonably accurate
pPSh estimates. In order to illustrate the point, suppose that the PSD is reguired from
data which has been sampled at a rate of 100 par second. Suppose also that 2048 samples
are usad for each transform, Then the normalized variance error can be reduced to 10
percent if around 34 minutes of data are avallable. Howevar, approximately 57 hours of

data are reguired to obtain 1 percent normalised variance errox.

Finally, it is worth noting that the technique of "1ooping", (widely used in early analogue
analysers) or ovarlapping data does nothing to reduce the variance error of PSD astimates,

even though the results may be made to loock more convincing.

P .
P e -
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