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1 EXECUTIVE SUMMARY

The current process for planning of missions in Joint Air Operations (JAO) is slow and

manually intensive. This research, performed by ALPHATECH, focused on the problem of
providing military commanders with real-time, optimal control of military air-to-ground
operations through the use of fast, near optimal mission replanning, using control algorithms that
anticipate possible mission modifications due to uncertain future events for a 24-hour segment of
a JAO campaign. The primary benefit of this technology is agile and stable control of
distributed, dynamic military operations conducted in inherently uncertain, hostile, and rapidly
changing environments. The goal of the JAO controller is to achieve specified Joint Force Air
Component Commander (JFACC) objectives while minimizing the friendly asset losses. The
controller generates or updates mission definitions for both base assets and airborne assets. The
mission definition includes a target, mission waypoints, strike package composition, weapon
composition, and desired time-on-target. Key features of the JAO environment include risk and
reward that are dependent on package composition. The outcome of JAO events — target
destruction, threat destruction, friendly asset attrition, emerging targets and threats — are
uncertain, and thus missions must be adapted based on the observed outcomes. Due to the
potential scarcity of resources, efficient resource utilization and adaptation to emerging
battlespace conditions are paramount to assure a successful mission.

In order to develop controllers which address the uncertain, dynamic nature of the JAO
statement, we adopted a framework for dynamic decision making under uncertainty, known as
Markov Decision problems. In this framework, optimal decisions are chosen based on the most
recent information, and the selected decisions must hedge against possible future contingencies.
This explicit modeling of future contingencies results in proactive versus reactive control
behaviors. This proactive attribute is desirable for stable and agile control of the JAO enterprise
because future information arrival and control opportunities are dependent on stringent spatial,
temporal, and coordination constraints.

The principal approach for control design using Markov Decision problems is the
Stochastic Dynamic Programming (SDP) algorithm. However, it is well known that this
approach suffers from the curse of dimensionality and is intractable (lacks scalability) for
realistic sized problems. Thus, our investigations focused on developing Approximate Dynamics

Programming (ADP) strategies that provide the desirable proactive control behaviors but can be
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computed in near real-time for realistic JAO scenarios. The control design technology is based

on combining hybrid state modeling techniques for developing statistical dynamical models
relating mission decisions to evolution of objects in the battlespace, together with ADP control
design techniques that have demonstrated real-time, proactive performance for other relevant
military problems. In our investigations, we developed a broad spectrum of ADP control
techniques for the JAO problem, and evaluated their relative performance and scalability. The
technical accomplishments of this research are summarized below:

e Translated the JAO Control Enterprise into a Dynamical Hybrid State, Discrete Event,
Stochastic Decision Making Problem

e Integrated Emerging ADP Technologies into JAO Feedback Controllers
e Experimentally Demonstrated the Benefits of Feedback Control
e Experimentally Demonstrated Benefits of Approximate Optimal Control
e Developed Innovative Hybrid, Multi-Rate Control Architecture

¢ Developed Computationally Efficient Control Algorithms that Produce Operationally
Consistent Behaviors

o Extended Control Algorithms to Accommodate Hierarchical Mission Tasking and ISR
Information Collection

The control algorithms developed in these investigations achieve the desired research
objective of automating military operations planning to provide real-time, near-optimal control
strategies that achieve operational objectives while minimizing asset losses. Adopting a hybrid,
multi-rate control architecture permitted the tailored application of control to the operational
situation at hand; faster control was used when actions had relatively local effects (e.g. a mission
detour or divert), followed by slower modifications to address overall mission strategy. Given
this architecture, a spectrum of ADP control strategies were developed and implemented that
produce immediate restasking or abort decisions to preplanned multiple wave tasking. The
solution quality and computation performance of these algorithms was tested and verified in a
JAO simulator. It was shown through experimentation that the ADP strategies were able to
produce operationally consistent, proactive control strategies that anticipated likely contingencies
and positioned assets for opportunities of recourse all in either real-time or near real-time.
Furthermore, a scalability assessment illustrated that many of the ADP controllers could provide

near real-time performance for scenarios with 250 targets with some modest parallel computatio.
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2 INTRODUCTION

2.1 BACKGROUND

The current process for JAO planning and execution—based on the steps of Strategy
Development, GAT (Guidance, Apportionment, and Targeting), MAAP (Master Air Attack
Planning), and Air Tasking Order (ATO) Production—is illustrated in Figure 1. The product is

published every 24 hours. End-to-end development time typically requires 72 hours.

The ATO Process is a
Continuous, Overlapped 72
Hour Process.

The JFACC Strategy team develops the
overarching Air & Space Strategy in concert
with the JFC's Operations Plan. They
develop, refine, and disseminate the long-
range Theater Air & Space Operations Plan.
They continually assess plan execution
against their overarching strategy.

NCA, CINC,
JFC Direction £

Mission
Assessment ,

Execution
Begins The JFACC GAT team develops 1) the
Guidance Letter that addresses planning and
apportionment, 2) the Joint Integrated
Prioritized Target List (JIPTL) accordance
with prioritized tasks in the Air & Space Ops
Plan, and 3) the Master Air Attack Plan
(MAAP) that contains JFC & JFACC

guidance, support plans, component

MAAP
Approva!
45 requests, target update requests, forces
ATO availability, target information, aircraft
Approval allocation, etc.

-52

- Critical
Changes

D-2 0-1 D-Day The JFACC ATO Production team prepares
P'Iap | T'as‘k J I ﬁxqc I ATO detailed plans that provide operational and
A A A Transmitted tactical direction to wing level commanders

I Plan ” Task ” Exec | including: 1) the detailed Air Tasking Order
B B ‘B (ATO), 2) Special Instructions (SPINS), and

[ Pen ” TasK I I =TT | 3) the Airspace Coordination Orders (ACO).
'c 'C 'C

Figure 1 Key Steps in the Current JAO Process Limit Agility and Responsiveness

The heavily sequential nature of the current JAO process hinders the JFACC’s ability to
operate within the decision cycles of our adversaries. Moreover, brute force attempts to adapt
the current process (e.g., diverting resources to engage time-critical targets) often lead to
unstable operations. Given the realities of the dynamic problem above, the current process
suffers from the following limitations.

Lack of Agility: Today’s JAO planning tools tend to produce tightly woven plans.
Given the problem as stated by the user, planners recognize the dependencies between resources,
and generate solutions that maximize effectiveness by pushing resources to limits. Alas,
unanticipated changes to the plan can generate significant ripple effects due to strong

dependencies. These dependencies are intrinsic to the JAO control problem: the delivery of a
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missile to a target requires the coordination of multiple resources 1) to locate and identify the

target, 2) to launch the weapon, 3) to provide safe ingress and egress, 4) to provide sufficient fuel
to airborne assets and 5) to assess bomb damage.

Planners attempt to avoid ripple effects by: 1) scheduling redundancy into the plan; or
when changes are needed, by 2) terminating execution of all portions of the plan related to the
breakpoint, or 3) ignoring the dependencies and allow the other portions of the plan to continue.
Redundancy implies inefficient use of assets, termination of a portion of a plan implies ineffec-
tive use of assets, and ignoring dependencies implies risk of instability, i.¢., mission failure.

Ad Hoc Stability: Current systems rely on human operators to serve as a stabilizing
force by assessing the likely impact of unanticipated events. Although human operators are very
good at adapting to new situations, their performance degrades dramatically when they are
overloaded with information and tasks. Since the effectiveness of the assessment depends vitally
on the operator’s insight into the plan, and on the time available to make a decision, the
drawback to this approach is the highly subjective and non-comprehensive nature of the
operator’s assessment. In addition, this task often becomes a pacing task, preventing the
approach from scaling to highly dynamic environments.

Ineffective Feedback: Current systems are ineffective at providing feedback to guide
the use of JAO resources. Fortunately, more sensors will soon supply more timely information
on the state of the battlespace. Given sufficient agility in the attack and sensor platforms, the
challenge is to reengineer the JAO process to incorporate this information in a disciplined
manner. This also requires the JAO planning process to actively guide the information collection
process in support of mission execution by providing timely information need specifications.

Ineffective Use of Assets and Resources: Current systems tend to build redundancy
into the plans in order to provide a degree of agility (e.g., place aircraft on “SCUD CAP” in case
a time-critical target (TCT) appears). Newer concepts focus on diverting ongoing missions to
deal with significant changes in the situation. Unfortunately, this agility often comes at the
expense of major disruptions to the execution of the remainder of the plan. For example, the
diversion of an electronic countermeasures mission to support a TCT kill mission may result in

the cancellation of several planned missions—again, leading to ineffective use of our resources.
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2.2 PROBLEM DESCRIPTION

Within the Joint Air Operations Enterprise model, ALPHATECHs research is focused
on generating real-time, optimal control strategies for a 24-hour segment on a JAO campaign. It
is assumed that some form of higher level decomposition of the battle space has been performed,
and that an Area of Responsibility (AOR) has been defined that includes approximately 100
targets. The goal of the controller is to achieve the specified JFACC objective for the AOR
while minimizing the friendly asset losses. The controller will generate/update mission
definitions for both base assets and airborne. The mission definition includes a target, high-level
waypoints, strike package composition, weapon composition, and desired time-on-target. Inputs
to the controller include a known target list, available assets, known threats list, and some
indication of the likelihood of emerging target and/or threats. Through the continuous gathering
of Intelligence, Surveillance, and Reconnaissance (ISR) data, the control system will generate
these mission definitions on a time scale of approximately 15 minutes. The updates can be as
benign as continue current plan or as drastic as reroll some packages, abort others, or launch new
packages.

Key features of the JAO environment of interest include risk and reward that are
dependent on package composition and weaponeering. The outcome of JAO events — target
destruction, threat destruction, friendly asset attrition, emerging targets and threats — are
uncertain in realistic JAO environments. Finally, limited resources and dealing with emerging

and threats are paramount to the successful execution of the JFACC objective.

2.3 THEORETICAL TECHNIQUE

To address the limitations of the current JAO control process, ALPHATECH will
investigate the utility of a comprehensive new approach based upon modern control theory.
Because of its complexity and the time critical nature of the decisions that must be made,
automated decision aids must support JAO operators. Past attempts at developing such decision
aids have been based upon planning technology. Unfortunately, the plans produced by these
decision aids are often rendered obsolete by unforeseen events. This difficulty can be addressed

by periodic replanning, either in full or (more commonly) by partial modification of the plan.
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However, planning technology provides little guidance on 1) how this replanning should be

conducted, nor 2) how plans can be made robust to the need for replanning and repair.

In contrast, control theory uses the idea of continuous feedback to minimize the impact of
uncertainty. Uncertainty is explicitly represented in both dynamics and observation models.
Feedback control laws select current decisions as a function of the current (estimated) state of the
system. These control laws are selected to optimize a quantitative objective criterion, subject to
constraints on controls, dynamics, and observability. Control laws for current decisions
explicitly consider the fact that future decisions will be made in the same optimal manner, based
upon state information available in the future [B96]. Thus control theory provides an extensive

conceptual foundation for continuous JAO.

24 VALUE TO MILITARY

The goal of this research is to provide real-time dynamic control of military air operations
via near optimal mission assignments, which are robust under replanning. The primary benefit
of this technology is agile and stable control of distributed and dynamic military operations
conducted in inherently uncertain, hostile, and rapidly changing environments.

Utilizing the available real-time information from the battle space, the propose algorithm
generates mission assignments resembling an ATO to achieve a desired JFACC objective. The
fact of using feedback to create or update mission assignment desensitizes the desired outcome to
modeling error and uncertainties that are inherently associated with military air operations.
Furthermore, by formulating the control problem as an optimal control problem, the
recommendations will anticipate key uncertainties and provide opportunities for recourse. In
fact, the optimal solution will achieve the desired JFACC objective by minimizing the
operational cost and risk to our assets. As an example, the optimal solution can identify a critical
communication linkage that if destroyed can achieve air superiority without having to destroy
every component of an Integrated Air Defense System (IADS). Given the progression towards
more Unmanned Air Vehicles (AUVs), the proposed system could be used to automatically
provide the UAV with its mission. The benefits of this technology to the military is summarized

below using the taxonomy presented in the BAA:
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Increased Agility: Approximate optimal control techniques generate solution that

permit opportunities of recourse for key uncertain JAO outcomes; thus, increasirig the agility of
JAO operations by proactively (versus reactively), consistently, and efficiently responding to
changes in the environment.

Flexibility: This technology is applicable to a wide spectrum of military conflicts.

Stability: Feedback control provides an automated system to stabilize the JAO
environment; thus, eliminating the need for ad hoc stabilization via human operators.

Effective Feedback: Feedback control provides an natural framework to fuse large
volumes of data to produce a coherent control strategies.

Effective Use of Assets and Resources: Optimal control generates control sotution that
effectively use the available resources.

Automated Operations: Envisioned is a prototype system that fits into existing C2
AOC. This system would monitor the progression of the battle space and generate real-time

control strategies. The system could automatically manage autonomous assets.

2.5 REPORT LAYOUT

This report has three primary sections. In Section 3, the details of the JAO plant
dynamics are presented. Next, Section 4 contains a detailed discussion of the JAO controllers
formulation and implementation. Finally, Section 5 summarizes the key experimental results for
the dynamics and controllers that were implemented. In addition to these primary sections, a

series of appendices are included to compliment the main body of the report.
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3 JAO PLANT DYANMICS

In this section, we develop the JAO plant dynamics in which air package composition

and tasking are represented in the context of a Joint Force Air Component Commander (JFACC)
air-to-ground probem. Our model provides a flexible representation of the JFACC problem that
“matches” the fidelity of our control approach (and has evolved accordingly), allowing for
efficient experimentation. The presentation of the JAO plant dynamics begins with a general
discussion of the JAO air-to-ground problem. This discussion is followed by the presentation of
the dynamics that were implemented for this research. Finally, the details of the JAO plant
dynamics implementation will be presented.

3.1 JOA AIR-TO-GROUND PROBLEM DESCRIPTION

In this section, we describe the general JFACC air-to-ground problem from which we
will distill the salient JAO plant dynamics in subsequent sections.

The objective of the JFACC strike mission planning problem is to maximize damage to
enemy targets while minimizing losses of our own aircraft. Strike missions involve targets, air
defense units, strike aircraft, and Suppression of Enemy Air Defense (SEAD) aircraft. We
discuss the roles of each below.

Targets are objects the JFACC wishes to damage. The JFACC objectives may specify a
desired effect such as destroying, temporarily disabling, or disrupting the target. Targets are
vulnerable to strike aircraft, which are discussed below. Multiple strike aircraft or special tactics
may be required to achieve the desired effect when targets are geographically dispersed (i.e.,
have multiple aim points). Targets may also be coupled (physically or logically), and the strike
mission may need to achieve some threshold damage before attaining the JFACC's objective.
Collateral damage is always a concern, and application of strike force above some threshold may
lead to undesirable outcomes. Multiple strike missions may also need to be coordinated in time
(i.e., sequenced or synchronized) to achieve the desired effects.

The true state of the target (including location, identity, function, and value) is dynamic
and may not be known with certainty. Targets may move or hide, and their functions may
change, making their prosecution more or less desirable over time. Strike mission planners do
not necessarily know all potential targets beforehand, and they may elect to keep some strike
forces in reserve to attack targets that were heretofore unknown. These dynamics imply that the

targets vulnerability and value vary with time. A time is typically specified for which a specific
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strike mission is likely to achieve the desired effect. In general, strike missions will need to be

tailored depending on when and where the target will be prosecuted. Adversaries protect targets
using a combination of passive and active defense measures. Passive measures make targets
harder to kill and/or prosecute; they include hardening, cover, concealment, and deception
(HCCD). Active defense directly attacks aircraft in the strike mission. We discuss Air Defense
units next.

Air Defense (AD) units defend targets. The effectiveness of an AD unit depends on the
type of AD unit, the type attacking aircraft, the tactics of both the aircraft and the AD unit, and a
variety of external influences such as weather. AD units are vulnerable to various type of
suppression, which may be available on the strike aircraft but are concentrated typically on
SEAD aircraft (discussed below). Suppression may be in the form of munitions that destroy
critical components of the AD unit. Although this is typically permanent, AD units may be
repaired given enough time. Other types of suppression such as jamming, chaff, and decoys,
temporally disable or deceive AD units, which make them less effective. The AD unit's
effectiveness may be enhanced by strategic placement, such as protecting multiple targets or
overlapping to protect a single target. AD units may also be connected or coupled which tend to
improve their effectiveness and reduce their vulnerability.

Similar to targets, the true state of the AD units is dynamic and may not be known with
certainty. The AD units may be known or unknown, move or hide, they may choose not to
expose themselves to suppression aircraft, or may operate at a lower effectiveness to reduce
vulnerability.

Strike aircraft prosecute targets. Prosecution encompasses a range of effects, from
permanently destroying the target, to temporarily disabling it, to simply disrupting it's operation.
However, strike aircraft are vulnerable to enemy Air Defense (AD). Therefore, the aircraft's
effectiveness is judged by its ability to circumvent AD and achieve the desired effect on the
target. To accomplish these objectives, the aircraft is configured with munitions and the ability to
suppress enemy air defense.

Each Strike aircraft is configured with a limited number of munitions, which are non-
renewable and may only be replenished at an airbase (provided the supply exists). Selection of
the munitions, as well as the tactics used to deploy them, determine the effect on the target (i.e.,

destroy, disable, or disrupt) and depend on several external influences including terrain, type of
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target, air defenses, potential for collateral damage, and weather. Much of the strike aircraft's

ability to suppress enemy air defense also comes from nonrenewable resources such as chaff,
flares, and decoys. Strike aircraft may also be equipped with self-protection jamming equipment;
this equipment is not depletable, but has power and duty cycle constraints. We discuss renewable
resources for suppressing enemy air defense further when we introduce Weasel aircraft below.
Another important nonrenewable is resource is fuel. Fuel may be replenished at appropriate
facilities, including air bases and orbiting tanker stations. SEAD aircraft help the strike aircraft
through the enemy's air defenses. Some SEAD aircraft are configured to physically attack air
defense units; these are Weasel aircraft. Other SEAD aircraft are configured to jam air defense
units (primarily air defense radars); these are Jammers.

Weasel aircraft are configured with munitions; these are depletable resources. Jammers
are equipped with an array of jamming pods; these are not depletable, but have power and duty-
cycle constraints.

SEAD aircraft are packaged with strike aircraft to support a particular mission or placed
on CAP to support a group of missions in a particular area. Jammer aircraft are slower than strike
and weasel aircraft, but their effect may cover a wide geographical area. Therefore, these aircraft
are ideal for supporting multiple strike missions in a particular geographical area.

To achieve the JFACC objectives, air packages, i.e. team of aircraft that coordinate their
activities and fly in either a loose or tight formation, must be composed, tasked, and retasked
such that the maximum number of targets are prosecuted with minimal resource losses. In
general, air package configuration number and type of aircraft and resources. Resources include
munitions type and quantity, SEAD capability (including self-protection pods), SEAD
configuration (e.g., frequency range), and extra fuel tanks. Air package tasking includes target
designation, course routing information, and potential opportunities for future retasking.
Retasking involves updating an air package tasking in flight, which is limited by a variety of
constraints but may be valuable to high value, fleeting targets.

In the following, we develop our hybrid dynamical model for Joint Air Operations (JAO).
We start with a general discussion of hybrid dynamical models. Based on this general discussion,
we develop hybrid dynamical models for each of the objects in the JAO environment. Finally,

we introduce a composite hybrid dynamical model that facilitates interaction among JAO
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objects. The hierarchical structure of the composite hybrid dynamical model simplifies design

and analysis, as well as permitting a more lucid exposition of this complex environment.
3.2 HYBRID DYNAMICAL MODEL FORMULATION
Consider the following hybrid dynamical system based on [Bran95]
H=(0,%,4,G,V,C,F)
where Q is a discrete state space. Each state (or mode) ¢ € Q is associated with a controlled

dynamical system, I, € X, an autonomous jump set 4, € 4, and a controlled jump set C € C.
The controlled dynamical system is givenby X = [X oL 9,5U q] where X is the state space,
T, is an appropriately defined timing map, ¢, represents the dynamics, and U, is the continuous
control set. If the state of the dynamical system enters 4, X, the system jumps autonomously
to some new mode p # g according to a control mapping G, which is parameterized by the
control set V. Alternatively, if the state enters C, © X,, the system may be instructed to jump to
some new mode p # g such that X C F,.

3.2.1 Battlespace Objects

In this section, we develop the hybrid dynamical models for air packages, targets, and
threats.
3.2.1.1 Air Packages

An air package dynamics will be using the hybrid dynamical representation in the above
section. The discrete state

geZ’x {Ingress, Egress, Base}

where Z2specifies the number of Strike and Weasel aircraft and {Ingress, Egress, Base}
identifies the current operating conditions of the air package; Ingress indicates that the air
package is fully loaded and may be retasked, Egress indicates that the air package has already
engaged its target and is not eligible for retask, and Base indicates that the air package’s mission
is completed and the associated aircraft are available for assembly into new air packages. The

continuous dynamics of an air package are independent of the discrete state and are given by
z=[X,T,¢,u(r)]
where X € R” is the (x,) location of the air package, I" is an appropriately defined

timing map, ¢ is a constant velocity kinematic model, and 4(r): X — U is a flight controller that
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maps the current state into a continuous control input # € U given the next waypoint 7.

Disturbances are neglected in the continuous dynamics. Waypoints may be introduced through
either autonomous jumps via the control set ¥ (e.g., last waypoint has been reach, pick-up the
next waypoint or loiter) or through controlled jumps specified in C (e.g., retask or abort mission).
We neglect disturbance with respect to waypoint selection, i.e., no navigational error.

The autonomous jump set 4 is similarly defined for all g, including waypoint arrival,
which instigates subsequent actions. Autonomous jumps also represent various interactions when
considered within a composite model; these jumps are summarized in Figure 2 and will be
discussed in detail in Section 3.2.2 below. From this figure we see that threat engagements may
diminish the aircraft in the air package, and a single engagement has the potential to destroy all

aircraft; and Target engagements transition the air package from ingress to egress.

1Target Engage 1
R -+

-

Figure 2 Autonomous Jumps Represent Interactions with Air Packages

The controlled jump set C < X enables changes in tasking and/or configuration of air
packages. The mapping F:C — 2° where S = X X Q specifies a set of feasible jumps for each
state x € C (e.g., reconfiguration at the base). We obtain the familiar control theoretic notation

by recognizing that in the absence of uncertainty, F(x) is the set of possible control actions. In a

stochastic setting, F(x) is the set of all possible outcomes.
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3.2.1.2 Observation Platforms

In the final experiments, which are run with partial information, observation platforms

are used. These platforms are similar to the air package, but only interact with other objects
through detection. Detection provides perfect information regarding specific objects in the JAO
environment. We typically consider a global information model in which information is
maintained independent of individual battlespace objects. However, the current implementation
allows for a more general representation that accounts for distributed information and
communication in which information models similar to the global information model are

associated with each battlespace object.

3.2.1.3 Targets

Targets are also represented using the hybrid dynamical representation in introduction to
Section 3.2. In general, targets have the following discrete state: g € {Known,Unknown,Dead},
and may be initialized as known or unknown. The continuous state, for our purposes, is a fixed
location, X = {x,oc} for all ¢. Figure 3 illustrates the autonomous and controlled jumps associated
with targets.

Jarget Engage

Figure 3 Autonomous and Controlled Jumps Associated with Targets
Autonomous jumps (blue) are only used to represent interactions within a composite
model namely engagements with air packages. The controlled jumps (black) are characterized by

the controlled jump sets, C,, and the controlled jump transition maps, F, . These controlled

transitions are governed by a Poisson process, which may be considered a stochastic model of

the adversary, allowing the targets to autonomously hide or emerge.
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3.2.1.4 Threats

Using the hybrid dynamical representation, threats my be in one of five discrete states,

q € { Active, Inactive,Unknown, Repairing, Dead}, and may be initialized as active, inactive, or
unknown. As with targets, the continuous state is a fixed location, X = {x,.} for all . Figure 4

illustrates the autonomous and controlled jumps associated with threats.
/ ’

NN
FEE6
oo S o

Threat Engage

Repair

Figure 4 Autonomous and Controlled Jumps Associated with Threats
Autonomous jumps (red) are only used to represent interactions within a composite
model namely engagements with air packages. The controlled jumps (black and green) are

characterized by the controlled jump sets,C,, and the controlled jump transition maps, F, . These

transitions are governed by a Poisson process, which may be considered a stochastic model of
the adversary, allowing the threats to autonomously active, deactivate, hide, emerge, and repair.
In addition, we consider the attack, i.e. SAM launch, transient state during engagement with an
air package. We now characterize the autonomous behavior of a threat.

The state transitions that can occur between engagements correspond to Emerge, Hide,
Activate, Deactivate, and Repair. Note that some transitions are only possible during an
engagement (e.g., transition to REAPIRABLE or DEAD from any other state) while other
transition are only possible between engagements (e.g., from REPAIRABLE). The autonomous
transition dynamics are modeled as a stochastic timed automaton, equivalently a continuous time
Markov model. Accordingly, a matrix that specifies the rate at which state transitions occur is
defined. These rates depend on the time spent in each state and the transition probability, and are

represented concisely in the following matrix:
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Active Inactive Repairable Unknown Dead
Active hd :ulnactive],qctive 0 H Unknown| Active 0
Inactive H Active|Inactive ° 0 U Unknown|Inactive 0
Repairable | u ActivelRepairable M Inactive| Repairable ¢ Hrtnown|Repairasie 0
Unknown H getivelunimown 0 0 * 0
Dead i 0 0 0 0 0

where e is defined so that the rows sum t0 0. ;.. 1, 4eune 18 the Tate at which an active threat
deactivates (i.e., observable but not radiating). £y;,;,,. e 1 the rate at which an active threat
hides (i.e., becomes unobservable). 4 ;. jacume 18 the rate at which an inactive threat activates

(i.e., starts radiating). £y, imene 18 the rate at which an inactive threat hides. 4, dunnons 18 the

rate at which an unknown threat activates. The transition rate from REPAIRED are functions of

the repair rate ¥ peppen

K pctivel Repairable = P ACTIVE|REPAIRED Y rePAIR
H buactive|Repairable = PINACTIVE[REPAIRED "V repamm
K tnnown| Repairable = Fonnomn|repamep * ¥ RepaR

where the repair rate is weighted by the probability that the threat will immediately transition

into the associated state. These probabilities sum to one
P +P

ACTIVE|REPAIRED INACTIVE|REPAIRED

+P, 1

UNKNOWN|REPAIRED —

indicating that a repaired threat will become 4CTIVE, INACTIVE, or UNKNOWN. The transition
probabilities are derived from the rate matrix given the time interval Az, using the following

matrix equation.

P

Inter

(Aty) = €@

Inter

where Q is the rate matrix and Az, is the time interval. For a given initial probability

Inter

distribution over the state of the threat, denoted in vector form by o7, the distribution after

At, ., denoted o7, is given by

Inter >

0.; = Gg ’ f,lnter (Atlnter)
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is the time interval between o and o%. For large enough Az, , 0. will achieve a

where Az, .,
steady state distribution, which is useful to characterize initial information regarding the threat
(i.e., has not been observed or interacted with in a long time).
In the following, we derive the steady state distribution for a threat with the rate matrix Q
discussed above. The continuous Markov model is given by
6"'=0"-Q

with the constraint that ¢” is a proper distribution and the elements sum to one

Yo, =1

Steady state is achieved when &7 = 0. To compute the steady state probabilities, we define

b"=[0 0 0 0 0!1]and 0=[Q 1] The steady state distribution is then given by

5=(0-0')'0b

3.2.2 Battlespace Dynamics

When the individual battlespace objects are brought together into a setting where
interactions are possible, we form a composite hybrid dynamical model with the same form as
the individual objects. However, the composite JAO model subsumes the individual dynamical
models and introduces interaction dynamics that depend on two or more objects within the JAO
environment. For our purpose, interactions involving more than two participants are
decomposed into a sequence of pairwise interactions.

Consider the composite hybrid dynamical model

H, =(0..%.,4,,G,.V.)
The discrete state space of the composite model is defined as the composition of

individual discrete state spaces O, = H O, , where the subscript i denotes the ith battlespace

object. Each state (or mode) of the composite model ¢, € 0, is associated with a composite
dynamical system, £, € X, = HE,. , @ composite autonomous jump set 4, € 4, = H 4;,,and a
controlled jump set C, € C, = H C, . For our purposes, the composite dynamical system X, is a

H

non-interacting parallel composition with the exception of X, € X, = H X, , which is the
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composite state space on which the autonomous jumps sets 4, < X, are defined. Therefore, if

the composite state of the dynamical system enters 4, < X, (an interaction), the system jumps

autonomously to some new mode p, # g, according to a control mapping G, , which is
parameterized by the control set . These interactions effect one or more of the battlespace
objects.

This hierarchical paradigm simplifies the modeling process by relating directly to the
physical reality (i.e., objects and interactions) of the JAO environment. In the following sections,
we discuss the interactions between air packages and threats, denoted threat engagement, and

interactions air packages and targets, denoted target engagements.

3.2.2.1 Detection Interaction
A detection interaction occurs when an observation platform 7 is within sensor range of
an observable object j
2
”x" _xf”z SR,
where x, € X, is the location of an observation platform, x; € X, is the location of an

observable object, and R, is the sensor range associated with the observation platform i. The
result of a detection interaction is a discrete change in the available information regarding the
battlespace, but does not otherwise effect the objects. We assume perfect observations.
3.2.2.2 Target Engagement

A target engagement occurs when an air package / arrives at the location of target j
i, =0
where x, € X, is the location of an air package and x; € X is the location of a target. The result

of a target engagement may only change the discrete state of the target, and does change
continuous state of either object, i.e., X, =X, if g, is the discrete state prior to the engagement
and p, the discrete state after the engagement. The control set ¥, controls the transition based on
the attributes of the interacting objects (i.e., aim points and salvo) and the random component
that determines the outcome.

The current model of the target engagement was proposed as part of the enterprise

modeling effort. This is a static, analytic model that provides the probability of destroying the

TR-1048 17 11/30/2001




Use or disclosure of data marked by an asterisk (%)

AL P H AT E C H I n C is subject to the restrictions on the cover page.

target as a function of the number of Strike aircraft in the air package, the number of aimpoint

associted with the target and the strike slavo (i.e., the number of munitions). The probability that

air package i destroys target j is given by:
. . . Target strikeSalvo
P, = (1 - exp(- numStrike, | aimPoints, )- (l - (1 -P,"® ) )

where aimPoints; is an attribute of the Target representing the number of points that need to be
hit on a particular target, thus influencing the effectiveness of the air package. P, *®“ is the

effectiveness of the aircraft’s munition. strikeSalvo is number of munitions launched by the
strike aircraft at the target. This simple static model is sufficient under for the current modeling

assumptions (i.e., targets do not defend themselves).

3.2.2.3 Threat Engagement

A threat engagement occurs when an air package i is within range of threat j
le" _xj”z s sz
where x, € X is the location of an air package, x; € X is the location of a threat, and R, is the
range associated with threat j. The result of a threat engagement may change the discrete state of
either or both participating objects, but does not change their continuous state, i.e., X, =X, if
g, is the discrete state prior to the engagement and p, the discrete state after the engagement.
The control set ¥, controls the transition based on the duration of the engagement and the

random component that determines the outcome.

The threat engagement is broken into three parts, pre-engagement, engagement, and post-
engagement. Pre-engagement transitions account for emergence or activation of a threat with the
intent of attacking. Engagement transitions account for the interactive dynamics of an air
package with an active and attacking threat. Post-engagement transitions account for hiding or
shoot-and-scoot behaviors. Finally, we combine these segments in a single set of transition

dynamics and adopt a concise matrix representation.

Pre-engagement transition accounts for emergence with the intent of attacking. The

probability that a threat will attack is given by the probability of attacking from any given state
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(except DEAD and REPAIRABLE) times the probability of being in that state. Note, in order to

attack, a threat in the REPAIRABLE state must have transitioned into another state prior to
engagement, otherwise there is no guarantee that sufficient time has elapsed for the “repair” to

take place. Therefore, the probability of attack is given by

Pirrack = ATTACK|ACTIVE Picrwe + P ATTACK|INACTIVE Poscrive + P, ATTACK|UNKNOWN Fongnown
This formulation assumes that there is some form of sensing available (possibly visual)
that cues threat activation for subsequent attack from INACTIVE and UNKNOWN states. We also
assume that an “attacking” threat is identifiable (e.g., by tracking radar, etc.), thus only threats
that attacking are engaged. Therefore, if the threat does not attack, there are no pre-engagement
transitions.
Picae = (1 - PAT‘TACK|ACTTVE) *Pcnve
Poicnve = (1 -P ATTACK|ZNAC77VE) * Prvscrive
P, R}Z;AERABLE = PrepairasLe
R U}])\;Ie(NOWN = (1 -P ATTACKIUNKNOWN) * Ponivown
Iy zgio = Pogap
The engagement transition accounts for uncertainty associated with the interaction. In
general, engagements may be considered suppression or lethal. Suppression engagements disable
the threat, thus transitioning into the REPAIRABLE state while lethal engagements destroy the

threat, thus transitioning into the DEAD state. We distinguish lethal engagements

probabilistically with P, ccess 8iven a successful attack on the threat. This indicates that

sufficient damage was done to transition the threat to DEAD. The threat must be ACTIVE after
the pre-engagement transition to engage, and will transition to either ACTIVE, REPAIRABLE,

or DEAD as a result of the engagement.

Engage __ . Pre
PACTYVE - PFAIL!ATTACK PATTACX + PACTYVE

Engage ={1—- . . Pre
Prepairasie = (1 P, DEADISUCCESS) Rsuccsssumfcx Pyrrack + Prepamasie

Engage _ ) ) Pre
Poeip = P DEAD|SUCCESS P, SUCCESS| ATTACK Prrack + Prepamrasie

The engagement dynamics are characterized by P, IL|ATTACK and

P,

SUCCESS) ATTACK

initially INACTIVE, UNKNOWN, or DEAD do not take part in the engagement.

=1-P

FATL|ATTACK » which depend on the interacting air package. Threat that are
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PEngage — pPre
INACTIVE — * INACTIVE
PEngage — pPre
UNKNOWN — “ UNKNOWN
PEngage _ pPre
DEAD ~— * DEAD

Post-engagement transition accounts for deactivating/hiding behaviors after engagement.

Post  __ pkEngage ( ) . ,
PACUVE — L ACTIVE PDEACTIVATE + PI-HDE PFAIL[ATTACK PATTACK
Post _ . . Engage
PINACHVE ~ 4 DEACTIVATE PFAIL]ATI‘ACK PATTACK + PINACHVE
Post _ . . Engage
PUNKNOWN - PHID PFAIL|ATTACK PATTACK + PUNIGVOWN

where Pypycrmyire + Ppe S 1.
If the threat is UNKNOWN, REPAIRABLE, or DEAD, there is no post-engagement

transition.

PPost _ pEngage
REPAIRABLE — * REPAIRABLE

P Engage
Pogin = Pogip.
We combine pre-engagement, engagement, and post-engagement transition probabilities

into a concise matrix representation. First, the transition probabilities are aggregated.

PAnACK|AchE “Pycrme +

PACTIVE = (1 - PDEACTIVATE - PHID ) ' PFAIL]ATTACK ’ PA?TACK]INACTYVE ’ PINACHVE + [t (1 - PATI‘ACK]ACTTVE) ) PACIWE

P

ATTACK|UNKNOWN Bongwonn

P

ATTACK|ACTIVE Picrme +

Poucrve = Pogacrvars *

P

FAIL|ATTACK ' PA’ITACK]INACTIVE * Prscrme + |+ (1 -P ATTACK|INACT1VE)' Prvacrve

1344}’TACK|UNIGVOW}V * Bunkvown

P ATTACK|ACTIVE Pycrve +
Prepamasie = (1 - P, DEAD|SUCCESS)' PSUCCESS|ATTACK ‘| P ATTACK|INACTIVE Poucrivs + |+ Prspamasie
P

ATTACK|UNKNOWN Pongwomy

P rracxjacrve " Pacove +

g

Posnowy = P B FAIL|ATTACK P, ATTACK|INACTIVE Bacrve + |+ (1 -P ATTACK|UNKNOWN) * Ponvomy
I)ATTACK]LHVKNOWN * Fngnown

P

ATTACK| ACTIVE “Pyerwe +

Porap = DEAD|SUCCESS P, SUCCESS| ATTACK P ATTACK|INACTIVE Pracrve + |+ Pop

P ATTACK|UNKNOWN Ponxwowy

This set of equations may be concisely represented in matrix form as follows
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P, /;CTIVE T PACTI VE T PAcriveI Active I)Inactive|Active PRepairabIe|Active PUnimawn[Adive P Dead| Active ]
P I;VA CTIVE })INA CTIVE P Active| Inactive 131nac1ive|1nacrive P Repairable|Inactive R Unknown|Inactive P Dead|Inactive
P I;EPAIRABLE =| Preparmants | 0 0 1)Repairable|Repairable 0 0
R l}NKNOWN PUNKNOWN PActive|Unkxown [)InactiVEIUnlmown PRepaimbIelU k I)U kmovwn|Unk PDeadIUnlmuwn
P I;EAD ] L PDEAD J L 0 0 0 0 1 |

where the individual terms are defined as follows:

P Activel Active — (1 = Posacrivare ~ Pap ) P, FAIL|ATTACK P, ATTACK| ACTIVE + (1 -P ATTACK|ACHVE)
PInactive|Active = Popacrvare " B FAIL|ATTACK P ATTACK|ACTIVE

F, Repairable) Active (1 - P DEAD[SUCCESS) ’ PSUCCESS]ATI‘ACK P ATTACK| ACTIVE

£ Unkmown| Active P * B, FAIL|ATTACK P, ATTACK|ACTIVE

P, Dead|Active — P, DEAD|SUCCESS P, SUCCESS|ATTACK P ATTACK| ACTIVE

P Active| Inactive (1 — Porscrivars ~ HIDE) B FAIL|ATTACK P ATTACK|INACTIVE

PInactiveIInactive = Pozacrivars " B FAIL|ATTACK P ATTACK|INACTIVE + (1 - PATTACK[INACHVE)

B Unlorown| Inactive — Pue* P, FAIL|ATTACK P ATTACK|INACTIVE

P, Repairable|Inactive (1 - P DEAD|SUCCESS) ' PSUCCESS|ATTACK P, ATTACK|INACTIVE

P, Dead|Inactive =F, DEAD|SUCCESS F, SUCCESS|ATTACK P ATTACK|INACTIVE

PRepairable]Repairable =1

P ActivelUnknown — (1 = Popacrvars = Pup ) B FAIL|ATTACK P ATTACK|UNKNOWN
PInactive|Unknown = Popscrvars * B FAIL|ATTACK ' P ATTACK|UNKNOWN

P, Repairable{Unknown — (1 - P, DEAD|SUCCESS) ' PSUCCESS]ATTACK P ATTACK|UNKNOWN

I Unknown|Unkmown — P+ B FAIL|ATTACK PATTACK[U)\WVOWN + (1 ~P ATTACK|UNKNOWN)
P, Dead|Unknown — P, DEAD|SUCCESS PSUCCESS|ATTACK P ATTACK|UNKNOWN

Altemately’ PActiveIActive ’ ‘PInactivellnactive’ PRepairabIe]Repairable’ and PUnknown|Unknown may be defined based on

the other terms such that each row sums to 1. The parameters of this model are as follows:

® Py o 18 the probability that an “attacking” threat will deactivate after the

engagement;
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e P, is the probability that an “attacking” threat will hide (become unknown) after the

engagement;
*  Poujarrack (7[, At ) is the probability that the threat survived (i.e., suppression failed)

the engagement and is a function of the engagement time, A, .., and the probabilistic
state of the associated air package 7 (Discussed further in following paragraphs);

Engage

o P

SUCCESS| ATTACK (7[ ’AtEngage) =1-F FAJL|ATIACK(” ’AtEngage);

*  Pyripsuccass is the probability that a successful threat engagement will destroy the threat;
* P rickjacrvs i the probability that an active threat will attack;

o P cRiNACTIVE is the probability that an inactive threat will attack; and

* P orrcxiunvomy is the probability that an unknown threat will attack.

Consider P, ACK(%, At Engage) , which depends on the state of the associated air package

7 and the engagement time Az This represents the actual engagement dynamics and is

Engage*
based on an aggregate model of the shoot-look-shoot behavior of both the air package and the
threat. In this model, the uncertainty associated with the threat engagement depends on the
composition of the air package, the state of the threat (as a result of previous missions), and the
duration of the engagement (determined from the geometry). The simplified geometry of this
interaction is shown in Figure 5. The circle represents the footprint of the SAM’s lethal range.
Any route through the lethal range of the threat will result in an exposure time that indicates the

duration of the engagement, AT . The state prior to the engagement is denoted 7, and the final

state is denoted 7, . The engagement dynamics are defined within a composite model of the

interacting air package and threat.

TR-1048 22 11/30/2001




Use or disclosure of data marked by an asterisk (%)

AL P H AT E C H I n C is subject to the restrictions on the cover page.

Figure 5 SAM Engagement Model Geometry.

The underlying dynamics of the threat engagement are represented by a set of event (e.g.,
SAM fires, Weasel fires) that are related by a continuous-time Markoy chain, which may be
solved analytically using
7, =me?’
where Q is a transition rate matrix describing the engagement dynamics. Q is constructed from a
set of parameters that describe the effectiveness of the SAM against each of the aircraft in the
package, and the effectiveness of the weasel aircraft against the SAM. The following table

summarizes these parameters

Parameter Symbol Notional Value
Weasel firing rate Y easel 1 shot every 6 min (shoot-look-shoot)
SAM firing rate Y san 1 shot every 6 min (shoot-look-shoot)
Weasel effectiveness | pS 80%

SAM effectiveness pDS’”"‘e 90%
SAM effectiveness pDS””‘e 70%

In this formulation, the firing rates account for acquisition, tracking, munition flyout, and
reload/turn. The effectiveness accounts for initial detection and munition effectiveness. This

model may be tuned and is easily extended; however, the desirable behavior has been observed
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with only notional parameter values. Given these parameters, the sparse Q transition rate matrix

is represented as follows:

Vveasel PDS "

3.3 HYBRID DYNAMICAL MODEL IMPLEMENTATION

Having defined the hybrid dynamical framework, individual asset dynamics, and the
parallel composition of these dynamical entities through interaction dynamics, the plant
dynamics were implemented in ALPHATECH’s BMC? Development Environment, whose
graphical user interface is illustrated in Figure 6 below. This is a discrete event simulation
environment, which is written in the JAVA programming language. JAVA provides seamless
portability across multiple hardware and software platforms, ease in process distribution, and
programming efficiency due to the language’s inherent object oriented structure.

The plant’s object oriented design provides a flexible environment for adding and
modifying simulation objects and events. The simulation objects contain individual information
and interact as separate entities. Likewise, the events encapsulate specific behaviors and
dynamics in the simulation, providing their own execution logic. This makes for a flexible
system which may be easily extended or modified without changing the existing simulation

framework.

TR-1048 24 11/30/2001




ALPHATECH. Inc

Use or disclosure of data marked by an asterisk (*)
is subject to the restrictions on the cover page.

& _"_'_] AirPack aqe—a

7N A vDarkama

Object Explorer

(-1 | AirPackage 9 2 2 TS
#-_j AirPackage_ 11 21 T1
@- jAirPackaye 14 2 2 T.l4
@ 2 2 T_16
" - 2 2 T.A7
(ﬂ .’ YAirPackage 19 2 0 T_19
& yAirPackage 31 2 0 T3l

Cﬂ - ] Identity
¥ ) Location
4| Mission
-] £1ightScatus
@ ] airBaseNunber
L% "] ADRHuzber
¥ ) State
4 - | targetNane
®- ) Targets
| EERE
E-40 0.0
! @ " )Identity
| “* ] Location
i I} State
_j SAMSiteModel
# "} range

.5059 - IntersectIAD - AirPackage 1 SAMSite 1 356.65
866.1213 - IntersectIAD - AlrPackage 17 SAMSite 3 42.08
867.1670 ~ IntersectIAD - AirPackage ll SAMSite 2 210

4960.0762 - IntersectIAD - AirPackage_l4 SAMSite 2 l24...
J961.2374 - Activate3AH - 3AM3ive 10
'$1009.7948 - IntersectIAD - AirPackage_l6 SAMIite 4 148.32

60,0762 - InversectIaD - AdrPeckage s samsite 2 1241, VERN Calendar wexsectiAD - AirPackege § SAMSite 3 352,73

4728. 765U - Enga; U AIrrackage il SAMSItE C
M730.0211 - IntersectIAD - AirPackage 9 SANSite_2 230.06
740 A?11 - TnrersectIAD - AirPackage_l4 SAMSite_2 230.06

icarsectIAD - AixrPackage 3 SAMSive 2 288.71
]781.2397 - IntersectIAD - AirPackage_6 SAHSite_2 266.71
781.2397 - IntersectIAD - AirPackage 7 SAMSite_2 288,71
797.6666 - HideSAM - SAMSite 5

Smdbn peused

§1006.7948. - IntersectIsD ~ AlrPackade 19 SAMSite 4.129.38

Figure 6 ALPHATECH'’s BMC? Development Environment GUI
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3.3.1 Discrete Event Simulation

ALPHATECH’s /,,,@__*
BMC? Development \'\ Time
Environment is based on v !
the discrete event __Event Calendar
architecture illustrated in et | L b
Figure 7 [CassLaf99]. At ! X ?2 ke t
the heart of the simulation Random
is the event calendar, a GZ:::;:OI_

Delete
Infeasible
e,l

Kdd New Feasible
(ept'+ V)
and Reorde

time-sorted list of events

waiting to be executed.

The simulation is driven

New lifetimes, v,

ahead in time by
continually removing the Figure 7 Discrete Event Simulation Framework

next event from the (copied form Reference[CassLaf99])

calendar, updating the simulation time to that of the event by updating any continuous variables
(such as position of air packages), and finally processing the event. The event is created with the
knowledge of which simulation objects are involved in it, and any other information that may
dynamically affect its behavior. Therefore, when the simulator instructs it to do so, the event can
execute itself according to its inherent dynamics, using the current state of the simulation.
Depending on the specific event’s execution, it may update the state of the simulation by
changing the state of any relevant simulation objects, adding new objects to the simulation,
removing objects, or by adding new events to the calendar. This process continues until the

event calendar is empty or any user defined stop conditions are met.

3.3.2 Plant/Controller Interface

When an event is executed that requires guidance from the controller, the plant
accomplishes this via an interface to the controller. This interface between the plant and the
controller maintains the integrity of each as separate software entities. When a control decision
is needed, it is the plant’s responsibility to collect the current known or estimated state of all

simulation objects into a data structure required as input to the controller, which is sent via the
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interface. Depending on arguments specified by the user, the information passed to the

controller may be collected by the plant in two different ways. Most experiments performed
assume perfect state information about all objects in the simulation. In this case, the plant
extracts the true state of all objects from the simulation to create the data structure sent to the
controller. When modeling information collection, however, a data structure is maintained with
the current estimated or observed state of all simulation objects, which gets updated at the
appropriate times by all surveillance aircraft. In this case, a new deep copy of this data structure
is made by the plant and passed via the interface to the controller. It is then the controller’s
responsibility to return its guidance to the plant via the interface, using the same type of data
structure it was passed. However, since the controller only has the ability to affect the actions of
air packages, only that type of object is returned to the plant. If the controller decides to
configure and task new air packages, objects are returned to instruct the plant how to do so.
When it needs to modify the missions of existing air packages, any changes will be reflected in
the corresponding air package objects’ missions returned as guidance. The plant must then
incorporate those changes into the real air packages. The controller does not have the ability to
modify or create any of the simulation objects itself, but rather instructs the plant how to do so.
As described above, the plant and controller have a well defined client/server
relationship. The plant’s simulation runs as a client, which calls the controller as a server when
it needs guidance. Each is a separate software entity, although they do not have to be run as
separate processes. In fact, the plant and controller almost always run in the same process when
performing experiments to save the overhead of communicating over a network. The interface
described above makes it easy to maintain this relationship, as represents the network between

the client and server.

3.3.3 Distributed Processing

Some of the controller algorithms implemented require a great deal of computation time.
No matter how streamlined and efficiently the code is written, it is just infeasible to use only one
process to get some control decisions due to the computational requirements. This becomes even
more of a problem as the size of the problem being solved grows. One way of dealing with these

issues of computation time and problem scalability is to distribute the controller’s processing
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duties among multiple CPUs, thereby decreasing the overall time it takes to close the loop. This

can be done in a variety of ways, depending on how a specific controller works.

PLANT

| 1

INTERFACE

o

—— CONTROLLER

Sucotrme R e
S0

Figure 8 Distribution of Controller Processing Across Multiple Platforms

One example of a controller that benefits from distributing its processing is the Maximum
Marginal Return (MMR) algorithm (see Section 4.3.1). Before allocating each aircraft, the
MMR must evaluate the outcome of adding it to every air package in the current mission queue
to determine how the asset can best be used. Rather than calling its predictor object to estimate
the performance expectations one option (asset to air package assignment) at a time, the MMR
can evaluate each option in parallel by distributing its predictor calls over multiple processors.

In this case, if twenty options needed to be evaluated and ten machines were available,

distributing the processing should be ten times faster than evaluating all twenty options in a

single process.
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4 JAO CONTROLLER FORMULATION

In this chapter, the JAO controller formulation details will be presented. The discussion

begins with a general discussion of the control framework used for this research. Then, some
proof of concept experimental results that guided our controller research framework will be
presented. Having established the control and research framework, the details of the controller
formulations and implementations will be presented. At the end of this chapter, a scalability
analysis will be presented to assess whether near real-time computation performance is achieved.
41 CONTROL FRAMEWORK

The JAO environment is a uncertain dynamical system that has the following attributes:
control decisions made over time; probabilistic transition from one state to the next, which is
dependent on the choice of control; and rewards/costs that are accumulated during each
transition, which is dependent on control and state transition outcome. Thus, the tasking of air
packages in a JAO environment can be viewed as a sequential decision problem where each
decision is based on the observations of certain discrete events.

This class of problems can be formulated as a Markov decision problem [B96]. The
principal approach for solving such problems is Stochastic Dynamic Programming (SDP). Using
the SDP formulation, an optimal control solution is computed off-line, and on-line computation
is reduced to feedback rule evaluation or table lookup interpolation. However, it is well known
that this approach suffers from the curse of dimensionality and is intractable for realistic sized
JAO problems.

A subtle but significant attribute of the SDP formulation is that it produces control
strategies that anticipate the effects of future contingencies, and evaluates the possible actions at
all future states. The algorithm accomplishes this by modeling the future information arrival and
control decisions. It is this fact that produces proactive versus reactive control behaviors. This
proactive attribute is imperative for stable and agile control of the JAO enterprise because future
information arrival and control opportunities are dependent on stringent spatial, temporal, and
coordination constraints.

Given the strengths and weakness of the SDP formulation, there has been a great deal of
research on Approximate Dynamic Programming (ADP) methods in recent years. These
methods generally maintain the SDP structure, but use a variety of techniques to approximate the

optimal cost-to-go. Accordingly, ADP algorithms have been applied to a variety of dynamic
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decision problems [B99], [BTW97], [Patek99], [BC98], [BC99]. The goal of this research is to
extend these ADP algorithms to the JAO context. In the following paragraphs, the general SDP

and ADP formulations will be presented.

Consider a discrete-time version of a dynamic decision problem,

Xgen = fk(xk’ukﬁwk)
where x; is the state taking values in some set X, u is the control to be selected from a finite set
Ui(xi), wi is a random disturbance, and f; is a given function. We assume that the disturbance wy,
k=0,1,... has a given distribution that depends explicitly only on the current state and control.
Define a control policy, which is a sequence of feedback functions that map each state x; to

control uy:

T = {luk (xk )’ Hin (x k+1 )a---a Hyina (X K+N-1 )}

thus, the control at time k is u, =g, (x, )e U, (x,). In the N-stage horizon problems considered
herein, the single-stage cost function is denoted by g, (x5 2, (%, ), w, ) and the terminal cost
function is denoted by G, (x,,y). The cost-to-go for policy 7 starting from state x; at time k

can be computed as follows:

k+N-1
I (Xk ) = E{ka (xk+N )+ Zgi (xi »H; (xi )’ w; )}
i=k
and can be represented in the SDP recursion format as follows
Ji (Xk)= E{gk(xk’ﬂk (xk )a Wi )+ Jen (fk(xk9:uk (xk )’ Wi ))}
for all k£ and with the initial condition

T (X k+N ) = E{G k+N (x K+N )}
The N-stage, SDP solution is as follows

7, =arg min E{gk(xkhuk(xk)’wk)+JZH(fk(xknuk(xk)’wk))}

T eV (x,)
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The computational feasibility of the SDP J (x

recursion depends on the number of future state

realizations required to describe the system. Figure 9 g%,

provides a graphic illustration of the SDP recursion

and tree structure of possible future state realizations.

X4 \“ \
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To illustrate the number of states required, assume that

D

there are N targets, M air packages, and that we Currerd State

simplify physical position descriptions to describe
only the N positions of the targets. Then, the number
of possible combinations of positions is M, and the Figure 9 SDP Recursion
number of possible uncollected target sets at a given
time is 2", resulting in numbers of states (2M)". For modest numbers of assets and targets, the
number of states far exceeds our capability for computing and/or storing the resulting optimal
decision rules. |

In an attempt to overcome the SDP curse of dimensionality, the ADP algorithm replaces

the control mapping for times k+/— k+N-1 with some approximate mapping (x,).

Additionally, the ADP algorithm is solved forward in time, and is computed at the actual state x;
versus all possible states at time k. As Appendix 8.1 presents, there are a variety of approaches
to approximating future control maps. The approach adopted for this research is to generate an
approximate control policy that maps a subset of future state realizations to a subset of control
actions.

Thus, the ADP algorithm has the following policy:

E:DP = {uk (Xk )’ Hyi (X k+1 )a---’ Biina (x K+N-1 )}

Using this policy, the approximate optimal control solution at time & is

u:m =arg min E{gk(xk My (xk ): Wi )+ J:::’P (fk (xksuk (xk )’ Wy ))}

ukEUi(xi)
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Thus, the ADP policy is a one step-look-ahead J (x/m)

T
v

policy with the optimal cost-to-go approximated by

the cost-to-go of the base policy. The ADP algorithm glxeuy)

computes the best control at the current state x; at time

W
N
\\p‘

k by balancing the current cost with an approximate
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cost-to-go using approximations to model future
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control decisions. A graphical illustration of the ADP Current State

approach is illustrated in Figure 10 where the tree
structure of the cost-to-go has been replaced with an
approximate cost-to-go. Figure 10 NDP Solution Structure
By approximating the future control maps and
by solving the problem forward in time for the actual state x;, the ADP algorithm significantly
reduces the computational complexity of the SDP framework. Again, SDP considers all of the
possible states and computes a tentative decision for each possible state, whereas ADP only
computes decisions for states that actually occur in the scenario. Thus, the number of states
considered by ADP is much smaller; however, the drawback of this approach is the solution must
be determined in real-time.
Having defined the ADP framework, the difficulty remains of computing the expectation
in the above optimization. Given the complexity of the JAO problem and the fact that the

control solution will have to be computed in real-time, only an estimate of the expectation can be

computed. Accordingly, the Q-factor is introduced:
ERNES  CIACAR S A CRN AN
For the reasons stated above, only an estimate for the Q-factor Q(x .»U; ) is obtained.

Thus, given the estimate O-factor Q(x,,u,) corresponding to each candidate control

u, € U,(x, ), the ADP control at time k for state x; is

uﬁDP =arg min E{Q(xk:uk (xk ))}

ugeU;(x;)
In summary, the ADP algorithm provides the control framework for this research. This
technique has been shown to illustrate operationally consistent, proactive behaviors for relevant

military applications. The focus of this research is to extend the ADP method to the problem of
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JAO, and in doing so, develop ADP algorithms that exhibit optimal behavior in real-time or near

real-time for realistic JAO scenarios. As a final note, given the approximation illustrated above,
the ADP algorithm is not as ambitious as the SDP, and only provides modest guarantees of near-
optimality [BTW97]; in fact, it is an intermediate methodology between Model Predictive
Control (MPC) and SDP.

4.2 PROOF OF CONCEPT EXPERIMENTS AND RESEARCH FRAMEWORK

In this section, the proof of concept experiments that guided the development of ADP
control techniques for the JAO problem will be presented. Following the proof of concept
experiment discussion, the research framework adopted for this program will be presented.

4.2.1 Proof of Concept Experimental Results

At the beginning of this research program, proof of concept experiments were performed
for the purpose of identifying key technology gaps in the state-of-the-art of ADP with respect to
the JAO domain. By identifying the key technology barriers, the research and development was
focused on mitigating these barriers so as to satisfy the research objective of providing military
commanders with real-time, near optimal control strategies for air-to-ground operations. In this
section, the proof of concept experimental results that guided the development of ADP control
techniques for the JAO problem will be presented. Since a majority of these initial experimental
results have been documented in conference publications, most of the details are contained in the
Appendices and the summary of results and lessons learned will be summarized here.

The approach used to establish the proof of concept experiments was to apply ADP
techniques that have been applied to other relevant military problems. As part of AFOSR’s New
World Vistas (NWV) program, ALPHATECH performed basic research on ADP control
techniques for the problem of sensor asset scheduling. Under this program, ADP control
techniques were developed that optimize the collection of data by multiple sensor platforms
based on requests of multiple end-users. The controller dynamically replans the paths of sensor
platforms as the result of dynamic requests for data, failure of individual sensors (thereby
providing fault tolerance), and failure of sensors to collect individual pieces of data due to
unpredictable obscuration effects such as weather. Many of the results from this program are
contained in two DARPA Advances in Enterprise Control papers that appear in Appendices 8.2
and 8.3.
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Given this successful application of ADP techniques to military relevant problems, the

next logical step was to apply the ADP techniques developed under the AFOSR program to the
problem of orchestrating a 24 hour air-to-ground campaign in a risky environment. However,
the multi-vehicle scheduling problem does not map one-to-one with the air-to-ground problem
because this problem is much larger and contains a richer set of dynamics. For one, this problem
requires the formation and tasking of air packages in an environment where risk and reward
depend on the air package composition. Furthermore, since air packages pose a risk to enemy
assets and enemy assets pose a risk to air packages, considerable coupling exists between
battlespace assets. Given the fact that multiple turns of the aircraft will be required to achieve
the operational objectives, this coupling remains dominant through the air-to-ground campaign.
For the proof of concept experiments, the rollout algorithm [B99], [BTW97] was chosen
for implementation on a reduce-order JAO problem. The rollout algorithm—which has been
used for a wide variety of dynamic decision problems [B99], [Patek99], [BC99], [BC98], [BC99]
— is a technique that exploits knowledge of a suboptimal decision rule to obtain an approximate
cost-to-go for use in ADP framework. The rollout algorithm approximates control mapping for

times k+1 — k+N-1 with a baseline heuristic I (x,. ). Thus, the rollout algorithm computes the

best control at the current state x; at time & by balancing the current cost with an approximate
cost-to-go using a baseline heuristic to model future control decisions. To generate the estimate
of Q-factor, Monte Carlo evaluations were performed by simulating the base policy in real-time,
i.e. simulation-in-the-loop.

The rollout algorithm is applied to
a small JAO scenario, Figure 11, that
includes limited assets, risk/reward that is

dependent on package composition, basic

threat avoidance routing, and multiple

targets, some of which are fleeting and .
8 s Development Scenario 35

emerging. Simulation results illustrate the (Simple Realism)

benefits of the approximate optimal
Figure 11 Reduced-Order JAO Scenario Used for

control strategy. It is shown that the
&y Proof of Concept Experimentation
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rollout strategy provides statistically significant
performance improvements over strategies that do
anticipate future information arrival and control
decisions. The performance improvements were
attributed to the fact that the rollout algorithm is
able to learn near-optimal behaviors—establishing
combat air patrol over time critical areas, staging
packages and opening attack corridors to manage
friendly asset attrition, aggressively prosecuting

fleeting targets, and reserving assets for

contingencies that are not modeled in the baseline heuristic.

the results obtained are contained in Appendix 8.4.
Having shown that ADP strategies

can produce operationally consistent,

proactive control solutions, the question

remains whether this current ADP E

implementation using rollout is feasible %

for a realistic sized JAO scenario. Figure E

13 illustrates the scalability assessment _g

performed on this ADP implementation. %
(/2]

From this figure, it is seen that that real-
time computation performance is not

feasible for larger scenarios. Furthermore,
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when considering a richer set of dynamics, Figure 13 Scalability Assessment of Proof of

it is expected that the computation

complexity will grow by several orders of magnitude.
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From this proof of concept experiment, the following lessons were learned relative to

JAO control:

e Proactive and Reactive Control provides near-optimal performance in situations with
abundant opportunity and time to react to uncertain future information arrival;

¢ Proactive Control provides near-optimal performance in situations with limited
opportunity and/or time to react to uncertain future information arrival:

- High attrition environment
- Control response delays, i.e. inertia, 2 significant event time-scales
- Information delay
e Key Proactive JAO Behaviors: Positioning assets now for future opportunity
- Preparing battlespace
- Reserving assets
- Geographically positioning assets
e Computational Performance:

- ADP using combinatorial rollout to search control space and temporal rollout, i.e.
simulation-in-the-loop, for prediction is infeasible for 100 DMPI scenario

- The reactive controller implemented provides rapid replanning, and is feasible for 100
DMPI scenario and has considerable margin

In summary, ADP technique known as rollout, which was developed under the AFOSR
NWYV program, was applied to a reduced-order JAO scenario that includes limited assets,
risk/reward that is dependent on mission composition, basic threat avoidance routing, and
multiple targets, some of which are fleeting and emerging. Simulation results illustrate the
benefits of the ADP control strategy. It is shown that the proactive ADP strategy provides
statistically significant performance improvements over a reactive feedback strategy by
developing operationally consistent control strategies that anticipate likely contingencies and
position assets for opportunities of recourse. However promising these results are, the current
implementation of the rollout algorithm is not computationally feasible for realistic JAO
scenarios.
4.2.2 Control Research Framework

The proof of concept experiments in the above section highlighted ADP performance
both in terms of behaviors and computation complexity. It was shown that ADP control
strategies could produce proactive, operationally consistent behaviors but scalability remains the

key technical barrier of using this technique for realistic sized JAO problems. As a result, the
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bulk of this research was devoted toward reducing the computational complexity of the ADP

approach while maintaining the operationally consistent behaviors. Based on the lessons
learned, a two pronged approach for reducing the problem complexity was pursued:

1. Reduce control problem size where appropriate, and

2. Improved‘ the efficiency of the ADP algorithms.

As discussed in the previous section, one of the lessons learned was that both reactive and
proactive control provides near-optimal contro] strategies in situations where there is abundant
opportunity and time to react to uncertain future information arrival. However, the reactive
control approach can produce this solution in a fraction of the time that it takes the proactive
controller approach. Thus, in situations where there is abundant opportunity and time to react to
uncertain future information arrival, it makes sense to use a reactive versus proactive control
approach. The lessons learned also identified situations in which a proactive control approach is
required in order to proved near-optimal control strategies. These situations include
environments that exhibit high attrition and significant control response and information delays
relative to the battlespace time scale. With this intuition into the JAO control problem, a hybrid,
multi-rate control architecture was adopted that tailors the application of control, i.e. reactive or

proactive, at a time scale that is appropriate to the battlespace situation at hand.

Figure 14 illustrates the hybrid, multi- R ~ JAO Controller
R . EventTrigger| -
rate architecture chosen for this research. To 7ot Detection]| | —Plgorithms
. _ . .\ [SAM Detectio || Base Mission'|| =y
implement this architecture, three types of Egltic A0 “g') ~Retask 4 ]
. . . T ' - oo Abort
information must be specified a priori. First, the ] | :

-
=

significant events at which control loop closures

are to occur must be defined. For each

significant event, a set of control algorithms

must be defined, and finally, the loop closure

rate for each significant event must be defined.

In this figure, event-based loop closures are Figure 14 Hybrid, Multi-Rate Control
denoted by E where temporal-based loop Architecture

closures are denoted by T. By adopting this architecture, the control problem complexity is

substantially reduced for situations that do not require advanced ADP algorithms.

TR-1048 37 11/30/2001




ALPHATECH. Inc.

Use or disclosure of data marked by an asterisk (%)
is subject to the restrictions on the cover page.

The implementation of this control architecture
provided an immediate reduction in the control
problem complexity for certain situations. However,
as noted in the lessons learned, situations with limited
opportunity and/or time to react to uncertain future
information arrival require proactive control strategies
to achieve optimal performance. Thus, for these
situations, the complexity reduction must be achieved
by developing fast and efficient ADP algorithms that
still exhibit the desired operationally consistent
behaviors. The approach adopted for developing
efficient ADP algorithms was to exploit the natural

decomposition, which is illustrated in Figure 15,

- ‘..]:fl .(xk+.l )

Predict Multi-Stage

Future Value
Combinatorial  Rapid Performance
Efficient Search Predictions

Figure 15 ADP Complexity Mitigation
Approach

between the control space search and the performance prediction problems of the ADP

framework. Given this natural decomposition, parallel research initiatives that focused on

reducing the complexities of these problems were conducted. Figure 16 highlights some of the

technologies that were investigated as part of the complexity mitigation.

Gradient-Based Optimization

+ Surrogate Method (Cassandras)
Greedy-Based Optimization

+» Maximum Marginal Return (Castanon)
Combinatorial Optimization

Random Search

* Stochastic Comparison (Cassandras)
Decomposition

+ Hierarchical Control (Draper Labs)

+ Combinatorial Roflout (Bertsekas, Tsitsklis, Wu)

Single Stage Future Stages N C T .
* Combinatorial Complexity s Temporal Complexity . ‘,
+ Package allocation g(xe.u,) * Scheduling J,. (xk+l )
(NP-Hard, Rothkopf) —* (NP-Hard) e e
» Stochastic Complexity » Stochastic Complexity
Current State

Analytical Methods
* Markov Chains
Order Statistics B
« Ordinal Optimization (Cassandras)
Variance Reduction
o improve SNR (Vakil)
Approximation Techniques
* Certainty Equivalent (Castanon, Bertsekas)
Simulation-in-the-Loop
» Temporal Rollout (Bertsekas)

Figure 16 Enabling Technologies Investigated to Mitigate ADP Complexities for JAO Problem
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In summary, the proof of concept experiments showed that ADP control strategies could

produce proactive, operationally consistent behaviors but scalability remains the key technical
barrier of using this technique for realistic sized JAO problems. As a result, the bulk of this
research was devoted towards reducing the computational complexity of the ADP approach
while maintaining the operationally consistent behaviors. One immediate complexity reduction
was achieved by adopting a hybrid, multi-rate control architecture that tailors the application of
control, i.e. reactive or proactive, for the battlespace situation at hand; however, additional
complexity reduction is required. Thus, the research was focused on developing fast and
efficient combinatorial assignment and prediction models that form the foundation of the ADP
algorithm. Figure 17 illustrates the control architecture in the context of the ADP
decomposition, i.e. assignment and prediction. It is the goal of this research to develop a
spectrum of ADP control strategies that can be mixed and matched to provide a broad range of
performance and computational complexity. The details of the different combinatorial

assignment and analytic prediction models developed under this research follows in the

subsequent sections.
ADP Algorithm
JAO Controller :

Event Trigger — T

=== )= ang s Ele(ens)+7, 1)

AT F>) ™ Ptk

——| Abort Control Option Selection

vyl . u U € U(xk)
; ; glx.4) j,,,("m)""

— =
é o

J ' (xk )
Predict Future Value

Figure 17 ADP Research Framework in the Context of the Hybrid, Multi-Rate Control
Architecture

43 COMBINATORIAL OPTIMIZATION ALGORITHMS
In this section, the combinatorial optimization algorithms that were incorporated into our
hybrid, multi-rate control architecture are presented. These algorithms were selected based on a

trade study analysis of different combinatorial optimization approaches for a 1-stage problem.
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Details of this trade study appear in Appendix 8.5. From this trade study, three approaches were

chosen: combinatorial rollout, maximum marginal return, and the surrogate method. The
formulation of each of these techniques will be presented in the subsequent sections. We first
begin with a general discussion of combinatorial optimization.

As noted in Section 4.1, optimization of the Q-factor is fundamental to our control
formulation. In a standard SDP implementation, the control space is enumerated, thus
guaranteeing an optimal solution. However, in the JAO problem, the complexity of the control
space and the requirements for near real-time computation make explicit enumeration infeasible
for problems of interest. Therefore, in the course of our proof-of-concept experiments, we
investigated several alternatives to direct enumeration. These alternatives are combinatorial
optimization techniques, adapted to the structure of the JAO problem, which are approximate
optimization techniques. Our rationale for using approximate combinatorial optimization is that
the JAO problem, even in the absence of dynamics, is provably NP-Hard, as 3-D matching can
be reduced in polynomial time to instances of the JAO problem. We consider three specific
approximate combinatorial techniques:

e A greedy algorithm, based on maximum marginal return, using resource by resource
decomposition;

e Combinatorial rollout, which is an approximate technique for incrementally building a
solution;

e Surrogate method, which embeds the combinatorial optimization in a larger continuous space
optimization.

We describe each of these techniques in greater detail below.

To better define the combinatorial problem, consider the problem of optimizing a known

function O(x,,4, ), over a set of feasible controls u, € U(x,) for a given state x,. In the JAO
case; each control corresponds to a set of resource allocation pairs (N5rike N easely 1o possible
missions #; that is,

U, = {( N(.)S'trike , N(;’Veasel ), ( N]Strike , N]Weasel )’. . ( NTStrike , N;Veasel )}
in which N strike aircraft and N \yeasel aircraft are assigned to the i-th target for all i.

Due to the potential coupling in effectiveness across missions which fly across similar air
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defenses, function Q cannot be decomposed as an additive sum of effectiveness across missions.

The combinatorial optimization problem becomes

max )Q(xk ity

u, €U(x;
subject to resource constraints on the total availability of strike and weasel aircraft, which may
be written as
z N[Strike < NStrike ( xk)

Z NWeasel < NWeaseI ( x )
i - k
i

where N*(x,) and N"**“(x,) correspond to the availability of each aircraft type at a given

state x, .
4.3.1 Maximum Marginal Return

The first algorithm we discuss is the Maximum Marginal Return algorithm (MMR). The
basis for this algorithm is the following optimization problem, which is a simplified
mathematical model of the JAO problem that provides explicit approximations for the function
QO(x,u) for a single wave scenario.

Assume that we have present k£ =1,..., K SAM sites in the scenario, £ =1,...,T targets,
w=1,...,W weasels, and s =1,...,S strike aircraft in the scenario. The simplified model assumes
that trajectories for each target ¢ are known, and have a sequence of SAMs associated with each
trajectory. When a weasel interacts with SAM k while headed for target #, the probability that the
SAM is destroyed is given by g,,. We make the probabilistic assumption that interactions
between SAMs and weasels are independent events. In this case, given m weasels headed for
target ¢, the probab'ility that SAM £ survives is given by:

P(k)=(1-a.)"
Similarly, given a full set of missions, with m, weasels headed for target ¢, the overall probability

that SAM k survives is given by
Py (k) =TT0~gqp)™
t

This simple equation requires the additional assumption that risk to weasels is negligible in these

interactions.
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The second part of the model represents the interactions between SAMs and strike

aircraft, and between strike aircraft and targets. Let p, denote the probability that a strike
aircraft which reaches target ¢ destroys the target. Let 7, denote the probability that if SAM k is
still alive, it will destroy a strike aircraft headed for target #. Note the dependence on the target,
which represents how strongly a specific SAM can interact with the route headed for target 7.
Assuming again that interaction events between SAMs and strike aircraft, between strike aircraft
and targets, and between weasel aircraft and SAMs are mutually independent, we obtain the

following expressions: Let », denote the number of strike aircraft allocated to target 7. Then, the

probability that a strike aircraft headed for target ¢ reaches target # is given by P(t):
P(t) = H(l _rsz(l ~qu)™")
k t
and the probability that target ¢ survives is given by P*(¢):

PS(1)=(0-P@)™

Given target values ¥, the combinatorial optimization problem of interest is:

max J({(mg,n)}) = XV, (1= P5 (1))
t

(mt,nt

subjectto > n, <S8, Y m; <W
t t

The above objective function exhibits the coupling between packages headed for different targets
affected by common SAMs, plus the coupling between weasels and strike aircraft in packages.
Consideration of this objective function reveals that if the weasel allocations to each package are
fixed, then the objective function becomes a separable objective function over the strike aircraft

content, where each separable component is concave. That is, if we fix m,, the objective function

becomes

J({(m,,n)}) =D J (n,)

where
J,(n)=V,(1-(1=P*(e)")
has a concave envelope. This means that finding the optimal strike aircraft allocation is a simple

optimization problem if the weasel allocation is known. This problem is solvable optimally using
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a maximum marginal return algorithm, which assigns strike aircraft incrementally to the target

that offers the greatest increase in performance per strike aircraft assigned. This approach
suggests an alternating procedure, which alternates between selecting weasel aircraft
assignments and strike aircraft assignments. Unfortunately, fixing the strike aircraft assignment
does not decouple the weasel assignment problem, which still remains a combinatorially hard
problem.

The MMR algorithm which we developed uses the alternating decomposition, while
applying an incremental marginal return algorithm for both the weasel and strike aircraft
allocation to packages. It also uses the more detailed objective function Q which arises from our
ADP approaches. The algorithm is outlined below:

e Initially, allocate one strike aircraft per mission. That is, let N Srike =1 for all i.

e Set N/*** =0 forall i. Determine weasel aircraft allocations per package as follows:

e For each package i, compute the marginal return MR(i) as follows: Let
o ({(N Srike N Teese! )}) denote the performance achieved by adding k weasel aircraft to
package i, for k=1,2. Then,
m(l) — mkax{ 1+Wk ({(N;S'trike’ N[Weaszl)}) _ Q({(NiStrike’ NiWeasel)}> / k}

o Select the package i with largest MR(i), and increase N,*** = N["*** +1

e Repeat until no unallocated weasel aircraft remain.

o Set N =0 forall i Determine strike aircraft allocations per package as follows:

o For each package i, compute the marginal return MR(;) as follows: Let

ok ({(N Srike N ,.W““e’)}) denote the performance achieved by adding & strike aircraft to

1

package i, for k = 1,2. Then,
MR( l) — mkax{ Qi+sk ({( N[Sm‘ke, NiWease!)}) _ Q({( NiStrike, NiWeasel )}) / k}
o Select the package i with largest MR(i), and increase N = N +1.

e Repeat until no unallocated strike aircraft remain.
e Repeat iteration between assignment of weasel and strike aircraft until convergence or a

fixed number of iterations are performed.
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The above algorithm incorporates several important extensions to address the use of the

objective function Q instead of the simpler model. In particular, to deal with possible regions
where the function is not concave, we use two increments (k = 1,2) to compute the maximum
marginal return. Note that the above algorithm is an approximate algorithm, as the true objective
function for a multistage problem will not be separable or concave. It does provide a fast,
approximate algorithm, which can be used in combination with other algorithms such as
combinatorial rollout, which we consider next.
4.3.2 Combinatorial Rollout

The Combinatorial Rollout algorithm is a recent algorithm developed by Bertsekas et al
[BTW97]. The basic idea of the algorithm is to improve on the performance of a baseline
algorithm, which in our case is the MMR algorithm described above. These incremental
improvements are related to the policy improvement step in standard policy iteration algorithms
for dynamic programming.

In combinatorial rollout, we solve the optimization problem, one package at a time, as
follows:

e Order the package indices i =1,...,T. Let the current index i’ = 1.

e Assume that packages (N, N/**) are fixed for i <i’. Determine the package allocation

to target i’ as follows:

e Enumerate all possible package allocations to target i'. For each package allocation

(N, N}, allocate remaining strike aircraft and weasel aircraft (not already

allocated to packages i < i’ or allocated to i) using MMR algorithm to packages i > i,

and evaluate the performance of the composite assignments.

o Select (N ", N/} as the allocation which gives the maximum performance in the

previous substep.

o Ifi’<T,increment i’ =i’ +1; else, the algorithm is complete.

In a setting where the performance function is evaluated exactly, combinatorial rollout is
guaranteed to perform no worse than the baseline algorithm, provided the baseline algorithm
satisfies a mild condition of sequential consistency [BTW97] which our MMR algorithm
satisfies. However, when the performance function is evaluated only approximately, as in

stochastic settings, this performance improvement is not guaranteed. In particular, the
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incremental nature of the algorithm makes it difficult to distinguish among package allocations

where the difference in performance is of the same order of magnitude as the evaluation error. In
the next section, we describe a combinatorial algorithm, which is explicitly designed for

optimization of functions with uncertainty in performance evaluation.

43.3 Surrogate Method

The Surrogate Method [GoCass00] is a gradient-based approach for searching the control
space (i.e., sets of feasible missions). This approach constructs a continuos "surrogate" objective
function that is used to generate gradient information that guides a search through the discrete
space of mission allocations. It also uses a stochastic approximation technique, which allows for
uncertain gradient information evaluation. The gradient information is obtained by selecting a set
of neighbor points to the current allocation, and evaluating the function at these neighbor points.

The principal idea of the surrogate method is to embed the combinatorial optimization

problem into a continuous optimization problem. Let {(N Stike | N el )} denote the combinatorial

s X

i

decision variables. The surrogate method instead optimizes over variables {(xs”i"e i "“’e’)}

where x denotes a continuous allocation. Let Q denote the combinatorial performance index; the
key problem is that Q is only defined on feasible nonnegative integer package assignments. The

algorithm extends the function Q to a surrogate function R{(x‘.s‘”“’,x

Weasel
i

)} defined on continuous
package assignments as follows:

e Given {(xs””‘e,xfy easel )}, find the closest integer assignment {(N Srike | N Fease! )}, and evaluate

the performance Q({(N Strike | ] [Feasel )}) :

o Find 2T neighbors of {(Nis”‘ke, N [Feesel )} by modifying the number of strike or weasel aircraft
to each package one at a time by one aircraft, and evaluate the performance Q for each
neighbor.

o Use the 2T+ 1 values to evaluate R{(xis”"‘e,x,.wme’ )} as a linear interpolation of the corner

values.
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Note that the above approximation has R{(xs’”““’, xesel )} = Q({(N Strike N e‘”e’)}) at nonnegative

i i

Strike Weasel
ri e’x. ‘easel

4

integer values of the allocations {(x )} Since R is now defined over continuous

i
variables, one can compute the gradient, which is piecewise constant over regions where the
closest corner and the neighbors are constant. Note, however, that the continuous function is not
differentiable at integer values, because these values are at the intersection of different piecewise
linear approximations (i.e. an integer point is a corner for many regions).

The surrogate algorithm is summarized as follows:

Initialize a feasible guess at the package allocations {(N Strike | N JFeesel )} across all targets.

e Initialize the step size a, =1, and the fractional package allocations (ke xFewsely) by

erturbing the integer assignments {( N57% N#e=“ )1 Initialize the iteration idex to k = 1.
p g g g i i

e Perform a gradient iteration as follows:

o Compute the 2T +1 neighbors of the fractional package allocations {(xs””‘e xreese )},

i >

evaluate the Q function at the neighbors, and evaluate the gradient g{(xf”""e,x,.we““” )}

e Modify the fractional allocation as
{( x;S‘trike , xiWeaseI )} — {( x;S'trike , xiWeasel )} + a, - g{( xiStrike ) xiWeasel)}

e If the new allocation {(xs””‘e

Strike | reese! )} is infeasible, project it inside the feasible region by
reducing each allocation by the same proportionality constant.

o Increase the iteration index k = k + 1, reduce the step size as a, =1/k.

e Compute nearest feasible integer allocation {(Nf"”‘e, N e )} and evaluate its performance.

e Repeat iterations for specified number of iterations.
Because of the piecewise linear nature of the approximation, the optimal fractional

solution is at an integer value; thus, if the optimization finds the optimal allocation for the

Stike Weasel
: xe’x. edase

H

surrogate cost function R{(x )}, it also finds the optimal allocation for the original

!

objective function Q({(N,.S""ke,NiW“’“’ )}) [GoCass00]. Furthermore, the slowly-decreasing step

size guarantees convergence to a local optimum even if the evaluations of the function Q are

noisy. However, as a gradient descent algorithm, the surrogate optimization method often
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converges to a local instead of a global optimum. To overcome this limitation, we implement a

couple of steps: First, we initialize the algorithm with the MMR solution described previously.
Second, we also perform several repetitions of the algorithm from randomly selected

assignments, and select the best of the resulting allocations.

44 DESIGN MODEL APPROACH

In this section, we develop a design model for the system dynamics, which are describe
in substantial detail in Section 3.2. Similar to the hybrid dynamical model, our design model
exploits the fact that interactions between JAO objects are sparse and involve relatively few
objects in each event, in order to achieve compact and efficient evaluation methods. In the
following, we outline our implementation for the JAO environment.

The design model is based on a small set of dynamical models and their associated
interaction dynamics. These models correspond to physical objects, such as air packages, threats,
and targets. This direct mapping simplifies construction of the design model. Based on the
physical objects, the design models may be distilled from the more detailed hybrid dynamical
model, as follows.

Parallel composition of individual object models provides a concise representation of the
JAO dynamics in the absence of interactions. When objects interact, e.g., threat and target
engagements, a product composition of the associated objects concisely represents the
interaction. To represent these interactions, a set of composite models representing pairs of
interacting objects was developed. These models, based on individual exchanges in an
underlying Markov process, capture the complex interaction dynamics, e.g., weasel suppression,
target acquisition, etc. The first of these models is a transition model between an air package i

and an air defense SAM j. Let 7;denote the discrete state associated with the air package,

consisting of the number of aircraft of each type which remain alive in the package, and let s;
denote the state of the SAM. In our SAM models, the SAM can be in one of five states, as
described in our hybrid dynamics. Given the hybrid state trajectory of the air package and the

capabilities of the SAM, we compute the transition kernel P(rr,(+),s;(+) | 7,(-),s; (-)), which is

a matrix indexed by possible package contents into and out of the engagement, and SAM status

into and out of the engagement.
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The second model is a transition model between an air package i attacking target .

Targets can be in one of two states, alive or dead. As before, these dynamics are lifted from the
detailed hybrid model, and represented as a transition kernel between the joint states,

as P(rc,(+),t, (+) | 7, (<), (-)) . Other models represent independent transition dynamics in SAM

states, as SAMs turn on and off, or are repaired after incurring damage. By factoring the joint
probabilities at the end of each stage into products of marginal probabilities for each object, one
obtains an efficient prediction of the distribution at the end of a wave of activity, which can be
used to compute the performance statistics associated with any given strategy.

The above prediction approach is based on propagating through a pre-specified sequence
of interaction events. An important extension that we considered in this work is closed-loop
prediction, where the particular sequence of interaction events depends on the specific states that
are observed as outcomes. For instance, after a specific interaction between an air package and a
SAM, the air package may abort its mission if the number of surviving weasel aircraft and strike
aircraft falls below required quantities. Similarly, the missions selected in the second wave of an
attack depend on the relative success of the first wave missions in eliminating targets, and the
number of aircraft surviving the first wave.

We focus on the problem of two-stage prediction, where information is collected at the
end of a stage or wave, and the next set of missions is then adapted to the results of the first
wave. Closed-loop prediction depends on the arrival of information. We assume that the state at
the end of the first wave is observed, and that the strategy for the second wave is then computed.
Our evaluation approach is based on computing an analytical approximation to the distribution of
this state as before, sampling this distribution to generate a finite number of representative
scenarios. For each sample scenario, we use a combinatorial algorithm using a single wave
analytical approximation of the performance criteria to determine both the desired sequence of
missions and their expected performance. The performance achieved for these samples is then

averaged to obtain estimates of the two-wave performance.

Another extension that we considered was a model of partial information arrival, where
ISR sensors were scheduled over the battle space. In this case, the observations are perfect, but
occur over time, and are localized around the ISR sensors. The localized observations result in

partial information regarding the battlespace. These observations are projected forward to the
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current time using the same probabilistic transition models discussed previously. The result is a

probabilistic state estimated at the decision point from which decisions must be made.

45 COMBINATORIAL OPTIMZATION ALGORITHMS IMPLEMENTATED

This section describes how the plant implements the different controller algorithms
described in Section 4.3, including when and how they are used. Further details about each
algorithm are also given. As it will be evident in the sections below, the controllers may be split
up into two distinct groups depending on their function. One type is used to allocate resources
(strike and weasel aircraft) at the airbase to newly constructed air package objects, which the
controller outputs. In addition to configuring the air packages, the controller also sets their initial
missions. The second type of controller is used to modify previously created air packages’
missions while in flight. No controller has the ability to reconfigure air packages while in flight,
such as moving assets between packages.
4.5.1 Retasker using Combinatorial Rollout

This controller may be called by the plant when a given TCT emerges. It has a very
specific role of finding the air packages that qualify for retasking to the TCT, determining the
best one (if any) to divert to it, and modifying its mission accordingly. In order for an air
package to qualify for retasking, it must meet the following two criteria: 1) it must be currently
flying ingress to a normal target, and 2) its ingress mission route must intersect a circle of a
given radius around the TCT, as illustrated in Figure 18 below. The radius, or retask range, used
in all experiments was 50 km. If an air package is tasked to an AOR, it automatically qualifies
for retasking if the TCT is within the same AOR. The reason for implementing a localized
retasking, via the intersection range and AOR groupings, is to avoid drastic geographic changes
to an air package’s mission, which would have a greater disturbance on the highly coupled
missions of the other aircraft. Only allowing the packages that were already passing near the
TCT to divert to it should minimize the effect on coupled activities of the previously configured
packages, such as in the coordinated suppression of enemy air defense. This is very important
since only one air package is diverted to the TCT, and the other packages are not retasked to
account for the change in the mission queue. The Retasker was implemented in this specific,

localized manner in order to provide real-time control upon TCT emergence, and also to avoid
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the potential snowball effect that allowing other air packages to divert to newly unassigned

targets (resulting from previous retaskings) could have.

When using the Retasker, the plant
will request guidance immediately " . v 3
following any TCT emerge event (it is part | Egress \
of the event’s execution logic), passing the
controller the name of the TCT, in
addition to the required estimated state of
the world. If an air package is already
assigned to the TCT, then the retask call is
unnecessary and will terminate.
Otherwise, the Retasker first determines

which air packages are valid candidates as

explained above. It then uses the

combinatorial rollout algorithm discussed
in Section 4.1 to find the best retask Figure 18 TCT Retasking Radius
option. This is done by changing one of the valid air package’s missions at a time, and
evaluating the effect on the entire mission queue using the one-wave, one-stage predictor (see
Section 4.6.1). The option that gives the best performance expectation is selected, and if its
predicted value improves that of the original mission queue, the corresponding air package is
retasked by modifying its mission and returning it to the plant as guidance.
4.5.2 Aborter using Combinatorial Rollout

This specialized controller is used in a variety of circumstances to decide whether one or
more ingress air packages should abort their current missions and return to the airbase. The
ability to abort missions is useful to avoid attrition to air packages, especially in an uncertain
hostile environment. Depending on the current state of the world, an air package may be aborted
whenever the expected gain of prosecuting its assigned target (and value of supporting other
aircraft) is outweighed by the potential for further attrition. This allows the ability to save

resources that might otherwise be ineffective and/or destroyed.
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The Aborter functions differently depending on how the plant uses it. One way the plant

may employ this controller is by calling it automatically at periodic time intervals. In this case,
the Aborter performs a “full abort,” giving each air package the opportunity to abort its mission,
by using the combinatorial rollout algorithm discussed in Section 4.1. This works by aborting
each ingress air package one at a time, evaluating the effect on the entire mission queue using the
one-wave, one-stage predictor (see Section 4.6.1). The option that gives the best performance
expectation is selected, and if its predicted value improves that of the current mission queue, the
corresponding air package is aborted by modifying its mission to return to the airbase
immediately. This process continues using the remaining air packages, evaluating each option in
a mission queue that includes any previously aborted packages, until the mission queue cannot
be improved by aborting any air packages. All aborted packages are then returned to the plant as
guidance.

Another way the plant uses the Aborter is when a SAMSite emerges from an unknown
(hiding), inactive, or repairing state. If a SAMSite activates in response to the intersection of an
air package with it’s range of lethality (i.e. missile range) in order to engage the package, the
Aborter is called after the engagement and any possible post-engagement SAMSite transitions
occur. This is useful for responding to an uncertain engagement, which may have resulted in a
loss of aircraft that could compromise the success of both the attritted air package’s mission and
any other missions with which it is coupled. In this case, the Aborter first decides whether or not
the just-engaged air package should abort its mission by comparing the respective performance
expectations using the one-wave, one-stage predictor. If so, a full abort is performed (as
explained above) to account for the potential effect on any other air packages. The initial
fixation on the air package involved in the engagement is done to speed up the computation time,
and also as an attempt to localize the abort.

If the Aborter is called in response to a SAMSite emergence that occurred stochastically,
not due to a specific simulation event, the Aborter functions slightly differently. It first decides
if any ingress air packages currently routed through the emerged SAMSite’s range of lethality
should be aborted. This is done very similarly as a full abort, except the abort candidates are
limited to this subset of air packages. If any of these packages were retasked to the airbase, a full

abort is then performed on the remaining air packages to account for the possible coupling across
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missions. Similarly as above, the first step is performed to both minimize computation time and

to localize the Aborter’s effect to just those air packages involved with the specific SAMSite.
4.5.3 Target Tasking using Maximum Marginal Return

The MMR controller is used to construct and configure new air packages from resources
at the airbase, and task them to targets. First, the controller must create new air packages, one
for each unassigned target in the estimated world state provided by the plant. Each package is
initialized with zero weasel and one strike aircraft. As detailed in Section 4.3.1, the next step is
to allocate weasel aircraft to the set of packages. This is done by temporarily incrementing the
number of weasels in each package one at a time, evaluating each option within the current
mission queue configuration using any of the possible predictors (see Section 4.6), and
permanently adding the weasel aircraft to the package with the best performance expectation.
This process continues until either the airbase runs out of weasel aircraft to allocate, or adding
weasels to any package does not improve the mission queue’s predicted value. The algorithm
may be tuned by changing the maximum number of weasel aircraft allowed in an air package,
changing the increment used when allocating weasels (how many to allocate at a time), or even
by stepping multiple increments ahead when searching the control space for the best predicted
value. To clarify the latter option, take the example of allocating two weasels at a time. If we
allow three steps into the control space, then the number of mission queues to evaluate would
equal the number of air packages times three, each being incremented by two, four, or six weasel
aircraft. The one option that gives the best performance expectation would have its
corresponding air package’s weasel count incremented by two weasels, regardless of how many
were allocated when testing that option.

Next the strike aircraft are allocated using a similar process. Initially, the previous
weasel assignment is untouched, but the strike aircraft in each package are cleared to zero. The
strike aircraft at the base are then allocated incrementally just as the weasels were above. The
only difference is in how the control space may be “stepped into.” If strike aircraft were used in
the previous weasel allocation example, options with four or six aircraft would only be evaluated
if no options with two or four aircraft, respectively, improved the mission queue’s expected
performance. These tunings of the weasel and strike assignment were used to overcome specific
problems where the MMR would exit prematurely before allocating many of the aircraft,

depending on how the algorithm was being used. The weasel and strike allocation cycles may be
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repeated as desired, although one or two iterations of the algorithm is usually sufficient. By

clearing the particular type of aircraft being assigned from the current mission queue, it may be
possible to improve that aircraft’s allocation using the current allocation of the other types of
aircraft.

Like any other controller, the plant may employ the MMR whenever it deems it useful.
In the MMR’s case, this would be any time air packages may be formed and tasked to targets,
whether the resources are at an airbase or an AOR. Commonly, the MMR would be used at the
start of the simulation and at the end of each consequent wave of attack, that is, when all air
packages return to base after executing their missions. Alternately, the MMR could be called
when each air package returns to base, a “gorilla” air package arrives at its AOR waypoint, or
even at periodic time intervals.
4.5.4 AOR Tasking using Maximum Marginal Return

This controller is a variation of the MMR algorithm used to task air packages to targets.
Its main function is still to allocate weasel and strike aircraft to air packages. But instead of
tasking them to targets, their missions are to AOR waypoints, at which a target tasking controller
is used. There are two ways of using this controller, depending on how many stages the user
wants to model. The traditional, more accurate way of using the controller is to form a gorilla
package for each AOR, and allocate resources just like in the target tasking MMR (see Section
4.5.3), but using a two-stage predictor to evaluate mission queues of gorilla air packages (see
Section 4.6.5). The first stage represents the gorilla packages flying to their AOR waypoints,
and the second stage is the tasking of smaller air packages from the AORs to targets and back to
the airbase. The other way of using this controller is in a one-stage context. This case works just
like the target tasking MMR, actually configuring air packages tasked to unassigned targets. The
only difference is that they are routed through the AOR waypoint instead of directly to the target.
After the aircraft allocation is complete, the aircraft in all air packages tasked to targets in each
AOR are conglomerated into larger gorilla air packages tasked to the respective AORs. The only
reason to use this one-stage method in lieu of using the better two-stage predictor is to save
computation time. This controller is implemented by the plant at the same times as the target
tasking MMR, except it can only be used to task aircraft at the airbase, not when they arrive at an

AOR waypoint.
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4.5.5 Target Tasking using Surrogate Method

The surrogate method is another controller used to construct and configure new air
packages from resources at the airbase, and task them to targets. It is implemented by the plant
in the same way as the MMR (see the end of Section 4.5.3). First, the controller must create
unconfigured air packages, one for each unassigned target in the estimated world state provided
by the plant. A gradient-based approach then searches the control space to allocate strike and
weasel aircraft to the different packages, as detailed in Section 4.3.3. One addition to the
algorithm’s description above is an option that was added to speed it up. Rather than restarting
the algorithm multiple times with random air package configurations (or target assignments), it
was useful to seed the surrogate with the MMR’s solution, and then iterate over that to try to

improve upon it by moving aircraft between the packages.

4.5.6 AOR Tasking using Surrogate Method

This controller is a variation of the surrogate method used to task air packages to targets
(see Section 4.3.3). Its main function is still to allocate weasel and strike aircraft to air packages.
But instead of tasking them to targets, their missions are to AOR waypoints, at which a target
tasking controller is used. After forming one “gorilla” package for each AOR, resources are
allocated using the same gradient-based approach detailed in Section 4.3.3, but using a two-stage
predictor to evaluate mission queues of gorilla air packages (see Section 4.6.5). The first stage
represents the gorilla packages flying to their AOR waypoints, and the second stage is the
tasking of smaller air packages from the AORs to targets and back to the airbase. This controller
is implemented by the plant at the same times as the target tasking surrogate method, except it

can only be used to task aircraft at the airbase, not when they arrive at an AOR waypoint.

4.5.7 Target Tasking using Combinatorial Rollout

The combinatorial rollout controller is used to construct and configure new air packages
from resources at the airbase, and task them to targets, based on the algorithm in Section 4.3.2.
First, the controller must create new air packages, one for each unassigned target in the estimated
world state provided by the plant. The control space is then directly enumerated with every
possible air package configuration to each target, taking into consideration any constraints on

maximum numbers of aircraft per package and incremental assignments of aircraft (i.e. two
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weasel aircraft at a time). Each option is selected and added to a mission queue to evaluate. Any

resources remaining at the airbase (not in the mission queue) are used to form air packages to
task to unassigned targets, using a greedy heuristic. This mission queue is then evaluated using
any of the possible predictors (see Section 4.6). The air package option whose heuristically
completed mission queue gives the best performance expectation is then added to the final
mission queue. Any other options in the enumeration tasked to that package’s target are
removed from the possible candidates. In successive iterations of this option selection, the
mission queue evaluated includes not only the new candidate, but also any previously selected
packages, which decreases the resources available to the heuristic when filling out the rest of the
mission queue. This process continues until either all resources have been exhausted, or the
current mission queue’s predicted value cannot be improved by adding any option to it.

This controller is implemented by the plant in the same way as the other target tasking
controllers (see the end of Section 4.5.3), except it can only be used to task aircraft at the airbase,

not when they arrive at an AOR waypoint.

4.6 DESIGN MODELS IMPLEMENTED

The control architecture described Section 4.2.2 executes a measured response, i.€.,
trading off computation and performance to specific “trigger” events. In order to achieve
“closed-loop” behaviors, control decisions must explicitly account for subsequent decisions. In
this section, we highlight several multi-stage controller designs, typically for the allocation of
base resources, which account for subsequent decisions. In each case, what distinguishes these
controllers is the associated prediction model.
4.6.1 1-Stage/1-Wave Model

The 1-Stage/1-Wave controller determines a set of missions over a single wave. Each
wave begins when the air packages are launched from base and ends when they return.

This controller solves the combinatorial optimization problem discussed above (Section
4.3), and therefore any of the methods may be used. Each of these methods evaluates candidate
control option using our design model (Section 4.4) over a single wave. This is depicted in

Figure 19.
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Figure 19 1-Stage Prediction
This is the baseline controller, which is also the basis for subsequent controller
implementations. Due to relative performance with respect to computation, the MMR algorithm

is better suited for the 1 Stage/1 Wave case.

4.6.2 2-Stage/1-Wave Model with Retasking

This controller also considers a 1-wave horizon, but accounts for potential retasking of air
packages in response to emerging TCTs. TCT emergence is a random event during the execution
of a wave. When a TCT emerges, divertable air packages (i.e., loaded and within range) are
considered for retasking, and the best option is selected (see Section 4.5.1). Therefore, we expect
the controller to assign missions from base that anticipate potential retasking. This type of
proactive control significantly increases computational complexity. The difficulty is in predicting
the value over 2 stages, i.e., through an intermediate decision point that corresponds to a
retasking decision. We illustrate this in Figure 20. A set of missions is launched from base.
When a TCT emerges, a control decision is required, which in general will map the current state
x, at the time of the TCT emergence to an appropriate retasking control %. Given a specific state
x, and control u;, we are able to complete the 1-wave prediction. This is difficult even for a
single TCT since the emergence of the TCT occurs at a random point in time and the control

decision is state dependent.
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Figure 20 2-Stage Retasking Prediction

To simplify this problem, we assume that retasking depends only on the arrival probably
of the TCT (rather than the precise state of all air packages, targets, and threats) and that the
retask decisions are synchronized across missions. This is illustrated in Figure 21, where the first
air package to enter a TCT divert range triggers a divert decision for all air packages.

With these assumptions, we are able to use the same combinatorial algorithms with a
specialized predictor. Consider Figure 20, our baseline predictor is used up until the retasking
point (TCT Emerge in the figure). At this point the retasking controller is used to identify a
candidate retask option, which is implemented probabilistically depending on the probability that
the TCT has emerged. Therefore, for a given retask option, the predicted value is given by a
weighted average of either retasking or not retasking the individual air packages. Note, that the
retask control algorithm needs to be solved for each evaluation of this 2-stage controller.

This controller generates an open loop control decision that hedges against the
probabilistic arrival of TCTs, effectively inflating the value of missions which could be diverted
while encouraging an allocation of resources appropriate for prosecution of potential TCT as

well as original targets.
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Figure 21 Retasking Approximations

4.6.3 2-Stage/2-Wave Model

In this case, we consider two waves without retasking. The controller determines a set of
mission for the first wave, while explicitly accounting for second-wave control decisions.
Selection of the first-wave control uses the same combinatorial algorithms as in the previous
cases, however a prediction is required that considers two waves. This is depicted in Figure 22.

The set of missions is launched from base. When the air packages return to base, a
control decision is required, which in general will map the current state x, at the beginning of the
second wave to an appropriate second wave control (i.e., set of missions) ». Given a specific
state x, and control «,, we are able to compute the 2-wave prediction as a function of the x,.

We use our baseline predictor for the first wave, which generates a probabilistic
distribution f(x,|x,,4,) over the state x,. The control v, = 4(x,) is determined from a given state

using one of the same combinatorial algorithms that were available for the first stage. To

evaluate the second stage, we compute the expected value J[ f (x2|x0, U, )] at the end of the
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second stage by averaging over the state x, at the end of the first stage. To compute this

expectation, we enumerate the feasible states x, at the end of the first stage, determine the second
wave control #, = 4(x, ), and compute the value J[ JEAR” ,xo,uo)] for the given state x,. The
sum of these values, weighted by the probability of the associated state x,, provides the second
stage value J| [ f (lexo,uo )] However, this approach is only feasible when the state space of x, is

small. In the following, we discuss several approximations of the second stage evaluation.
Specifically, we consider random sampling, certainty equivalence approximations, and an open-

loop approximation.

X,
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Feaslble Control
X States
o D=
Current
State

Wave Launch Wave Return-to-Base Wave Réturn-to-Base
(Oth Stage) (1st Stage) (2nd Stage)

Figure 22 2-Stage/2-Wave Predictor
4.6.3.1 Random Sampling

In Figure 23, we illustrate the random sampling approach used to predict the performance

of the second wave. Our design model is used to predict the value of the first wave, and it also
provides the (approximate) distribution f(x,|x,,u,) over the state x, at the end of the first wave.
In this approach, Monte Carlo integration is used to estimate the second stage performance

J[ f (lexo,uo)]. A state x, is selected randomly according to the known distribution f(x,|x,, )

at the end of the first wave. The control u, = i ,,(x,) is determined based on that state x;.
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Given the state x, and the control u,, our design model is used to compute the value of the

second stage J [ f (x2 |x1 U ,xo,uo)] given the intermediate state x;, from which we estimate the

second stage performance

j[fz(xz |xo’uo)]= N

N

1 samples
Zj[f(xz |xi>uis Xo>Uy )]

samples =1

xo’uo
Current

Candidate State
Control

Option
Feasible
States Space
Wave Launch Wave Return-to-Base Wave Return-to-Base
(0th Stage) (1st Stage) (2nd Stage)

Figure 23 Random Sampling for 2-Stage/2-Wave Prediction
Using the MMR algorithm, this approach requires O(Nmp,es (N, +1}(N,+N, )2) single

stage evaluations using our design model. N is the number of Monte Carlo samples. N, is

samples
the number of target locations. N, is the total number of strike aircraft. V,, is the total number of
weasel aircraft. Methods such as importance sampling could theoretically improve performance.
However, preliminary experiments demonstrated only a minimal improvement in computation

with comparable performance.

4.6.3.2 Certainty Equivalent Approximation
In Figure 24, we illustrate a certainty equivalent approach used to predict the

performance of the second wave. Our design model is used to predict the value of the first wave
and the associated (approximate) distribution f (x1|x0,u0) over the state x, at the end of the first

wave. In this approach, a certainty equivalent state ¥, is selected to represent the entire
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distribution. In our experiments, we consider the mean and mode of the distribution. Given the

certainty equivalent state X,, a control % = &, (x,) is determined using the MMR algorithm.
Given the state X, and the control %, our design model is used to compute the value of the

second stage, which is our estimate of the overall second stage performance

j{f(xz | Xq5Uy )]'_‘ J[f(xz |)?1,171,x0,u0)]

XooUg xgx 1,1, Xy Ug)

Current
Candidate State __ -
Control _ X
Option ot N " 7 U Y it PR

Feasible Control
States Space
Wave Launch Wave Return-to-Base Wave Return-to-Base
(Oth Stage) (1st Stage) (2nd Stage)

Figure 24 Certainty Equivalent Approximation for 2-Stage/2-Wave Prediction
Using the MMR algorithm, this approach requires 0((N L +1)2 (Ns +N, )2) single stage
evaluations using our design model. Other certainty equivalent states could also be used in this

context.

4.6.3.3 Aggregate Open-Loop Approximation

In Figure 25, we illustrate an aggregate open-loop approximation that is used to predict
performance in the second wave. In this case, we augment the single stage controller by doubling
the number of strike aircraft N, that are available. The additional aircraft represent the reuse of
aircraft in the second stage. Given the increased resources, we determine the initial control .
Due to the additional resources, this control is infeasible, i.e., there are not enough strike aircraft
at base to perform all the missions. Therefore, we prune the control decision to make it feasible.
Two methods are used. First, we truncate the number of missions (retaining the highest value

missions) and reassign weasel aircraft. An alternate approach sends all the missions at half the
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strike aircraft. Our design model is used to compute the value of the first wave

J [f“’ (o2 | 62 ul )] with the additional aircraft. The additional aircraft provide a

representation of the two wave performance.
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Figure 25 Aggregate Open-loop Approximation for 2-Stage/2-Wave Prediction
Using the MMR algorithm, this approach requires O((N,, +1)2N, +N,, ) single stage

evaluations using our design model. Similar open-loop approximation could also be used in this

context.

4.6.4 4-Stage/2-Wave Model with Retasking

This controller combines the two previous controllers to further extend the control
horizon. We consider two waves with retasking. The controller determines a set of missions for
the first wave, while explicitly accounting for retasking in the first wave, a second-wave control
decision and retasking in the second wave. Selection of the first-wave control uses the same
combinatorial algorithms, however a prediction is required that considers two waves with
retasking. Two of the four stages are depicted in Figure 26.

We use our retasking predictor (Figure 20) for the first wave, which results in a

probabilistic distribution over the state x,. The control , = ,u(xz) is determined from a given

state using the same combinatorial algorithms that were used for a single stage. To evaluate the
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second stage, we average performance, again using the retasking predictor, over the state x, .

This is implemented using one of the approximation techniques discussed in the previous

section, i.e., random sampling, certainty equivalence approximations, and an open-loop

approximation.
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Figure 26 4-Stage/2-Wave Prediction

4.6.5 2-Stage/1-Wave Model with AOR Tasking

Given a hierarchical decomposition of the JAO environment, we formulate an alternate 2-
stage problem, which first allocates *gorrilla" air packages to specific Areas of Responsibility
(AORs), and then upon arrival to the AOR, tasks regular air packages to specific targets. This
effectively decomposes the 1-wave problem into smaller sub-problems associated with
individual AORs. This begins to address scalability; sophisticated algorithms may be scaled to
realistically sized problems or efficient algorithms may be scaled to larger problems. In this case,
the base controller determines a set of missions to AOR points, while explicitly accounting for
detailed tasking that occurs at the AOR points. We expect that missions from base will be
constructed to provide sufficient aircraft at each AOR point to perform local tasking. This
problem is complicated by the potential coupling associated with air defenses, which may occur

on ingress, egress, and among AORs. We explicitly account for the ingress coupling, but to
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simplify this problem we neglect egress coupling (i.e., all air packages assume full responsibility

for air defenses encountered during egress) and the coupling among AORs (similarly, each AOR
assumes full responsibility for air defenses in the region).

The set of missions is launched from base to specific AORs. When the air packages
arrive at the AOR points, a control decision is required, which in general will map the current
state x, to an appropriate control (i.e., set of missions within an AOR) #, = ﬂ(xl). At each AOR
point, one of the combinatorial algorithms is used with a single stage predictor modified to
account for fact that aircraft do not begin at base and that only a subset of targets are available.
Given a specific state x, and control u,, we are able to complete the 2-stage AOR prediction.

Neglecting coupling among AORs and that due to threats during egress, the base
controller uses one of the combinatorial algorithms to assign aircraft to AOR point. The predictor
is modified to account for the subsequent tasking of aircraft to targets when they arrive at an

AOR. This is illustrated in Figure 27. Our baseline predictor is used to determine the value (lost)
during ingress to the AOR points, as well as the probabilistic distribution f(x|x,,u,) over the
state x, upon arrival at the AOR points. For a given state, we are able to determine the control

U = Uy (xl) , which assigns aircraft to specific targets at the AOR point. To evaluate the second

stage in each AOR, we average the performance over the state x, similar to the 2-wave/2-stage
case. The performance from each AOR is then combined to form the overall performance of the
second stage. In the following, we discuss several approximations used to evaluate the second
stage in each AOR. Specifically, we consider random sampling and certainty equivalence

approximations as before, as well as a partial open-loop approximation.
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Figure 27 2-Stage AOR Predictor
4.6.5.1 Random Sampling
In Figure 28, we illustrate the random sampling approach used to predict the performance

within each AOR. Our design model is used to predict the value igress to the AOR and provides
the (approximate) distribution f (x1 |x0 ,uo) over the state x,. At this point, we assume that each
AOR is independent. For each AOR, Monte Carlo integration is used to estimate the
performance J| [ f (x2|x0 \ Uy )] A state x, is selected randomly according to the known distribution
f (x1 |x0 ,uo) in each AOR. The control u, = i ,,(x,) is determined based on that state x;. Given
the state x, and the control u,, our design model is used to compute the value in each AOR,

J,; [ f (x2 |x1 Uy ,xo,uo)] given the intermediate state x,, from which we estimate the second stage

performance in AOR i.

. 1 Noample
Ji[f(xz |x0,u0)]= ZJi[f(x2|xl’u1’xosuo)]

samples  i=l

The overall performance of the second stage is determined by combining the value of the

individual AORs.
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Figure 28 Random Sampling for AOR Prediction
Using the Surrogate Method as a base controller and the MMR as an AOR controller, this

a'pproaCh requlres O(N Asset _Types ‘N Destinations ~ N Iterations N Samples "N AOR * MMAOR ) Slngle Stage
evaluations using our design model. N ., .. is the number of asset types, i.e., 2 in this case.

N is the number of destinations assignable from base. N, ... is the number of iterations

Destinations

the Surrogate Method is allowed to converge. N ., is the number of AORs. MMR ,, is the

computational complexity of the MMR assignment at each AOR point.

4.6.5.2 Certainty Equivalent Approximation
In Figure 29, we illustrate a certainty equivalent approach used to predict the

performance within each AOR. Our design model is used to predict the value ingress to the AOR
and provides the (approximate) distribution f (x1 [xo,uo) over the state x,. Assuming that each

AOR is independent, a certainty equivalent state X, is selected to represent the entire distribution.

In our experiments, we consider the mean and mode of the distribution in each AOR. Given the
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certainty equivalent state ¥, a control % = i ,,,(¥,) is determined using the MMR algorithm.

Given the state ¥, and the control %, our design model is used to compute the estimated value of
the second stage in AOR i.
j,.[f(x2|xo,uo)] = J,.[f(xz|xl,ul,xo,u0)]
The overall performance of the second stage is determined by combining the value of

individual AORs.

Xp,Ug

Current

Candidate State _
Control
Option

Wave Launch Arrive @ AOR Waypoint

(oth Stage) (1st Stage) Wave Return-to-Base

(2nd Stage)
Figure 29 Certainty Equivalent Approximation for AOR Prediction
Using the Surrogate Method as a base controller and the MMR as an AOR controller, this

N, ‘N

Destinations Iterations

approach requires O\N N ,op - MMR single stage evaluations
A AOR AOR

sset _Types

using our design model.
4.6.5.3 Partial Open-loop Approximation

In Figure 30, we illustrate a partial open-loop approach to predict the performance within

each AOR. Our design model is used to predict the value ingress to the AOR and provides the
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(approximate) distribution f (x1 |x0 ,uo) over the state x,. Assuming that each AOR is

independent, we consider the kth state of “gorilla” air package x{™ and adopt a certainty
equivalent state X" for the targets and threats.

The “gorilla” air package state x;* and the certainty equivalent state X" of the targets
and threats are combined to establish the state x,. A control u, = y(x,) is determined using the

MMR algorithm. Our design model is used to compute the value in AOR i,
J, [ f (x2 Ix{”’ CEEY U, X, ,uo)] as a function of the “gorilla” air package state. The estimated

value on the second stage in AOR i is given by

J,.[f(x2|x0,u0)] = ;Ji[f(lexlAPk ,35—1Enemy,u1,xo,uo)]' P(xlAP")

The overall performance of the second stage value is determined by combine the value of
individual AORs

j[f(xz | xoauo)]= iJi[f(xz 'xo’uo)]'

XosUg
Current

Candidate State _
Control
Option

Wave Launch Arrive @ AOR Waypoint
(0th Stage) (1st Stage)

Figure 30 Partial Open-Loop Approximation for AOR Prediction
Using the Surrogate Method as a base controller and the MMR as an AOR controller, this

approach requires O(AOR,, ;.- AORy0r* N 10n - MMR 4 ) single stage evaluations using our
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design model. AOR,,,, is the number of strike aircraft per AOR. AORy,,,,, is the number of

weasel aircraft per AOR.

4.6.6 2-Stage/1-Wave Model with AOR Tasking and ISR Collection

Similar to the previous AOR section, this controller allocates air packages to AORs,
which are subsequently tasked to specific targets. However in this case, we consider only partial
information, i.e., not all objects are observed prior to tasking within individual AORs. Similar to
the previous section, this addresses scalability by decomposing the 1-wave problem into sub-
problems, but also begins to address partial observations and imperfect information at the
decision point.

Information dynamics describe how information evolves over time. These dynamics are
captured in the probabilistic models associated with each battlespace object, as well as
observation dynamics. Up to this point, all objects have been perfectly observed at each decision
point. In this case, only some objects will be observed, while the probabilistic state of others
evolves over time. In the absence of observations (and interactions), the probabilistic state will
eventually converge to a steady state distribution which may be computed directly from the
probabilistic model associated with the object. In Figure 31, we illustrate the information
dynamics associated with a single object. Assuming no previous observations, the initial
information state correspond to the steady state distribution P, =04 (red), B, 4., = 0.35
(vellow), and B, =0.25. There is no change in the information state until an observation
occurs at which point we observe the object perfectly, P, .. = 1.0. At that point (or once the
object is no longer observed), information starts to degrade (i.e,. we are less certain what state
the object is in). If a decision needs to be made regarding this object, we note that there is less
ambiguity and thus more information during or immediately following an observation. We
expect this behavior to affect the types of decisions that that the base controller makes. Namely,
that aircraft should be sent to AORs that have more information (less ambiguity regarding the

state of the associated objects).
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Figure 31 Information Dynamics

In this case, the AOR control problem is the same as in the previous section, except that
the information available at the AOR points will be based on previous partial observations.
Depending on the amount of time that has passed since the last observation, information
regarding targets and air defenses will degraded. Knowing where and when observations will
occur, we expect that the base controller will send aircraft to the AORs that will have better
information at the associated decision point. As in the previous case, we neglect the coupling
among AORs and that due to threats during egress. The base controller uses one of the
combinatorial algorithms to assign aircraft to AOR points, and the predictor is modified to
account for the subsequent tasking of aircraft to targets when they arrive at an AOR. This is

illustrated in Figure 32. Our baseline predictor is used to determine the value during ingress to

the AOR points, but also determines the distribution f (Illlo,uo) from which the observations
1, ={z,,z,,...} are drawn. Observations that occur during ingress are projected forward (i.e., the
information is degraded) to the decision point so that a current estimate X, = P(xllll) of the state

may be used to determine the control decision u, = £ (%) for the AOR. Given the control

decision #, and the estimate of the current stateX,, we evaluate the second stage in each AOR,

J, [ f (x1|I1 Uy, Io,uo)]. We use the same methods that were used in the previous section to
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estimate the second stage performance, except that the random sampling and certainty equivalent

approximations are taken in terms of the observations rather than the current state. Since the

partial open-loop approximation enumerates the air package state x{", which we assume to be

perfectly observable, only certainty equivalent X" is considered in terms of the observations.

P(x;[l;) U X,

|Ir:fzr{r:;;|:nz ,Stat}e % Feasible —¥ Control Feasible States
N States M Space j
P(X,)
Initial
Task Air ~ State
Packages
to Targets

—p

Information >
—Degradation->
Wave Launch Arrive @ AOR Waypoint Wave Return-to-Base
(Oth Stage) (1st Stage) (2nd Stage)

Figure 32 AOR Prediction with Partial Information
4.6.6.1 Random Sampling
In Figure 33, we illustrate the random sampling approach used to predict the performance

within each AOR. Our design model is used to predict the value ingress to the AOR and provides

the distribution f(I,|I,,u,) from which the observations /, ={z,,z,,...} are drawn. The
observations are selected randomly according to the known distribution f ( I 1|IO, uo) and
projected forward to the decision point, providing the current state estimate X, = P(xlll 1). Based

on the state estimate %, a control u, = & ,,.(%,) is determined for each AOR. Given the state

estimate £, and the control #,, our design model is used to compute the value in each AOR,
J,.[ f (lell,ul,lo,uo)] given the intermediate state estimate X, from which we estimate the second

stage performance in AOR i.

N samples

ji[f(x2|10’u0)]= N 2 Ji[f(xZIII’uI’IO’uO)]

samples  i=1

1
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The overall performance of the second stage is determined by combining the value of the

individual AORs.

i=

..-I PR

AOR Loop Closure

Iy Uy
Initial
State _ .-~
Candidate -
Control
Option
Wave Launch Arrive @ AOR Waypoint o
Wave Return-to-Base
(0th Stage) (1st Stage) (2nd Stage)

Figure 33 Random Sampling for AOR Prediction with ISR Uncertainty
Using the Surrogate Method as a base controller and the MMR as an AOR controller, this

N N ytions - N

Destinations erations  * " Samples

approach requires O(N p N 4or - MMR AOR) single stage

sset _Types )

evaluations using our design model.

4.6.6.2 Certainty Equivalent Approximation
In Figure 34, we illustrate the certainty equivalent approach used to predict the

performance within each AOR. Our design model is used to predict the value ingress to the AOR

and provides the distribution f (I 1IIO,uO) from which the observations I, ={z,,2,,...} are drawn.
The certainty equivalent observation I, is selected to represent the entire distribution and

projected forward to the decision point, providing the current state estimate %, = P(xlll_l). Based
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on the state estimate £, a control », = 4(£,) is determined for each AOR. Given the state

estimate X, and the control ,, our design model is used to compute the value in each AOR i.

Ji[f(x2|10’u())] = Ji[f(xz|l_1’u1’loa“o)]
The overall performance of the second stage is determined by combining the value of the

individual AORs.

o.'l o
AOR Loop Closure
’(’1 |’0:Uo)
MMR
P(x1|’1

Io, uo - PR/ O\ WS- i

Initial .-

State _

Candidate - o~ T T
Control e
Option -
Wave Launch Arrive @ AOR Waypoint o —
(Oth Stage) (1st Stage) Wave Return-to-Base

(2nd Stage)

Figure 34 Certainty Equivalent Approximation for AOR Prediction with ISR Uncertainty
Using the Surrogate Method as a base controller and the MMR as an AOR controller, this

‘N ‘N

Destinations Iterations

approach requires O(N ‘N 4o - MMR AOR) single stage evaluations

Asset _Types

using our design model.

4.6.6.3 Partial Open-loop Approximation
In Figure 35, we illustrate a partial open-loop approach to predict the performance within

each AOR. Our design model is used to predict the value ingress to the AOR and provides the

(approximate) distribution f(1]l,,u,) from which the observations I, ={z,2,,...} are drawn.
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We consider the kth state of the “gorilla” air package x;* and adopt a certainty equivalent

observation 1" for the targets and threats.

The “gorilla” air package state x;* and the certainty equivalent observation IF™ of the
targets and threats are combined to estimate the current state %, = P(x1|x{”°" i IE"‘”’”’). Based on the
state estimate %, a control , = u(%,) is determined for each AOR. Given the state estimate %,
and the control %, our design model is used to compute a value in AOR ,

J,.[ f (x2 le’”> CLE w1, )] as a function of the “gorilla” air package state. The estimated

value of the second stage in each AOR i is given by

ji[f(lelo:uo)]=zk‘,*]i[f(xz‘xlﬂk’ilEnemy’ul’IO’uO)]'P(xlAPk)

The overall performance of the second stage value is determined by combining the value

of individual AORs

N

T L)l = S TG 1 ysto)]

i=1

4R -
Ilo-’ty? PPt AORl[fl(xl M Lo ug AOR,
nitia -
State ~ JAoR | o am .
Candidate - [fl(l |1, o)] ( ) )
Control ° -

Option o
J A0% [fl(xlAPN [ 1,4, )] By
Wave Launch Arrive @ AOR Waypoint
(Oth Stage) (1st Stage)

Figure 35 Partial Open-loop Approximation for AOR Prediction with ISR Uncertainty
Using the Surrogate Method as a base controller and MMR as an AOR controller, this

approach requires O(4OR;, ., AORy,...* N jon - MMR,,,,) single stage evaluations using our

Weasel

design model.
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4.7 JAO SCALABILITY ASSESSMENT

As presented in Section 4.2, the goal of this research was to develop ADP algorithms that
produce operationally consistent behaviors for realistic sized JAO scenarios. One immediate
complexity reduction was achieved by adopting a hybrid, multi-rate control architecture that
tailors the application of control, i.e. reactive or proactive, for the battlespace situation at hand;
however, additional complexity reduction was required. Thus, the research was focused on
developing fast and efficient combinatorial assignment and prediction models that form the
foundation of the ADP algorithm. In this end, it was the goal of this research to develop a
spectrum of ADP control strategies that can be mixed and matched to provided a broad range of
performance and computational complexity. This was achieved. In the previous four sections,
the details of the efficient combinatorial assignment algorithms along with the fast analytic
prediction models were presented. Accordingly, Figure 36 summaries the ADP algorithms that
were developed and implemented as part of this research. Again, depending on the battlespace
situation, different assignment algorithms and prediction models can be combined to produce a

tailored application of control.

Control Space Asmgnment AIqontI%
* Retasker using Combinatorial Rollout =

* Aborter using Combinatorial Rollout :

+ Target Tasking using MMR

* ‘AOR Tasking using MMR
L]

ADP Algorithm
JAO Controller .
igertms u, (%)= arg max )f{g(xuu.)”.u(*

Target Tasking using Surrogate Methdd

~ AOR Tasking using Surrogate Method
_Target Tasking using Combmatonal Ro y

Future Value Predlctlon Alqonthms
¢ {-Stage/1-Wave = =
2-Stage/1-Wave with Retaskmg
2-Stage/2-Wave . S
4-Stage/2-Wave wnh Retaskmg T
2-Stage/1-Wave with AOR Tasking -

\Stage/ 1-Wave with AOR Taskmg & ISR

Figure 36 ADP Algorithms Developed and Implemented in Hybrid, Multi-Rate Control
Architecture

Predict Future Value

-

L J
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Having developed and implemented these algorithms, the question remains. Do these

ADP algorithms produce proactive, operationally consistent behaviors in real-time or near real-

time for realistic sized JAO scenarios? The behavioral part of this question is the topic of the

next chapter. Here we present the scalability assessment for the different ADP combinations

implemented for generating a base mission queue without AOR tasking. Figure 37 presents the

computation complexity of the base mission controllers which represent an upper bound on the

computation complexity of the ADP implemented in ALPHATECH’s BMC3 Development

1.0E+10
1.0E+08
1.0E+06

Assignment Algorithms '
=== Maximum Marginal Return (MMR)
=== Surrogate Seeded with MMR
=== Surrogate with Restarts
= Combinatorial Rollout

Prediction Models

1-Wave/1-Stage Markov Chain
1-Wave/2-Stage Markov Chain with Retask

2-Wave/2-Stage Markov Chain
2-Wave/4-Stage Markov Chain with Retask
2-Wave/4-Stage Simulation-in-the-Loop

1.0E+00
1.0E-02

SOp eom

Estimated Solution Time (min)
3

100
Number of Target Locations

Figure 37 Scalability Assessment of ADP Algorithms Developed and Implemented for Hybrid,
Multi-Rate Control Architecture (Single CPU)

Environment. Note, the shaded area represents control solutions that require more than 15

minutes to compute. Furthermore, a 100-target scenario corresponds to approximately 30 target

locations.
The assumptions for this assessment are as follows:
¢ Base Mission Controller Generating Mission Queue
e Base Resources: 24 Strike and 12 Weasel Aircraft
e Maximum Package (6 Strike, 2 Weasel)
e 3.57 DMPIs per Target Location
e MMR for Future Base Loop Closures
¢ CE Analytical Predictors
e Performance on 850 MHz CPU
e Distributed on 125 CPU Array
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It is seen from this figure that there is true a spectrum of solution approaches in terms of

computation complexity. Figure 38 illustrates the computation complexity if is assumed that the

AOC has distributed computational capability.

Assignment Algorithms E O Y Minutes
= Maximum Marginal Return (MMR) =~ 1.0E+06 :
—  Surrogate Seeded with MMR e 4
=== Surrogate with Restarts [
~—— Combinatorial Rollout = 1.0E+04 |
Prediction Models S 1.0E+02
B 1-Wave/1-Stage Markov Chain 3
€ 1-Wave/2-Stage Markov Chain with Retask 9 1.0E+00 — |
A  2-Wave/2-Stage Markov Chain = . ¢
O  2Wave/4Stage Markov Chain with Retask £ 1.0E-02
<  2-Wave/4-Stage Simulation-in-the-Loop k7]
w 1,0E'04 =T T T T | S B |

. 100
Number of Target Locations

Figure 38 Scalability Assessment of ADP Algorithms Developed and Implemented for Hybrid,
Multi-Rate Control Architecture (125 CPUs)

Thus, it is seen from the two figures above that there is a variety of base mission
controller that can generate mission queues in near real-time for realistic sized JAO scenarios. In
particular, the distributed MMR with analytical 4-stage/2-wave predictors provides near real-
time computation performance, for scenarios with approximately 60 target locations. Likewise,
the distributed Surrogate Method with analytical 2-stage/2-wave predictors provides near real-
time computation performance, for scenarios with approximately 60 target locations.

In summary, this scalability assessment illustrated that real time or near real-time
computational performance is achievable for most of the ADP algorithms developed and
implemented as part of this research. Furthermore, this scalability assessment indicated that
many of the ADP controllers could provide near real-time performance for scenarios with 250

targets if some modest parallel computation capability was available in an AOC.
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5 EXPERIMENTATION RESULTS

In this section, experimental results that illustrate proactive, operationally consistent

control strategies for the ADP algorithms developed in the previous section will be presented.
The primary emphasis of this experimentation is to demonstrate the benefits of proactive versus
reactive control strategies for relevant JAO problems. In this end, control behaviors and
empirical simulation results will be presented to highlight the differences between the two
control paradigms. All experimental results were generated using ALPHATECH’s BMC?
Development Environment.

The presentation of these experimental results is organized such that we begin with
simple JAO problems and then build upon them in both terms of scenario complexity and

controller complexity.

5.1 DEMONSTRATION SCENARIO

The scenario used for this assessment is based on the Cyberland Scenario provided by the
DARPA/JFACC Program Office. For this scenario, it has been assumed that a higher level of
decomposition, both spatial and temporal, of the JFACC objectives has been performed. The
enclosed scenario represents a 24-hour segment of the air campaign and the Area of
Responsibility (AOR) is the Northern Air Defense (AD) District in West Cyberland. Key
features of this scenario include approximately 100 targets and threats and 36 air vehicle assets
of which there are 24 generic strike aircraft and 12 generic weasel aircraft. As noted in Section
3, targets may be known, unknown (hidden), time critical, or destroyed. Threats may be active,
inactive, unknown, repairing, or destroyed. There is also uncertainty in the interaction between
enemy and friendly assets that depends on the characteristics of the target or threat and the
composition of the air package involved, i.e. the number of strike and weasel aircraft, and also on
the geometry of the interaction.

Figure 39 illustrates the target/threat laydown used for this experimental evaluation. It is
seen from this figure that there are 24 normal target locations, which are represented by ’ A
normal target is a generic target that is known for all time and has 4 Designated Mean Points of
Impact (DMPIs). The scenario also contains 4 TCT regions, each containing 2 emerge locations.
In this context, TCTs are static, and are characterized by a single DMPI per emerge location.

The TCTs emerge and hide based on stochastic processes; through the combination of temporal
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and event-based stochastic transitions, the TCTs are on average only vulnerable for

approximately 15 minutes in this scenario. When the TCT is hiding, it is represented by ’, and
when vulnerable, it is represented by ’ It is also seen from this figure that the scenario
contains 13 SAM sites of varying size. The position of the SAM site in this scenario is
represented by ’, and the ring around the SAM represents its lethal range. The color of this

ring represents the status of the SAM sites; the color scheme is as follows: red represents radar

on, yellow represents radar off, green represents under repair, and black represents unknown.

Active

SAM Site & ¥ Aircraft

Repair Carrier

SAM Site

/ Air Package

A

\

C ; '\ Y
Inactive | f \
SAM Site TCT Region

Normal

Target Unknown SAM Site —v

Figure 39 Demonstration Scenario Used for Experimental Evaluation
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In terms of the friendly assets, there is an aircraft carrier positioned off the northern coast,

which contains half of a squadron of generic strike and weasel aircraft available for this JFACC
objective. There is a total of 24 strike aircraft and 8 weasel aircraft. As mentioned in the
previous section, the controller composes and tasks air packages to target locations. In this
scenario, an air package is represented by (’ﬂ, and its mission is denoted by wmme=. It is assumed
in this scenario that the maximum air package size is 6 strike and 2 weasels. It is also assumed
that aircraft are assigned to air packages in increments of 2. Given the air package composition
and tasking, the controller has the capacity to define a risk avoidance route. For some
experiments, this route is determined a priori, and in others, the route selection is part of the
control space. Finally, it is assumed in this scenario that air vehicles do not have adequate range
to circumvent this defense posture.

Finally, as noted in Section 4, a relative valuation scheme is required to distinguish
control options. For this scenario, all normal targets are valued at 40 points and TCTs are valued
at 400 points. In terms of the airborne assets, both strike and weasel aircraft are valued at 40
points each. Note, SAM sites have no explicit value, however, they clearly have implicit value
given that they affect the attrition of aircraft. Given this valuation scheme, the performance
metric used for the control optimization is the sum of the target value destroyed minus the
aircraft lost.

In summary, Figure 39 illustrates the baseline scenario that was used for a series of
experiments that illustrate proactive, near real-time control performance of the controllers
presented in Section 4. Again, the presentation of these experimental results is organized such
that we begin with simple JAO problems and then build upon them in both terms of scenario
complexity controller complexity. As the complexity increases, minor changes to the baseline

scenario were required and will be called out in the appropriate sections.

5.2 1-STAGE/1-WAVE PROBLEM

The first set of experiments were performed to assess the accuracy of the analytic
predictors over a set of control decisions. The details of this analytic prediction model are
contained in Section 4.6.1. To perform this assessment, a one-wave problem was set up where
the initial mission queue was defined a priori and no loop closures were permitted during the

execution of the wave, i.e. no retasks or aborts. In this situation, the wave begins when all air

TR-1048 80 11/30/2001




Use or disclosure of data marked by an asterisk (%)

AL P H AT E C H I n C is subject to the restrictions on the cover page.
A L] — -

packages are launched at time /=0, and the wave ends when all air packages return to base.

Results will be presented for the cases when the initial status of the enemy assets is either known
or is specified by a distribution. Finally, straight line routing was used for all air packages since
this condition results in higher attrition, and thus will highlight the prediction accuracy of the
baseline analytic prediction model presented in Section 4.6.1.

The first experiment that was run to

make this assessment was for the case when X, - X
- |Feasible
the initial status of the enemy assets was know Current
y State States
a priori. This situation is illustrated in Figure ’
40 where the initial state is known at t=0, and Wave Launch Wave Return-to-Base

(Oth Stage) (1st Stage)

Figure 40 Battlespace State Propagation
Diagram for Known Initial State

the battlespace state is propagated to the wave
return-to-base. Using the prediction model
presented in Section 4.6.1, the estimated
performance of the air package assignment was obtained and compared to simulation runs. With
10,000 Monte Carlo performance runs, the performance prediction using the 1-stage/1-wave
prediction model was statistically equivalent to the simulated performance.

Given the experimentally demonstrated UL g "7
accuracy of the 1-stage prediction model given Cu:‘l?ent W
a known initial state, the next step was to State -

- -
-~
- .
e ——— L
-
-
-

assess the accuracy of the prediction model for [

_ ' Wave Launch Wave Return-to-Base
an uncertain initial state of the enemy. As (0th Stage) (1st Stage)
discussed in Section 4.6, many of the multiple Figure 41 Battlespace State Propdgation
state prediction models require the propagation Diagram for Unknown Initial State
of the battlespace state given uncertain enemy status. As in the previous evaluation, the air
package composition and tasking is specified as part of the initial state x,. Figure 41 illustrates
the 1-stage prediction problem for the case where the initial state is defined by a distribution.
Given the air packages and enemy status distributions at t=0, the battlespace state was
propagated to the return-to-base without any retasking or aborts. Based on the return-to-base
distribution obtained from the prediction model, the expected performance was computed. For
the empirical evaluation, 2,000,000 Monte Carlo evaluations were obtained by first generating

200 realizations of enemy status at t=0 and then for each sample, obtaining 10,000 samples of the
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expected performance. Based on these evaluations, it was determined that the 1-stage prediction

model was statistically optimistic by 6%.

5.3 2-STAGE/1-WAVE WITH RETASKING PROBLEM

The next set of experiments were performed to assess the performance of the 2-Stage/1-
Wave Retasking model in both terms of prediction quality and control solution quality. The
details of this analytic prediction model are contained in Section 4.6.2. For this 1-wave problem,
all air packages launch at 7=0, and when a TCT emerges, the retasker controller outlined in
Section 4.5.1 is called to divert ingress air packages to the TCT. As before, the wave ends when
all air packages return to base. As noted in Section 4.6.2, the difficulties of modeling the future
retasking is the loop closure is dependent on the TCT emerge event which is stochastic based and
multiple TCT emerge events can occur during a single wave. The results of this assessment will
be presented below.

To perform the prediction X

accuracy assessment, the one- Retask 1 H u,
Air PaCkages Feasible  Control
States Space.-~,

the initial mission queue was Current  __.--=3p7
State .-~~~

wave problem was set up where

defined a priori and this mission

-
~—
~w
-
~~
-
-
-~
-

queue was executed. Figure48 | 7T/

illustrates the 2-Stage/1-Wave

retasking prediction problem Wave Launch TCT Emerge Wave Return-to-Base
(0th Stage) (1st Stage) 2nd Stage
where the initial state includes the ( )
initial mission queue and the Figure 42 Battlespace State Propagation for 2-Stage/I-
Wave Retasking Problem

enemy status at r=0. Results will
be presented for the cases when the initial status of the enemy assets is either known or is
specified by a distribution. To perform this assessment, the analytic model with retasking was
compared to experimental evaluation and to the prediction model that does not model the retask

loop closure, i.e. reactive control strategy.
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Figure 43 illustrates the

o
% 140 - e
prediction accuracy of the two S 120 -~ 99.5% Confidence
analytic prediction models compared o 100 g '
Q -
to empirical evaluation. For the P 80 '
empirical evaluation, 10,000 Monte § 60 o
Carlo evaluations were performed to s 3
. 2 40 +-
generate the empirical performance o A
3 ‘
prediction. It is seen from the figure 8 2 : |
o - 1 FI
that the analytic model that accounts 5 0 \Stage 2Stage Empirica
-Sta - iri
for the retasking loop closure is within
11% of the true expected Figure 43 Prediction Accuracy of Different Design

Models for the 2-Stage/I-Wave Retasking Problem

performance. Furthermore, the _
with Known Initial State xg

analytic model that does not account

for the retasking loop closure is only within 50% of the true expected performance.

assessment was performed for the = ~—99.5% Confidence L

situation where the initial status of the 5 50 e

enemy is uncertain and is specified by % 40 +

distributions. Given the air packages i 30

and enemy status distributions at t=0, g 20 i

the battlespace state was propagated E 10 L

to the return-to-base with retask loop S f _ B

closures for TCT emerge events. As % 0~ _—— i »

for the known enemy status case, 1-Stage 2-Stage  Empirical
results were obtained from the 2- Figure 44 Prediction Accuracy of Different Design

Stage/1-Wave Retasking Predictor, 1- Models for the 2-Stage/I-Wave Retasking Problem

) with Unknown Initial State xp
Stage/1-Wave Predictor, and

experimental evaluation. For the empirical evaluation, 33,500 Monte Carlo evaluations were
obtained by first generating 335 realizations of enemy status at t=0 and then for each sample,
obtaining 1,000 samples of the expected performance. Figure 44 illustrates the prediction

accuracy of the two analytic prediction models compared to the empirical results. It is seen from
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the figure that the analytic model that accounts for the retasking loop closure is statistically

equivalent to the true expected performance. Furthermore, the analytic model that does not
account for the retasking loop closure provides a poor prediction and is only 6% of the true
expected performance. Thus, it is seen from this and the previous assessment that 2-stage/1-
wave retasking analytic prediction model does provide a good approximation to the true
expected performance. Furthermore, not unexpectedly, the 1-Stage/1-Wave analytic prediction
model does not provide a good approximation to the true expectation.

Having presented the prediction accuracy, the question remains whether the higher
fidelity, i.e. proactive, prediction model that anticipates the future retasking loop closures
improves the base mission control solution. To perform this assessment, two mission queues
were generated: one using the 2-stage analytic predictor that anticipates the retasking loop
closure and one using the 1-stage analytic predictor that neglects the retasking loop closure. In
both cases, the Surrogate Method, which was presented in Section 4.3.3, was used to search the
control space, and the initial status of the enemy and thus the initial state x, is known. Figure 45

illustrates the two mission queues produced.

Reactive A Proactive

TCT Divert TCT Divert
Radjus Radjus

\,

/"'—.‘\

4

Figure 45 Behavioral Comparison of Proactive Versus Reactive Control Strategy for 2-Stage/I-
Wave Retasking Problem

It is seen from this figure that the mission queue generated using the reactive prediction
model assigns air packages to TCT locations. In comparison, the mission queue generated using
the proactive prediction model does not assign air packages to any TCT locations, but instead

strategically locates air packages such that each TCT has a minimum of two retask options. The
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significance of this differing mission assignment is that the 2-stage model anticipates the fact that

air packages in the vicinity of the TCT regions can be retasked in the event that a TCT emerges;
if no TCT emerges, the air packages strike normal targets. Thus, for the 1-stage mission queue,
air packages fly to TCT location and if no TCT emerges, the air package cannot achieve any
positive value. On the other hand, for the 2-stage solution, air packages fly to normal targets in
the vicinity of TCTs. If a TCT emerges during ingress, a retasking solution exists since an air
package will be in range; if no TCT emerges, the air packages proceed to their normal targets
and achieve positive value. Thus, by anticipating the TCT emerge event and the subsequent loop
closure, resources can be more effectively tasked.

Having illustrated the behavioral

differences between the base mission 500 "‘--79'9.5% Confldence )
solutions, the performance numbers will ’ e
now be presented. Figure 46 illustrates the 400

300

performance and empirical performance

prediction for the two mission queues.

Note, empirical results were obtained using

T

T T

1-Stage 1-Stage 2-Stage 2-Stage
Pred Emp Pred Emp

10,000 Monte Carlo samples. It is seen

Expected Total Value Accumulated

from this figure that 2-stage control solution

exhibits a statistically significant

performance improvement over the 1-stage Figure 46 Control Performance for the 2-

control solution. Furthermore, as expected, Stage/I-Wave Retasking Problem

the predicted performance of the two solutions is pessimistic. In the case of the 1-stage solution,
the predicted performance does not account for any retasks, whereas the empirical solution does
permit reactive retasking to a TCT emerge event. On the other hand, the lower predicted
performance of the 2-stage model was identified in previous paragraphs to be related to the

approximations relative to the uncertain loop closure time.
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The final piece to the performance

tory is to compare the proactive vers = :
story is to comp p ive versus 3 1E46
reactive controller complexity for this s {Es5 '
= 1E+5 T+
particular scenario. Figure 47 illustrates the § _ -
(re +4 -
number of 1-stage prediction function calls S
5 1E+3 -
required to produce a control solution for §
= 1E+2
the different control approaches. Note, as g ¥
: —
highlighted in Section 4.6.3, a single stage 8 1E+1
prediction model may require hundreds of 1E+0 -
1-Stage 2-Stage
one-stage prediction function calls to
produce the estimated performance for a Figure 47 Controller Computational
control option. It is seen from this figure Performance for the Z-Zage/l -Wave Retasking
Problem

that the 2-stage prediction algorithm only

requires a marginal 0.5 orders of magnitude more function calls. In terms of clock time, the
reactive, 1-stage algorithm computes a base mission queue in ~1 minutes, whereas the proactive,
2-stage algorithm computes a higher quality mission queue in ~5 minutes.

To summarize these results, the 2-Stage/1-Wave with Retasking problem illustrates the
benefits of anticipating future TCT emerge events and subsequent retasking controller loop
closures. It was shown that the analytic prediction model that approximates the future loop
closure does provide an accurate prediction for a given control option both for the cases where
the initial enemy status is deterministic or defined by distributions. Furthermore, it was shown
that using the analytic prediction model that anticipates the retasking loop closure produces
proactive control solutions that strategically position air packages near TCT regions. Finally,
experimental results show that the anticipatory approach provides a statically significant

performance improvement over control solution that only reacts to the TCT emerge event.

5.4 2-STAGE/2-WAVE PROBLEM

In the previous section, the benefits of proactive versus reactive control were illustrated
for the case when the prediction horizon was 1-wave but included the potential for retasking loop
closures. In this assessment, the complexity of the problem is increased by extending the

prediction horizon to include the second wave, without the potential for retasking loop closures.
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Thus, this experiment will highlight the benefits of performing proactive control over a 2-wave

problem. Accordingly, the 2-Stage/2-Wave prediction model presented in Section 4.6.3 will be
used for this experiment.

To show this benefit, the scenario was constructed such that all normal targets have
terminal time constraints, i.e. expiration deadlines, on their value, and these constraints were
established such that they become active during the second wave execution. Additionally,
routing risk was added to the control space; in this context, the controller could choose either a
high or low risk route for the entire wave. The combination of target value deadlines and routing
provides a design trade of managing risk and execution time—through either target tasking or
route selection—to maximize the two-wave performance. Thus, for this two-wave problem, the
controller determines the initial mission queue and routing option using a two-wave prediction
model. Then, the air packages launch at #=0 and ingress to their respective targets, deploy their
munitions, and egress to base. When all air packages return to base, the controller then
determines the second wave mission queue and routing option using a 1-wave prediction model.
Again the air packages launch from base, ingress to their respective targets, deploy their
munitions, and return to base. The second wave—and the experiment— is complete when all air
packages return to base. For this experiment, all mission queues were generated using the
Maximum Marginal Return assignment algorithm discussed in Section 4.5.3.

As noted in Section 4.6.3, the difficulty of a 2-wave prediction is modeling the loop
closure and subsequent mission generation at the end of the first wave. This is a difficult
problem because there is a combinatorially large number of possible states at the end of the first
wave. As a further complication, all of the assignment algorithms outlined in Section 4.3
produce a discrete mission queue for a discrete number of resources; thus, there is no control
algorithm that maps a surviving aircraft distribution to a mission queue distribution. Given these
complexities, a variety of 2-stage/2-wave prediction models will be assessed in this section. As
in the previous sections, an assessment of the prediction quality and control performance will be

made for each of these approaches.
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To perform the prediction
X
accuracy assessment, the two- Task Air m Feaslb|e28tates
wave problem was set up where Packages Fe:(s1|ble Col::rol LN
the initial mission queue was X States ___ Spacg-~~pe<_
Current __.--7
defined a priori; thus, the only State __.---~
loop closure occurs when the first | TTSeee._

wave ends and the base controller

determines the second wave
L. . Wave Launch Wave Return-to-Base Wave Retumn-to-Base
mission queue. Figure 48 (Oth Stage) (1st Stage) (2nd Stage)

illustrates the 2-stage/2-wave
Figure 48 Battlespace State Propagation for 2-Stage/2-

prediction problem where the Wave Problem
initial state includes the initial
mission queue and the enemy status at 7=0. The battlespace state is propagated to the 1% wave
return to base, and based on some approximation, the 2" wave mission queue is modeled. Given
the 2™ wave mission queue and the distribution over the enemy status, the battlespace state is
propagated to the end of the 2™ wave. Based on the distribution of the battlespace at the end of
the second wave, the performance metric is computed.

To perform this assessment, 500 - -
the 2-wave prediction models

~—99.5% Confldence ‘ : g

presented in Section 4.6.3, which

include random sampling, certainty
equivalence, and aggregated
approximation, are compared to
experimentally generated expected

performance. Figure 49 illustrates the

prediction accuracy of the different

Expected Total Value Accumulated

Emp RS RS CE CE AG AG
3000 100 Mean Mode Num Size

two-wave prediction models

compared to empirical evaluation. For

the empirical evaluation, 10,000 Figure 49 Prediction Accuracy of Different Design
Monte Carlo evaluations were Models for the 2-Stage/2-Wave Problem

performed to generate the empirical performance prediction. It is seen from this figure that the
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two random sampling approaches are statistically equivalent to the empirical expected

performance. Note, RS # represents random sampling using # realizations of the battlespace
state at the end of the first wave; for each realization, the mission controller is called to produce
the second wave mission queue. It is also seen from this figure that the two certainty
equivalence approaches are within 21% of the true expected performance. Note, CE Mean/Mode
represents certainty equivalence using the mean/mode of the battlespace state at the end of the
first wave to generate a single 2" wave mission queue. Finally, it is seen from this figure that
the aggregate approximation approaches are within 64% of the true expected performance. Note,
AG Num represents the aggregation approach that reduces the number of air packages that are
launched and AG Size represents the approach that reduces the size of the air packages launched.
Thus, a spectrum of 2-wave prediction models with varying accuracy, randomness, and
computation complexity exist. We now direct our attention to how well these models support the
proactive control decision being made during the first wave mission generation.

Having presented the prediction accuracy, the question remains whether the higher
fidelity prediction models improve the initial base mission control solution. To perform this
assessment, initial mission queues were generated using all of the 2-wave prediction models
presented above. Again, the MMR assignment algorithm was used to search the control space.
To provide a comparison between proactive and reactive control techniques, mission queues
were generated using the 1-stage/1-wave prediction model and the 2-stage/2-wave prediction
models. In both cases, the initial status of the enemy and thus the initial state x, is known. Figure
50 illustrates the initial mission queues produced by the reactive control technique and a
representative proactive control technique using one of the 2-stage/2-wave prediction models. It
is seen form this figure that the proactive control approach chooses a low risk route for the initial
wave but chooses not to attack the furthest distance targets. In contrast, the reactive control
solution also chooses low-risk routes, but chooses to strike targets that require longer ingress and
egress times. The net impact of further targets and low risk routes increases the 1-wave control
solution expected execution time by 30% over that of the two-wave control solution. This 30%
increase in expected wave execution time severely limits the target opportunities during the

second wave.
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Proactive

Figure 50 Behavioral Comparison of Proactive Versus Reactive Control Strategy for 2-Stage/2-

Having illustrated the
behavioral differences between the
base mission solutions, the
performance numbers will now be
presented. Figure 51 illustrates
the empirical performance for the
different mission queues generated
using 1-stage and 2-stage
prediction models. Note, empirical
results were obtained using 10,000
Monte Carlo samples. It is seen
from this figure that the
performance of the 2-stage control
solutions is mixed. From the

prediction assessment above, it is

Wave Problem

Expected Total Value Accumulated

—s95% Confidence

400

300

AG AG
100 Mean Mode Num Size

CE CE

Figure 51 Control Performance for the 2-Stage/2-Wave

Problem

known that the random sampling approach provides an accurate, albeit noisy, estimate of the

expected performance. Thus, this prediction model serves as a baseline to highlight the
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achievable performance improvement over the 1-stage approach. Furthermore, the random

sampling approach provides a baseline to compare the different 2-wave approaches. It is seen
from this figure that the baseline proactive control approach provides a 93% improvement over
the expected performance of the reactive control approach. Relative to the other 2-wave
approaches, it is seen that the certainty equivalence using the mode is statistically equivalent to
the baseline, the certainty equivalence using the mean is within 14% of the baseline, the
aggregate approach reducing the number of 1% wave air packages is within 45% of the baseline,
and the aggregate approach reducing the size of the 1 wave air packages is within 52% of the
baseline. Thus, the certainty equivalent approaches provide superior performance over the
aggregate approaches. Furthermore, it is believed that the certainty equivalence using the mode
provides superior performance over the certainty equivalence using the mean because the mode

amplifies the differences between the good and the bad control options.

The final piece to the 1E48 4 e
performance story of the different o 1E+7 : k — : e _— 'E -
proactive, 2-wave approaches is to g 1E+6 ; : : -
view the controller complexity for -_§ 1E+5 +— , —} =
this particular scenario. Figure 52 u§_ 1E+4 : . B = - :
illustrates the number of one-stage ~ § 1E+3 : ’ —
prediction function calls required % 1E+2 - — -
to produce a control solution for % 1E+1 +— ’ : - —
the different control approaches. g 1E+0 + . T - o n
Note, as highlighted in Section 4.6, © iW RS CE CE AG AG
a single 2-stage prediction model 100 Mean Mode Num Size
may require hundreds of one-stage Figure 52 Controller Computational Performance for

prediction function calls to produce the 2-Stage/2-Wave Problem

the estimated performance for a control option. It is seen from this figure that the baseline
solution requires approximately 5.0 orders of magnitude more function calls than the 1-wave
control solution. Relative to the 2-wave control solution, the certainty equivalence approaches
require approximtely 2.0 orders of magnitude less function call than the baseline, and the

aggregate approaches require approximately 4.5 order of magnitude fewer function calls.
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In summary, this assessment highlighted the benefits of performing proactive versus

reactive control over a 2-wave problem. As highlighted in Section 4.6.3, there are a variety of
ways to approximate the loop closure that generates the 2" wave mission queue, and we have
chosen to illustrate random sampling, certainty equivalence, and aggregate approaches where the
random sampling approach was used as a baseline to compare prediction accuracy and control
solution quality. From this assessment, it was determined that proactive control, which
anticipated the deadlines in the second wave and determined 1* wave missions to minimize risk
and execution time, provides a substantial performance improvement over non-anticipatory, i.e.
reactive, control strategies. Furthermore, it was shown that the certainty equivalence control
approach does provide an accurate prediction of the expected 2-wave performance and does
produce high-quality control solutions at a substantial reduction in computation complexity when
compared to the baseline. Finally, it was shown that the aggregated approaches neither provide

an accurate prediction of the 2-wave predicted performance nor provide quality control solutions.

5.5 2-STAGE/1-WAVE MODEL AOR TASKING UNDER UNCERTAINTY
PROBLEM
In the previous section, the benefits of proactive versus reactive control were illustrated
for a 2-wave problem with stringent terminal constraints. In this assessment, the complexity of
the problem will be increased to include AOR tasking under uncertainty. Thus, this experiment
will highlight the benefits of anticipating the arrival of information and closing the loop in the
context of AOR tasking. Accordingly, the 2-Stage/1-Wave AOR Tasking prediction model

presented in Section 4.6.6 will be used for the experiment.
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To show this benefit, the £

standard scenario presented in Section West AOR Gorilla Air

5.1 was modified by making all _.—._Tasking Point / Package
S East AOR
RN A 9/ Tasking Point

targets of the TCT type and by
including AOR points and ISR
collection assets. Given that ISR
collection is explicitly modeled in this
scenario, perfect state information
about the enemy status is not assumed

West _AOR .

for this experiment during execution. L &

Note that in previous experiments, the
battlespace state at loop closures was - 1 ISR Collection

always perfectly observed, and I Aircraft

uncertain state information was only
Figure 53 Modified Demonstration Scenario Used for

captured within the prediction model AOR Tasking Under Uncertainty Problem

for future loop closures. Figure 53

illustrates the modified scenario used for this experiment. It is seen in this figure that the
scenario now includes two AORs and ISR assets that have a priori defined missions to fly from
left to right. Since we only have perfect state information when an ISR asset is within range of
an enemy asset, our knowledge of the enemy state is represented by a distribution at any given
time. This knowledge is represented by the rings in the SAM’s lethal range where the different
colors represent different modes. Thus, the area of the ring represents the probability of being in
a particular state. If an ISR asset is within range of the SAM, the color of the SAM’s range is
solid to reflect perfect observation. Once the ISR asset is out of range of the SAM site, the status
information begins to decay according to a transient Markov process, and eventually achieves a

steady state distribution. Figure 54 illustrates this transient behavior.
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Having no information about the enemy

. 1ynce rvaﬁ°“ Closur state
status at =0, it is reasonable to assume Initia ¢°bse & op steady
1
that all assets are in a steady state 5 097
condition. For this experiment, the steady 8§ gg |
.n "
s ' . o
state distribution for the targets is & 0.6 1 [ Unknown
2 05 1 O Inactive
Pknown:0-5, Punknown::0~5, and Pgeaqs=0. For ‘3-" 04 B Active
e E o
the SAMs, the steady state distribution 1s 3 g :
SllCh that Pactivezo. 4, Pinactive=0.35, 0'1
0 1
Panknown:0-25, Prepairzoa and Pdead:0~ °cE 5583883 23R
. . orZI2NRIIIS
The execution sequence for this Time

scenario is as follows:
Figure 54 Markov Transient Response of Known

* Based on uncertain initial SAM Site Status Distribution

information, it is assumed that
enemy status at £=0, i.e. xy, is governed by steady state distributions.

e Given this information, the controller composes and tasks gorilla air packages to the
AORs.

¢ The gorilla air packages launch at #=0 in ingress to their respective AORs using straight
line routes.

e During ingress, the ISR assets along with the gorilla air packages collect observations
about the enemy status.

e Upon each gorilla air package’s arrival to its AOR, a controller decomposes it into
smaller air packages and assigns them to particular target locations based on the
information collection.

e Air packages ingress via straight line routes to their respective target locations, deploy
munition, and egress back to base.

e Wave ends when all air packages return to base.

Given these modifications to the base scenario and the execution sequence above, the
proactive base mission controller must anticipate the ISR collection, information degradation,
and the AOR loop closure mapping in order to make optimal gorilla package composition and
tasking. Note that for all experimental results presented in this section, the base mission queues,
i.e. gorilla air package composition and tasking, are generated using the Surrogate Method
discussed in Section 4.5.6. Likewise, all AOR taskings, i.e. decomposition of gorilla air package
and air package composition and tasking, are generated using the Maximum Marginal Return

assignment algorithm discussed in Section 4.5.3.
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As noted in Section 4.6.6, the difficulty of a 2-stage/1-wave AOR tasking under

uncertainty prediction model is modeling information arrival and degradation and the loop
closure upon arrival to the AOR. This is a difficult problem because there is a combinatorial
large number of possible states upon arrival to the AOR due to gorilla package attrition and
information arrival and degradation. As a further complication, all of the assignment algorithms
outlined in Section 4.3 produce a discrete mission queue for a discrete number of resources; thus,
there are no control algorithms that map a surviving aircraft distribution to a mission queue
distribution. Given these complexities, a variety of AOR tasking prediction models will be
assessed in this section. As in the previous sections, an assessment of the prediction quality and

control performance will be made for each of these approaches.

To perform the
. L={2Z,, Zyper} P(x,]l;) U X,
prediction accuracy 171513 £29**]—> Foagible — Control Feasible States
Information State 1)
A States Space .

assessment, the 1-wave "
P(x,)
AOR tasking problem was Initial
oy State
set up where the initial
gorilla mission queue was

defined a priori. Thus,

"T""""" { <
the only loop closures lmomaﬂ?“; Packages R
L —Degradatiorg| to Targets “
occur when the gorilla air  waye Launch Arrive @ AOR Waypoint Wave Return-to-Base
(0th Stage) (1st Stage) (2nd Stage)

packages arrive at the

AORs; upon arrival, the Figure 55 Battlespace State Propagation for 2-Stage/I-Wave AOR
AOR tasking controller Tasking Problem with ISR Collection and Degradation

determines the low level air package composition and tasking to target locations. Figure 55
illustrates the 2-stage/1-wave AOR tasking under uncertainty prediction problem where the
initial state includes the initial mission queue and the enemy status at #=0. The battlespace state
is propagated to the AOR rendezvous point, and based on some approximation, the AOR tasking
is modeled. Given the AOR tasking and the distribution over the enemy status, the battlespace
state is propagated to the end of the 1* wave. Based on the distribution of the battlespace at the

end of the second wave, the performance metric is computed.
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To perform this assessment,

the 2-stage AOR prediction models

_—99.5% Confidence
presented in Section 4.6.6, which a B T

include random sampling, certainty

equivalence, and partial OLF, are

compared to experimentally

generated expected performance.

As an additional comparison, the

1-stage prediction model that does

. . . ) Emp RS1000 CE Partial 1 Wave
arrival and control decisions is Mean OLF

not anticipate future information

Expected Total Value Accumulated
ol

included. Figure 56 illustrates the

prediction accuracy of the different Figure 56 Prediction Accuracy of Different Design
Models for the 2-Stage/l-Wave AOR Tasking Under

two-wave, AOR prediction models
v P Uncertainty Problem

compared to empirical evaluation.
For the empirical evaluation, 23,500 Monte Carlo evaluations were performed to generate the
empirical performance prediction. It is seen from this figure that the 2-stage AOR prediction
algorithms are consistently optimistic by approximately 15%. As discussed in the previous
section, the random sampling approach should provide an accurate, albeit noisy, estimate of the
expected performance. However, as seen in the above figure, the random sampling approach is
producing an optimistic estimate of the expected performance. From a thorough evaluation of
prediction model, it was determined that there is a model mismatch between the prediction
model and the simulator. In the simulator, information degradation begins when the ISR
collection asset flies out of range of the enemy asset; however, in the prediction model,
information degradation begins immediately after detection, i.e. when the asset first comes into
range. Thus, the prediction model is overestimating the transient time for information
degradation. Finally, it is seen in the above figure that the 1-stage prediction model, which does
not account for information arrival and subsequent AOR loop closures, is only within 40% of the
true expected performance.

Having presented the prediction accuracy, the question remains whether the higher

fidelity prediction models improve the initial gorilla air package assignment. To perform this
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assessment, initial mission queues were generated using all of the 2-stage AOR prediction

models presented above. To provide a comparison between proactive and reactive control
techniques, mission queues were generated using both the 1-stage/1-wave and 2-stage/1-wave
prediction models. Figure 57 illustrates the initial mission queues produced by the proactive and
reactive control techniques. It is seen from this figure that the proactive control approach
chooses to send all assets to the AOR for which information becomes available. This solution is
attained by all the 2-stage controllers, i.e random sampling, certainty equivalent, and partial
OLF. On the other hand, the 1-stage controller, not able to recognize the arrival of information,
let alone its benefit, selects a uniform allocation of resources to AORs. These results are

consistent with our expectations.

Reactive Proactive

Figure 57 Behavioral Comparison of Proactive Versus Reactive Control Strategy for 2-Stage/1-
Wave AOR Tasking Under Uncertainty Problem
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Having illustrated the

behavioral differences between the 300 F T e A
base mission solutions, the 250 +— 99.5% g
. - Confidence
performance numbers will now be 200 .
presented. Figure 58 illustrates the
150

empirical performance for the

different mission queues generated

using 1-stage and 2-stage

(24
(=]

prediction models. Note, empirical

100 ' |

1-Wave RS10 CE Mean Partial
OLF

o

results were obtained using 20,400

Expected Total Value Accumulated

Monte Carlo samples. It is seen

from this figure that the

Figure 58 Control Performance for the 2-Stage/l-Wave

performance of the 2-stage control
AOR Tasking Under Uncertainty Problem

solutions are all identical, which is
not surprising since there mission queues were identical. In comparison to the reactive control
approach, the proactive controllers produced a 106% improvement in expected performance.
The final piece to the
performance story of the different

(‘ e g.smge

proactive, 2-stage approaches is to

view the controller complexity for

this particular scenario. Figure 59

illustrates the number of one-stage

prediction function calls required

to produce a control solution for

the different control approaches.

e 1-Wave RS10 CE Mean Partial
a 2-stage prediction model may OLF

Control Solution Function Calls

Note, as highlighted in Section 4.6,

require hundreds of one-stage
prediction function calls to produce Figure 59 Controller Computational Performance for the
the estimated performance for a 2-Stage/1-Wave AOR Tasking Under Uncertainty Problem

control option. It is seen from this figure that the baseline solution requires approximately 2.5
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orders of magnitude more function calls than the I-wave control solution. Relative to the 2-wave

control solution, the certainty equivalence approaches require approximtely 1.0 orders of
magnitude less function call than the baseline, and the aggregate approaches require
approximately 2.0 order of magnitude fewer function calls.

In summary, this assessment highlighted the benefits of performing proactive versus
reactive control for a 1-wave AOR tasking under uncertainty. It was shown that control
strategies that anticipate future information collection, degradation, and loop closures can
provide a substantial performance improvement over control strategies that only react to future

information.
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6 CONCLUSIONS

This research, performed by ALPHATECH, focused on providing military commanders

with the ability to perform real-time dynamic control of military air operations using near
optimal mission replannning for a 24-hour segment of a JAO campaign using control algorithms
that anticipate possible mission modifications due to uncertain future events. The near real-time,
near optimal control decisions being produced consist of the generation/modification of mission
definitions for both assets at base and airborne with the performance goal of achieving the
specified JFACC objective while minimizing the friendly asset losses. The mission definition
includes assignment of resources to targets, high-level routing (by specification of waypoints),
strike package composition, weapon composition, and desired time-on-target. The primary
benefit of this technology is agile and stable control of distributed and dynamic military
operations conducted in inherently uncertain, hostile, and rapidly changing environments.

The JAO problem size investigated includes approximately 100 targets/threats and a
mixture of 50 airborne assets taken from two generic airborne asset types: strike and weasel
aircraft. Strike aircraft attack targets and weasel aircraft strike surface-to-air threats. Risk to the
air packages is introduced via threats such as were surface to air missiles. The size of operation
we chose for our study assumes that some form of geographic decomposition of the battle space
has been specified, and that we are concerned primarily with achieving the specified missions for
a 24 hour period. Hence, there is implicit value in saving assets for future operations beyond the
specified horizon.

For the above JAO problem, there are many interesting dynamics that make it
challenging. The scarcity of aircraft resources forces multiple “turns” of the aircraft in order to
service all of the targets. There are also multiple sources of uncertainty in the problem. There is
uncertainty in the status and location of enemy assets. Targets may be known, unknown, hiding,
emerging, time critical, or destroyed. Threats may be active, inactive, unknown, repairing, or
destroyed. There is also uncertainty in the interaction between enemy and friendly assets that
depends on the characteristics of the target/threat and the relative position and composition of the
air package, i.e. number and position of strike and weasel.

Given this highly uncertain and rapidly changing environment, the JAO control problem
can be viewed as a dynamic decision problem under uncertainty. This class of problems can be

formulated as a Markov decision problem. Exact techniques for control design using this

TR-1048 100 11/30/2001




Use or disclosure of data marked by an asterisk (%)

AL P H AT E C H l n C is subject to the restrictions on the cover page.
[ | — -

approach, such as Stochastic Dynamic Programming (SDP), are computationally expensive, and

do not scale up to the size of the JAO problem of interest. A subtle but significant attribute of
the Markov decision problem formulation is that it produces control strategies that anticipate the
effects of future contingencies, and evaluates the possible actions over all possible future states,
by modeling the future information arrival and control decisions. It is this fact that produces
proactive versus reactive control behaviors. This proactive attribute is desirable for stable and
agile control of the JAO enterprise because future information arrival and control opportunities
are dependent on stringent spatial, temporal, and coordination constraints.

Given the strengths and weaknesses of the SDP algorithm, this research focused on
developing Approximate Dynamics Programming (ADP) strategies that provide the desirable
proactive control behaviors but with near real-time computation effort. The control design
technology is based on combining hybrid state modeling techniques for developing statistical
dynamical models relating mission decisions to evolution of objects in the battlespace, together
with ADP control design techniques that have demonstrated real-time, proactive performance for
other relevant military problems. Accordingly, a spectrum of ADP control techniques were
developed for the JAO problem,; these techniques were developed in discrete event simulations
of JAO scenarios. The major accomplishments of the research were:

o Translated the JAO Control Enterprise into a Dynamical Hybrid State, Discrete Event,
Stochastic Decision Making Problem

e Integrated Emerging ADP Technologies into JAO Feedback Controllers
e Experimentally Demonstrated the Benefits of Feedback Control
e Experimentally Demonstrated Benefits of Approximate Optimal Control
e Developed Innovative Hybrid, Multi-Rate Control Architecture

e Developed Computationally Efficient Control Algorithms that Produce Operationally
Consistent Behaviors

e Extended Control Algorithms to Accommodate Hierarchical Mission Tasking and ISR
Information Collection

In summary, our investigations demonstrated the feasiblility of automating military
operations planning to provide real-time, near-optimal control strategies that achieve operational
objectives while minimizing asset losses. By adopting a hybrid, multi-rate control architecture,
we were able to tailor the application of control at a time scale appropriate to the operational

situation at hand. Within the proposed multi-rate architecture, we developed a spectrum of ADP
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control strategies that produce a range of control decisions, ranging from immediate restasking or

abort decisions to preplanned multiple wave tasking. The solution quality and computation
performance of these algorithms was tested and verified in a JAO discrete event simulator. Our
experiments show that the ADP strategies were able to produce operationally consistent,
proactive control strategies that anticipated likely contingencies and positioned assets for
opportunities of recourse all in either real-time or near real-time. Furthermore, a scalability
assessment indicated that many of the ADP controllers could provide near real-time performance
for scenarios with 250 targets with some modest parallel computation.

The results of this investigation can be extended in several important directions. First,
the algorithms developed in this investigation can be extended to include further modeling
details of a JAO environment, such as detailed weaponeering, additional platform types and
missions. In this manner, the algorithms could then form the basis for a decision aid for an Air
Operations Center (AOC). This decision aid would assist operators in rapidly replanning
missions in the presence of contingencies, and help to generate robust Air Tasking Orders
(ATO). Second, the technology developed in this work can be extended to design robust

autonomous controllers for automated vehicles conducting uncertain missions.
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8 APPENDICES

As noted in previous sections, some of the results that where document in technical

memorandums and conference proceeding are being included to compliment the body of this
report.
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TM-572
Optimal Control Solutions for Stochastic Systems

Jerry M. Wohletz

Abstract

This technical memorandum details the distinction between the different types of control philosophies that are
applicable to stochastic optimal control problems. Stochastic optimal control is defined as the determination of control
variables or parameters that minimize some well-defined criterion subject to the evolution of a stochastic system [1]. For
this control problem, different optimal control policies result from varying the assumptions pertaining to the information
state and from varying the assumptions pertaining to the optimal control structure. This paper focuses on distinguishing
the differences between control approaches that appear to be equivalent, but in fact produce different behaviors. Given
the different optimal control philosophies, a few control techniques will be explored.

Keywords

Stochastic optimal control, approximate dynamic programming. model predictive control.

I. BAsiC PROBLEM
ONSIDER the a stochastic discrete-time dynamical system (2]

Tior = fr (Zp, up,wy), k=01...N-1 (1)

where the state zy € Sk, the control u; € Cy, the random disturbance wy € Dy, and N is the horizon
of interest. The control u; is constrained to take values in a given nonempty subset Ug(z) C Ck
that depends on the current state z, i.e. ux € Up(zx) V z € Si. The random disturbance wy is
characterized by a probability distribution Pi(-|z,ux) that may depend explicitly on z; and u; but
not on values of prior disturbances wg_1, ..., wq.

For all optimization problems, some well-define performance metric is required. Here, we use an
additive performance metric in the sense that the cost incurred at time k, denoted by gg(zy, u, w),
accumulates over time. Furthermore, we add the possibility of a terminal cost denoted by gn(zn).
Because of the presence of the random disturbance wy, the performance metric is a random variable
and the optimization must be performed on the expected cost

N-1
J(zo) = E " {QN(JSN) + > gkl us, wk)} (2)

k=0,1,.
k=0
where the expectation is taken with respect to the random disturbances wy, k =0,1,...,N — 1.

II. OrTriMAL CONTROL FORMULATIONS

In the basic problem formulation above, there is no mention of the form of the optimal control
solution or the availability of future information; depending on the availability of future information
and the structure of the control, fundamentally different optimization problems result. Based on the
desired optimal behavior, the distinction between these different formulations is particularly relevant
when selecting a control design technique.

There are three different stochastic optimal control formulations presented in the following subsec-
tions. The assumptions pertaining to the future information availability and structure of the control
is presented aJong with comments pertaining to implementation. The purpose here is not to identify
solution techniques to the optimization problem, but instead gain some understanding between the
different optimization formulations.

J. M. Wohletz is a Senior Systems Engineer at ALPHATECH Inc., 50 Mall road. Burlington, MA, 01803 USA, (e-mail:
jwohletz@alphatech.com)
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A. Open-Loop Optimal Control

The Open-Loop Optimal Control (OLOC) formulation assumes that no future realizations of the
state are measurable; as a result, the control structure is purely a function of time and consists of

a sequence of actions, i.e. up = {ug, uy,...,un-1}. Given this assumption, the optimization of (2)
subject to (1) over a sequence of controls up = {ug, uy, ..., un-1} based on z(0) is as follows:
N-1
u; = arg min E wic XN) + Xk, Uk, W 3
gminE e o 1{gN( N) k§—:ogk( K, Uk k)} (3)

subject to the constraints
Trs1 = fi (T up, wg), Up € Up(ze) Var € Sk, k=0,1,..,N -1 (4)

Thus, this optimal control approach produces a control solution that is solely a function of time, and
this solution is not updated as more information becomes available.

It is important to note that the optimal control sequence ug accounts for the uncertainty w, wi, . . .,
wy_1. If the initial state z, is uncertain, then the expectation in (3) would be with respect to
Zg, Wo, Wi, ..., Wx-1. Also, for large-scale stochastic problem, this optimal solution is by no means
trival since the expectation over all disturbances is required.

B. Closed-Loop Feedback Optimal Control

The Closed-Loop Feedback Optimal Control! (CLFOC) assumes that future realizations of the
state are measurable and that the control structure consists of an optimal rule px(z) — control law
— at each time k that maps all feasible realizations of z(k) to feasible u(k), i.e. ur = p(zy) €
Ue(zg) V 2 € Sk. A sequence of control laws corresponding to each time k forms a policy 7 =
{uo, p1(z1), ..., pn—1(zn-1)}. It is important to note the differences between the control structure
here and that of OLOC; a control sequence ug consists of a set of ‘actions’ where a control policy 7
consists of a set of ‘strategies’. The optimal closed-loop feedback policy 7* for some initial state x; is
obtained as follows:

7" = argmin F w {gN(mN) +z—:gk($kyﬂk($k)awk)} (5)

w€ll  k=0,1,..,N—-1 poare
subject to the constraints
The1 = fi (Tp, pe(zp),wi), well, k=01,..,N-1

where II is the set of all admissible policies such that uy = u(zx) € Ux(zx) V zx € Si. If the initial
state xo is uncertain, then the expectation would be taken with respect to zg, wo, w1, ..., wy-1and the
resulting policy would be m = {uo(zo), 1(z1), - - -, tn-1(zn-1)}.

An important distinction between the CLFOC and OLOC formulation is that the CLFOC problem
explicitly accounts for the feedback mechanism in the mathematical formulation by modeling future
information arrival and selecting optimal control decisions which depend on the future information.
Thus, the solutlon of the CLFOC problem provides an optimal mapping for all feasible future realiza-
tions of the sfate to control decisions. In comparison, the solution of the OLOC problem produces a
sequence of optimal control decisions that are implemented regardless of the future realization of the
state.

'Dreyfus [1] refers to this approach as Feedback Optimal Control (FOC)
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C. Open-Loop Optimal Feedback Control

Open-Loop Optimal Feedback Control (OLOFC) is a term originally coined by Dreyfus [1], and as
the name implies, is similar to OLOC in its mathematical formulation but differs in implementation.
Like the OLOC formulation, the OLOFC formulation assumes that no future realizations of the state
will be measured. As a result, the control structure is purely a function of time and consist of a
sequence of actions, i.e. ug = {up,uy,...,un-1}. However, unlike OLOC, only the initial optimal
control u;(0) = uy is applied, and the optimization problem is resolved for uj at time k = 1 based on
the actual versus expected realization of the state z(1). Then, optimal control u}(0) = uj is applied,
and the control process repeats until the time ¥ = N. Note, as time progresses, the optimization
horizon shrinks, i.e. at time n, the planning horizonis k =n,n+1,...,N — 1.

Since the arrival of future information is withheld from the optimization problem, the optimization
is identical to the OLOC formulation; the optimization of (2) subject to (1) over a sequence of controls
ug = {ug, uz,...,un-1} based on z; is as follows:

N-1
u, =argmin E  w, {gN(XN) + Z 8k (Xx, ukywk)} (6)

ueU k=0,1,..,N-1 o
subject to the constraints
Tht1 =fk (xk,uk,wk), Uk € Uk(.'L‘k) Vx, € Sk, IC=O,].,...,IV-—1 (7)

Again, this optimal control approach produces a control solution that is solely a function of time.
Having stated the similarities and differences between OLOFC and OLOC, we will now focus on
the similarities and differences between OLOFC and CLFOC. In both approaches feedback is used
in implementation; however, CLFOC explicitly models the feedback mechanism in its mathematical
formulation, whereas OLOFC neglects the feedback mechanism in its mathematical formulation. By
neglecting the feedback mechanism, the OLOFC solution is simpler to solve. However, what is gained in
reducing complexity may be lost in the quality of the solution. By neglecting the feedback mechanism,
i.e. future information arrival and subsequent control decision, the anticipatory nature of CLFOC
is lost in the OLOFC formulation; as a result, the OLOFC is reactive versus proactive to future
realizations of the state. This attribute can have significant impact for systems in which there are
significant time delays between future information arrival. To illustrate these differences, Dreyfus [1]
presents a solutions to a stochastic optimization problem using the above three formulations.

III. CoNTROL TECHNIQUES

Given the stochastic nature of the plant in (1), the CLFOC solution will achieve the best per-
formance. If the plant is deterministic, all three optimization formulations would produce the same
performance, since feedback is only required if there is uncertainty. A control technique that solves the
CLFOC problem is Stochastic Dynamic Programming (SDP). However, this technique is only tractable
for small problems. In general, one must resort to approximation techniques. In this section, two dif-
ferent approximate optimal control techniques — in the context of the above formulations — will be
presented. The first technique, Rollout, is an approximation to CLFOC, and the second technique,
Model Predictive Control, is an approximation to OLOFC. For both techniques, the implication of the
approximations on the solution is discussed.

A. Rollout

The Rollout Algorithm (RA) [3], [4] is an approximate CLFOC approach that determines a sub-
optimal policy on-line based on the actual realization of the state z(k) at time k. Like CLFOC, the
RA assumes that future realizations of the state are measurable; however the control strategies to be

3
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used in selecting future decisions are known, consisting of an suboptimal rule fi(zy) at each future
time k that maps all feasible realizations of z(k) to feasible u(k), i.e. ux = p(zy) € Ur(zx) V 21 € Si.
As a result, the RA policy has the following form: nf? = {ug, i(z)),...,@(zy-1)}. Like OLOFC,
only the initial optimal control 724" (0) = u}, is applied, and the optimization problem is resolved for
R’ = {uy, p(zs), ..., i(zn-1)} at time k = 1 based on the actual realization of the state ;. Then,
the optimal control 74" (0) = u} is applied, and the control process repeats until the time k = N.
As before, the optimization horizon shrinks as time progresses, i.e. at time n, the planning horizon is
k=nn+1,...,N -1

Since the feedback mechanism — future information arrival and control decisions — is explicitly
modeled in this formulation, the optimization problem is identical to the CLFOC with the exception
that optimization over future strategies 7 is replaced with the known strategy nf4, ie. ux(xi) is
approximated by a known suboptimal baseline strategy fi(zi). Given that the baseline strategy is
known, the optimization over all admissible 7?4 is equivalent to selecting ug; thus, based on the initial

condition zgy, the RA optimization problem is as follows:

N-1
uy =arg min F wy {QN(IN) + Z 9i(zk, i), ’wk)} (8)

ug€lp(xo k=0,1,...,N—1
( ) k=0

ry = fo(o, uo, wo), up € Lo(zo)
Tyl = fk (.’Ek,ﬂ(l‘k),wk) ,,[_I,(.’L‘k) = U € Uk(l';c) Y Ty € Sk,k = 1, ,N -1

The RA is related to the CLFOC formulation since it accounts for future information arrival and control
decisions. As a result, RA based controllers will exhibit anticipatory behavior. However, the RA is not
as ambitious as the CLFOC formulation, and only provides modest guarantees of near-optimality [4].
Implementation RA requires computing the expectation with respect to random disturbances
Wy, Wy, - .., Wy—-1, by modeling future information arrival and the resulting control decisions via the
baseline strategy. An approach for computing this expectation at a given state z, and time k is to
use Monte Carlo simulations. To implement this approach, we consider all possible controls u; €
Uk(zx) and generate a “large” number of simulation trajectories starting from z. Thus, the simulated
trajectory has the form:

Tee1 = f(zk, vk, wi) ()
i1 = flz, bz),w;) i=k+1,.,N-1

B. Model Predictive Control

The Model Predictive Control (MPC) [5] or Receding Horizon Control (RHC) is an approximate
OLOFC technique that solves a deterministic optimization problem. Given that this technical mem-
orandum focuses on stochastic optimal control, the MPC technique requires an approximation to the
expectation cost function in (6) that is parameterized by the control sequence ux. One common ap-
proach is to assume that a certainty equivalence principle holds and that the random disturbances
Wo, Wy, ..., wy—1 in (1) can be replaced by their expected values g, Wy, ..., Wx_,. Of course, an un-
derlying assumption here is that the random disturbances wy do not depend on the state z, and the
control u;. Ogher approaches can be used to approximate the expectation cost function in (6).

Like the OLOFC formulation, the MPC formulation assumes that no future realizations of the state
will be measured. As a result, the control structure is purely a function of time and consist of a sequence
of actions, i.e. ug = {ug,uy,...,un-1}. Additionally, the current sequence of optimal control actions
u; are determined on-line at each time k using the current state of the plant z, and only the first
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control in this sequence uj(0) = uj, is applied to the plant. The MPC optimization problem where it
is assumed that certainty equivalence principle holds is as follows:

N-1
u; = arg lfll;lérllj {gN(xN) + k};) gk (X, uk,V_Vk)} (10)
subject to the constraints
Tre1 = fi (Tp,uk, W), up € Up(zh) Vo €S, k=0,1,..,N-1 (11)

A few notes about MPC are warranted. First, because MPC is based on a OLOFC formulation and
does not model the feedback mechanism, the MPC solution can only react to future realizations of the
state. As Mayne states [5], “A defect of model predictive control of uncertain systems, not yet widely
appreciated, is the open-loop nature of the optimal control problem.” Secondly, modeling a stochastic
system as deterministic raises the questions of robustness. i.e. the maintenance of certain properties
such as stability and performance in the presence of the uncertainty. The inherent robustness properties
of the MPC formulation have been studied for systems that are linear with respect to input « and
that only have terminal state constraints. In an attempt to add uncertainty to the mathematical
formulation, an Open-Loop Min-Max Model Predictive Control formulation has been proposed [5].
However, the solutions are very conservative due to the open-loop nature of the optimization. As
Mayne states [5], “... the scenario generated in solving {the open-loop min-max model predictive
control problem } does not model accurately the uncertain control problem because it ignores feedback
by searching over open-loop control sequences { uy } in minimizing the { the cost function }.” Because
of this deficiency, Mayne recommends a Feedback Mini-Max Model Predictive Control formulation
that replaces the control sequence u, with a control policy 7, similar to the ones presented above. As
Mayne notes, “The feedback version of the model predictive control appears attractive but prohibitively
complex.”

IV. CONCLUSIONS

This technical memorandum presented three different types of control philosophies that are appli-
cable to stochastic optimal control problems. The different optimal control formulations result from
varying the assumptions on the future information availability and on the optimal control structure.
The Open-Loop Optimal and Open-Loop Optimal Feedback Control solution assume that the no future
realizations of the state are measurable in the mathematical optimization formulation. The distinction
between the two optimization solutions resides in their implementations. In the Open-Loop Optimal
Control formulation, the optimal control sequence generated at time ¢ = 0 is not updated. In the
Open-Loop Optimal Feedback Control formulation, only the initial control in the optimal control se-
quence is implemented and the open-loop optimization problem is resolved at the next realization of
the state. In contrast to these two approaches, the Closed-Loop Feedback Optimal Control formulation
explicitly models the feedback mechanism, i.e. the dependence of future control decisions on future
information arrival, in the mathematical formulation. The fundamental distinctions between the open-
loop optimizations and closed-loop optimization were that open-loop optimizations produce a set of
“actions” where as the closed-loop feedback optimization produces a set of “strategies’”. By including
the feedback mechanism in the mathematical formulation, the closed-loop feedback optimization is
proactive versus reactive and is able to anticipate likely contingencies; this trait produces guaranteed
superior performance in stochastic scenarios.

In addition to making the distinctions between different control philosophies, two approximate
stochastic optimal control techniques were discussed. The Rollout Algorithm approximates the Closed-
Loop Feedback Optimal Control formulation, and has a similar implementation to the Open-Loop
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Optimization Feedback Control. The key approximation in the Rollout Algorithm is that future deci-
sions in the feedback mechanism are modeled by a known suboptimal rule. Next, the Model Predictive
Control technique approximates the Open-Loop Optimal Feedback Control formulation. The key point
here is that the Open-Loop Optimal expectation cost function is approximated so that a deterministic
optimization problem is solved.
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Abstract

In this paper, we investigate alternatives to simulation-
based approximate dynamic programming methods for
adaptive  multi-platform  scheduling in a risky
environment. In a vecent effort, we considered rollout
algorithms, in which on-line simulation was found to be
more reliable than off-line training. Unfortunately, a
large amount of computational resources was required to
run even a modest number of Monte Carlo simulations.
In this paper, we consider alternatives to using
simulation. The first approach consists of using limited
lookahead policies, which reduce computational
requivements by considering value explicitly over a
limited horizon and approximating the value of the
remaining stages. The second approach decomposes the
problem into sub-problems corresponding to platforms.
In our computational experiments, we found that many of
the variations of these approaches required significantly
less computation time than rollout algorithms and also
obtained results that were substantially superior.

1. Introduction

The planning and execution of multiple missions in the
presence of risk is a problem that arises in many important
military contexts. In data collection applications, multiple
UAYV platforms may be tasked to interrogate different
areas, with the risk of platform destruction as each
platform pursues its collection mission. In attack air
operations, multiple platforms follow risky trajectories to

attack enemy targets. For both applications, sensors and
communication equipment can provide up-to-date
information concerning individual mission and platform
status, and thus provide notification of platform losses.
This creates opportunities for replanning, using feedback
to retask surviving platforms in order to best achieve
mission objectives.

In mathematical terms, the above class of problems
can be formulated as Markov decision processes. At each
stage of the process, decisions are made that affect the
evolution of a system state, which is also influenced by
random discrete events. The goal is to select the current
decision as a function of the current state in order to
optimize mission performance.

The principal approach for solving Markov decision
problems is dynamic programming (DP). In comparing
the available controls at a given state 7, DP considers the
current stage value, but also takes into account the
desirability of the next state j. It “ranks” different states j
by using, in addition to the current stage value, the
optimal value (over all remaining stages) starting from j.

This optimal value is denoted J” (/) and referred to as the
optimal value-to-go of j. Unfortunately, it is well known

that the computation of J"is overwhelming for many
important problems.

There has been a great deal of research on DP methods
that replace the optimal value-to-go J *( J ) with a suitable
approximation for the purpose of comparing the available
controls at each state. These methods are collectively
known as neuro-dynamic programming (NDP).
Previously, we applied a particular class of NDP

" This work was supported by the Air Force Office of Scientific Research under contract #F49620-98-C-0023.
? Corresponding Author: phone (781)273-3388, fax (781)273-9345, e-mail cynara.wu@alphatech.com




algorithms, known as rollout algorithms, to risky multi-
platform planning and scheduling problems. Rollout
algorithms are a form of NDP that exploit knowledge of
suboptimal  heuristic  decision rules to obtain
approximations to the optimal value-to-go. We developed
several rollout algorithms for risky multi-platform
scheduling, using on-line Monte Carlo simulations to
evaluate the reference base heuristic policies, and found
that they performed significantly better than the base
policies as well as off-line training methods. However,
even using a modest number of Monte Carlo simulations
resulted in large computation times.

In this paper, we consider alternatives to using on-line
simulations. In particular, we consider two approaches
that use analytic approximations of the value function. We
first consider a class of approximation techniques in
which the control exercised at a state i is determined by
considering the costs accumulated over several stages, and
then applying an approximation to the value-to-go from
the resulting states. The rollout algorithms considered in
our previous effort are a special case in which a single-
stage policy is employed and on-line simulation is used in
combination with a base heuristic to approximate the
value-to-go.

Our second approach involves exploiting the structure
of the problem and decomposing the problem into sub-
problems, each of which is associated with a
corresponding platform. Each sub-problem is solved
independently but takes into account the results of
previously solved sub-problems.

The paper is organized as follows. In Section 2, we
describe the data collection problem which we are
addressing. In Section 3, we present the framework for
limited lookahead policies. In Section 4, we describe our
decomposition approach to the problem. In Section 5, we
present some computational results.

2. Example Data Collection Froblem

The graph in Figure 1 is an example corresponding to
a data collection problem. Each node represents a
geographical area of interest with a one-time value (i.e.,
data may only be collected once from each location). The
arcs represent connectivity among the geographical
regions and may be successfully traversed with a known
probability. Platforms traverse the graph and collect data
(value) at each node, or else they are destroyed while
traversing specific arcs. If a platform is destroyed on an
arc, the value of the destination node is not collected,
which can result in retasking other platforms.

Figure 1 Graph Representation of the data
collection problem.

The objective is to control the platforms in order to
maximize the expected total value collected after N stages.
Each platform begins at a base node (in this case, node 0
for all platforms) and may traverse one arc during each
stage. There is a reward for each platform that has safely
returned to its base node at the end of the Nth stage.

3. Limited Lookahead Policies

Consider a discrete-time dynamic system,
Xt = fie (X ke Ok ) 5
where x; is the state, uy is the control to be selected from
a finite set Ux(xt), and @ is a random disturbance.

Denote the single-stage reward of control u from state x
and disturbance @ by gi(x,u,w). A control policy

n'={/.to,,u| ,...,,uN_l} maps, for each stage &, a state x; to
a control value gy (x¢)eUk(xx). There is a terminal
reward G(xx) that depends on the terminal state Xy . The
value-to-go of an optimal policy 7z'*={u('), u ,-'-,#;\H}
starting from a state Xx; at stage k can be computed using

the following DP recursion

Tk (x )=u max )E{gk (e a0 )+ Tt (fe (ke s 0k ))},

for all k£ and with the initial condition

IN(xn)=G(xn).

For our problem, the state can be represented by a
vector indicating for each node whether or not its value
has been collected and by another vector indicating for
each platform whether or not it is alive and if so, the node




at which the platform is located. The control at a
particular stage provides for each platform that is alive a
node that the platform is to attempt to visit during the
current stage. If the platform successfully traverses the
arc connecting its current node to the next node and the
value of the node has not yet been collected, the current
stage reward includes the value of the node. If the
platform successfully reaches its base node during the last
stage, there is a terminal reward associated with the
platform.

Under a one-step lookahead policy, the control
selected at stage k and state xj is that which maximizes

the following expression:

max E{gk (xae ke 00k - T (fe ke sk 0% ))}’
ukeU,,(x‘)

where Ji is some approximation of the value-to-go
function Jis . Under a two-step lookahead policy, the
control selected at stage k and state Xx; is that which

maximizes the above expression when Jis is itself a one-
step lookahead approximation; i.e., for all possible states
Xk = fr Ok 4k , 0k ) , we have

Jest(xen )= max E{gk” (e s 0on »}

w€Us (xin) | Jhe2 (fk+l (xk+1 SUk+, WDk

Other multi-stage lookahead policies are similarly defined.
Note that the number of lookahead stages, M, should be
less than or equal to N-k-1. Essentially, the M-stage
lookahead policy selects at stage k its decision by
determining the optimal policy if there were only M stages
remaining and the terminal cost was given by
E {jk+M+l (xar )}, where x, is the state resulting from
Xar
applying the policy for the M decisions. A decision is
selected, and the process is repeated at the next stage.
The lookahead horizon is limited to the number of
remaining stages, and so if the number of remaining stages
is less than M, the M-stage lookahead policy determines
the optimal strategy. A special case of such policies in
which the value-to-go is approximated with zero is
referred to in the literature as rolling or receding horizon
procedures.

Generally, the effectiveness of limited lookahead
policies depends on two factors:

1. The quality of the value-to-go approximation —
performance of the policy typically improves with
approximation quality.

2. The length of the lookahead horizon — performance
of a policy typically improves as the horizon
becomes longer (at least for small horizon lengths,
e.g., 1-4).

However, as the size of the lookahead increases, the
number of possible states that can be visited increases
exponentially. To keep the overall computation practical,

the complexity of the value-to-go approximation should
be reduced for larger lookahead sizes. Balancing such
tradeoffs is therefore a critical element in determining the
size of the lookahead and the method for approximating
the value-to-go. This paper explores several possibilities
and tries to quantify the associated tradeoffs. One of the
advantages of using limited lookahead policies for our
particular problem is that the number of controls at a
particular stage is fairly small and as a result, the
computation required to explore all states that can be
visited over the next M stages is manageable for small M.

3.1. Pruned Limited Lookahead Policies

Since the number of states that can be visited over M
stages grows exponentially in M and also in the number of
platforms, limited lookahead policies for A>1 are
impractical for problems with many platforms. One
approach to reducing the computation required for limited
lookahead policies is to limit the number of states that can
be visited. This can be accomplished by “pruning”
controls that yield inferior intermediate values.

A pruned version of a limited lookahead policy
depends on an integer parameter B that is typically
selected through trial and error. In particular, we
determine the one-step lookahead values for all controls
available from our initial state. Controls that are not
among those with one of the B best one-step lookahead
values are pruned. We then repeat this process for each
state that can be reached from a control that was not
pruned and determine the one-step lookahead values for
all controls available from these states. For each of these
states, controls that are not among those with one of the B
best one-step lookahead values are pruned. The number
of times this process takes place is equal to the size of the
lookahead.

Since the number of controls that are expanded from
every state at every stage is limited, the computation
required to find pruned policies is not exponential in the
number of platforms. However, the computation is still
exponential in the size of the lookahead.

4. Platform Decomposition

We now present an approach that involves exploiting
the structure of our specific problem and decomposing it
into a set of simpler problems. In particular, we
decompose the problem into a separate sub-problem for
each platform. This sub-problem consists of determining
the optimal sequence of nodes, or path, to visit assuming
that platform was the only one available. The optimal
solution to each sub-problem can be found analytically.
After a sub-problem is solved for a particular platform and
before the next sub-problem is solved, the value of each




node in the associated path is updated to the value of the
node multiplied by the probability that the node was not
visited by the platform. This allows platforms to take into
account paths assigned to previously scheduled platforms.
When all of the sub-problems have been solved, a set of
paths for each platform results. An outline of the platform
decomposition approach is given below.
1. Assume that the platforms are ordered 1,2,...,V,
and start with platform i=1.
2. Solve the single-platform problem optimally by
finding a path or sequence of nodes
(ni1,hni2,...,ny) that the platform should attempt to

visit in order to maximize its expected value (which
consists of collected node values plus the reward
for the platform returning to the base station if ny

is the base node).

3. For every node in the path obtained in (2), scale the
value of the node to 1 minus the probability that the
node will be visited by platform i. This allows
platforms that are scheduled later to take into
account the path assigned to the current platform.

4. If i is less than the number of platforms, then let
i=i+1 and go to (2). Otherwise, we are done.

The single-platform problem in step 2 can be solved
using dynamic programming or by exhaustively
considering all possible paths with N nodes. The
computation required in either case is O(D"), where N is

the number of stages and D is the average degree of a
node. For sparsely connected graphs, the computation
required is minimal.

The set of sub-problems can be solved once for a
particular ordering of platforms or multiple times for
various platform orderings. We will discuss several
possibilities in the next section.

The platform decomposition heuristic yields for each
platform 7 a path (#j;,ni¢j+1),...,nv ), where j is the stage at
which the heuristic is applied. This heuristic can be
applied once before the mission begins to obtain a policy

in which platform 7 attempts to visit node #; during the

jth stage if it has not yet been destroyed. The heuristic
can also be applied at every stage (for platforms that are
still alive) using up-to-date state information, obtaining a

policy in which platform i attempts to visit node #;

during the jth stage. Finally, the heuristic can also be used
to compute a value-to-go approximation for limited
lookahead policies.

One of the main advantages to the platform
decomposition approach is that the computation required
is considerably smaller than limited lookahead policies.
Assuming that the number of platform orderings
considered remains fixed, the computation grows linearly
in the number of platforms. In addition, as will be seen
below, the method obtains solutions that are very close to

the optimal. Unfortunately, while limited lookahead
policies generalize easily to other problems, other
problems may not have structures that easily decompose
into sub-problems.

5. Computational Results

We now present some computational results from
applying the above approaches to the problem described
in Section 2. We consider a problem with N=10 stages,
and either three or four platforms. The return rewards for
the platforms were set to 12.7, 17.5, 19.2, and 55.0, and
the most valuable platform was not included in the three-
platform problems.

5.1. Limited Lookahead Policies

A limited lookahead policy consists of two main
elements: the lookahead horizon, and the approximation
of the value-to-go. We vary the size of the horizon from
one to three and consider a number of approximations to
the value-to-go. While there is some difference in the
complexity of the value-to-go approximations, each one is
straightforward to compute.

In many of our approaches, the value-to-go
approximation for a particular state x after the first &

stages, Jx(x), involves heuristically generating for each

platform 4, a path or sequence of nodes
(Ri(k+1),Rik+2) - M) to attempt to visit during the
remaining N-k stages. We denote this collection of paths
P(x,k). Assuming each platform attempts to visit the
nodes in its path, we can determine the expected collected
value resulting from visiting nodes not visited during the
first £ stages:

clrxpl= 3

nodes n not
yet visited

1- H(l—pin )]Cn .

platforms i

In the above equation, €, is the one-time value associated
with node n, and p;, is the probability that platform i

visits node »:
/-]
_| 1P migjsny), if na=n for some I,
Pin= J=k+l

0, otherwise,
where p(njj,ni;+1y)is the probability of successfully
traversing the arc connecting nodes #; and #;(ny. To
understand the expression for C[P(x,k)], note that the
term H(l— pin) provides the probability that none of

platforms i

the platforms successfully visits node n. The term




[1— H(l— Din )Jc,, then provides the expected collected
platforms i

value at node # (the probability that at least one platform

successfully visits the node multiplied by the node value).
We can also determine the expected reward resulting

from platforms returning to the base node:

RlP(x 0= Y,

platforms i
where
N )
[1 P, nijsy),  if ny is the base node,
i =Y jZin

0, otherwise,
is the probability that platform i returns to the base node
and V; is the platform return reward.

The approximations to the value-to-go that we
consider are given below. As can be seen in the
descriptions, many of the approximations involve a
combination of the expected collected node value,
C[P(x,k)], and the expected platform return reward,

R[P(x,k)], assuming each platform attempts to visit the
nodes in the paths specified in P(x,k).

1. The first approach approximates the value-to-go
with zero:

Tk (x)=0.

2. The second approach approximates the value-to-go
with the sum of the expected collected node value
and the expected platform return reward collected
over a set of greedy paths:

Te(xy=ClPy (e, k)1 R[Py (x.4)].
The nodes along the greedy path for platform i,
(Rigks1) . s7iv ) , are determined as follows:

i =arg max {plnyn)en},
ij

where 77(n;) is the set of nodes that can be reached

from node #;, and #ny is the node at which

platform i is located after £ stages.

3. The third approach approximates the value-to-go
with the expected platform return reward collected
over the set of “safest” paths:

Te()=R[P (x,k)].
The safest path is that which yields the highest
probability of a platform returning successfully to
its base node. These paths can be computed apriori
using dynamic programming. (Essentially, the
computation is equivalent to solving a set of
shortest path problems.)

4. The fourth approach approximates the value-to-go
with the sum of the expected collected node value

and the expected platform return reward collected
over the set of safest paths:

T (0)=C[P (x,k )+ R[P, (x,k)].

5. The fifth approach approximates the value-to-go
with the sum of the expected collected node value
and the expected platform return reward collected
over the set of “most valuable” paths:

Te()=C[Py (x, )+ R[P (x,)].

The most valuable path is that which yields the
highest expected total value that could be attained
by a single vehicle during the remaining stages
assuming none of the values at any of the nodes
have yet been collected. These paths can also be
computed apriori using dynamic programming.

6. The sixth approach combines (4) and (5). The
value-to-go is approximated with the maximum of
the values determined by those approaches.

Table 1 provides the expected optimal values for the
problem illustrated in Figure 1 for a three-platform
problem and a four-platform problem. We have computed
these values using dynamic programming, and the
computation required for the four-platform problem was
approximately one week on a Sun Ultra 60 workstation.
Table 1 also provides the results of applying a greedy
algorithm, in which each platform selects as its next node
that which maximizes its expected collected value for that
stage, to one thousand sample trajectories.  The
performance achieved in our earlier efforts of applying
rollout strategies using 20 or more Monte Carlo
simulations ranged on average from 600 to 610 for the
four-platform problem.

Table 1 The expected optimal values and the
results of applying the greedy algorithm for the
three and four platform problems.

# Platforms Expected Greedy
Optimal

Three 574.5 475.72

Four 641.0 533.89

Tables 2 and 3 provide the values averaged over one
thousand sample trajectories by applying the limited
lookahead polices for lookahead sizes of one to three,
using the six value-to-go approximations described above.
The particular approximation approach used is given in
the leftmost column. As can be seen, while the 2-stage
policies generally provided results that improved
significantly upon those of the 1-stage policies, those of
the 3-stage policies were not substantially better and in a
few cases were worse than those of the 2-stage policies.




The sixth value-to-go approximation seemed to yield
slightly better results than the other approximations.
However, the third through sixth approximations were
basically comparable. Overall, these approaches
improved significantly upon the greedy algorithm and
were able to obtain values close to the optimal for
lookahead sizes greater than one. For lookahead sizes
greater than one, these approaches were also able to
obtain results slightly better than those obtained using
rollout strategies with Monte Carlo simulations.

Table 2 The results of applying the limited
lookahead policy to the three-platform problem.

A;)]Sgii:gai(z)n 1-stage 2-stage 3-stage
1 491.09 539.58 543.40
2 520.57 543.95 553.74
3 506.55 550.82 553.76
4 500.69 529.98 559.46
5 554.10 557.94 561.75
6 555.97 563.45 561.09

Table 3 The results of applying the limited
lookahaead policy to the four-platform problem.

A:)/:rlgii:ga%ioon 1-stage 2-stage 3-stage
1 543.32 574.24 582.75
2 589.56 607.31 593.08
3 581.48 613.29 615.63
4 574.06 618.55 619.45
5 582.84 594.09 606.96
6 595.44 615.10 624.16

Tables 4 and 5 provide the average values obtained
over the same thousand sample trajectories by applying
the pruned limited lookahead polices for lookahead sizes
of two and three, using the value-to-go approximations
described above. (Note that a pruned one-step lookahead
policy is equivalent to the fully expanded one-step
lookahead policy.) As can be seen, the results of these
approaches do not vary significantly from the fully
expanded lookahead policies. In some cases, the pruned
policies performed one or two percent worse and in other
cases, they performed one or two percent better.

Table 4 The results of applying the pruned
limited lookahead policy to the three-platform

problem.
Value-to-go 2-stage 3-stage
Approximation
1 538.56 523.48
2 532.70 551.10
3 550.82 553.56
4 552.47 559.46
5 556.38 555.47
6 561.22 563.82

Table 5 The results of applying the pruned
limited lookahead policy to the four-platform

problem.
Value-to-go 2-stage 3-stage
Approximation
1 573.19 575.21
2 605.57 607.21
3 608.98 616.21
4 613.23 615.38
5 595.55 592.50
6 613.49 617.04

5.2. Platform Decomposition Results

In applying platform decomposition to our problem,
we considered the following approaches to ordering the
platforms:

1. A single ordering in ascending order of the

platform return reward.

2. All possible orderings.

3. A “rollout” of the ordering in (1) as described by
Bertsekas, Tsitsiklis and Wu ([4]). Le., assuming
that the first /-1 platforms have been selected, the
ith platform is determined as follows:

i. Consider each remaining platform in turn as the
next platform and leave the other vehicles in
their original order.

ii. Solve the set of single-platform problems in the
given order.

iii. Select as the ith platform that which yields the
best result.

As mentioned in Section 4, there are several ways to
apply the heuristic:

e The heuristic can be applied once to obtain a policy

for all stages.

e The heuristic can be applied at every stage to
obtain a control for the current stage using current
state information.

e The heuristic can be used to generate a value-to-go
approximation for a limited lookahead policy.




Table 6 provides the average values obtained over the
same thousand sample trajectories by the platform
decomposition approach. The result of applying the
heuristic for all possible orderings and following the paths
obtained for all stages is provided in the first row. The
next three rows provide the results when the heuristic
using the three orderings described above (least expensive
to most expensive, all possible orderings, and a rollout of
the orderings) is reapplied at every stage to obtain the
current control. The remaining rows provide the results
when the heuristic is used to provide a value-to-go
approximation for a one-stage limited lookahead policy
using the orderings described above is used. As can be
seen, these approaches performed extremely well. The
heuristic alone performed comparably to 2-stage
lookahead policies, and the other variations were able to
obtain strategies that yielded results that were less than
one percent from the optimal expected results.

Table 6 The results of applying platform
decomposition approaches. The first row
provides the result of applying the heuristic for
all possible platform orderings before the start of
the mission and following the resulting paths.
The next three rows provide the results of
reapplying the heuristic at every stage using
various platform orderings (1: least expensive to
most expensive; 2: all possible orderings; 3: a
rollout of the orderings). The last three rows
provide the results of applying one-stage limited
lookahead policies using the values obtained
from the platform decomposition heuristic
(under the various platform orderings) as an

approximation to the value-to-go.
3 platforms | 4 platforms

Heuristic alone 550.85 608.89
Heuristic reapplied-1 568.81 634.97
Heuristic reapplied-2 573.83 637.81
Heuristic reapplied-3 573.83 637.81
1-stage LL-1 570.97 633.04
1-stage LL-2 571.29 635.65
1-stage LL-3 571.29 635.65

5.3 Computation Times

The following table provides the average on-line
computation time (in seconds) to apply the approaches
described above to one hundred sample trajectories of the
four-platform problem. The off-line computation time for
the limited lookahead policies was negligible. We have
measured the time required to compute the controls. In
practice, this time is critical since it must be within the
real-time constraints of the problem. The table gives the

total time to compute these controls for the ten stages.
Since these times depend on the state trajectory of the
system, which is random, we averaged over 100
trajectories and recorded the results in Table 7. The times
for the one-stage lookahead have not been included as the
time required was negligible. The experimental results
were conducted on a Sun Ultra 60 workstation. As can be
seen from the table, the pruned lookahead policies were
significantly faster than the fully expanded lookahead
policies. Considering this in combination with the fact that
the performances of the two versions are comparable
suggests that that pruned lookahead policies may be more
useful in practice. The pruned lookahead policies were
also generally much faster than the rollout algorithms
using Monte Carlo simulations, whose computation times
varied from 5 to over 300 seconds per sample trajectory.
The decomposition approaches were extremely fast, and
also provided the best results. Reapplying the
decomposition heuristic at every time step appears to be
the best option. However, it is not clear how easily such
approaches can be applied to variations of the problem.

Table 7 Time to compute the controls for ten
stages under the various approaches averaged
over 100 sample trajectories of the four-platform
problem. The first six lines provide the times
corresponding to the fully expanded and pruned
limited lookahead results given in Tables 3 and
5. The next six lines provide the times
corresponding to the Ilast six platform
decomposition results given in Table 6.

2-stage lookahead | 3-stage lookahead
Full Pruned Full Pruned
LL-1 0.77 0.12 120.4 1.8
LL-2 9.41 1.04 1358 16.4
LL-3 1.35 0.22 134.7 3.4
LL-4 6.16 0.71 716.5 9.4
LL-5 9.16 0.91 796.5 8.2
LL-6 14.85 1.73 1258 14.5
PD-Heuristic reapplied-1 0.41
PD-Heuristic reapplied-2 9.42
PD-Heuristic reapplied-3 1.62
PD-1-stage LL-1 51.50
PD-1-stage LL-2 396.52
PD-1-stage LL-3 138.04

6. Summary

In this paper, we have considered alternatives to using
on-line simulations for approximating the value-to-go for
adaptive  multi-platform  scheduling in a risky
environment. The main limitation to using rollout
algorithms with on-line simulations that was determined in




our previous effort was the amount of computation
required to evaluate control options at every stage. We
instead considered two alternatives.

The first approach involved examining control options
over a limited horizon. In our experimental results, this
method produced results that were slightly better than
those obtained through rollout algorithms with on-line
simulations with similar computation time. Computation
time was reduced significantly by introducing a pruning
technique without loss in performance.

The second approach involved decomposing the
problem into sub-problems associated with each platform.
This method produced results that were extremely close to
the optimal values and required small computation times.
However, while limited lookahead methods generalize
well to other problems, the decomposition method
requires a suitable problem structure. Furthermore, this
method may not perform well for problems with an
appropriate structure if the decomposed elements require
significant coordination.
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Abstract

In this paper, we investigate the use of rollout
algorithms for adaptive multi-platform scheduling in a
risky environment. The underlying decision problem is
motivated by several Air Force applications: data
collection, sensor management, and air operations
planning. These problems may be solved optimally with
stochastic dynamic programming (SDP), but have
overwhelming computational requirements. Rollout
algorithms reduce computational requirements by using
on-line learning and simulation to approximate SDP with
a base heuristic. While they do not aspire to optimal
performance, rollout algorithms typically result in a
consistent and substantial improvement over the
underlying heuristics. A multi-platform planning and
scheduling problem is used to demonstrate rollout
performance.

1 Introduction

The planning and execution of multiple missions in
the presence of risk is a problem which arises in many
important military contexts. In data collection
applications, multiple UAV platforms may be tasked to
interrogate different areas, with the risk of platform
destruction as each platform pursues its collection
mission. In attack air operations, multiple platforms
follow risky trajectories to attack enemy targets. For
both applications, sensors and communication
equipment can provide up-to-date information
concerning individual mission and platform status, and
thus provide notification of platform losses. This
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David Logan
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creates opportunities for retasking surviving platforms
in order to best achieve mission objectives.

In mathematical terms, the above class of problems
can be viewed as a sequential decision problem, where
each decision is based on the observation of certain
discrete events. These decisions affect the evolution of
a system state (mission), which is also influenced by
random discrete events (e.g. platform destruction). The
goal is to select the current decisions as a function of
the current system state, in a manner that optimizes
mission performance.

The above class of problems can be formulated as
Markov decision problems [3][5]. The principal
approach for solving such problems is dynamic
programming (DP), which selects feedback rules to
determine optimal controls for each possible state.
These optimal controls are determined by evaluating at
each stage the immediate expected cost of the current
decision, plus the future optimal cost-to-go over future
decisions. However, it is well known that computation
of the optimal cost-to-go for each future state is
computationally intractable for all but the simplest of
problems, making direct application of DP an impossible
task for multi-platform control.

In recent years, there has been a great deal of
research on approximate DP methods based on
computing suitable approximations to the optimal cost-
to-go. These methods are collectively known as neuro-
dynamic programming (NDP) [1]. In NDP, the optimal
cost-to-go is approximated by a parametric function;
critical issues for NDP include the selection of the
parametric class of approximating functions, and
selection of the approximating parameters.

" This work was supported by the Air Force Office of Scientific Research under contract #F49620-98-C-0023.




In this paper, we apply a particular class of NDP
algorithms, known as rollout algorithms [2], to risky
multi-platform planning and scheduling problems.
Rollout algorithms are a form of NDP which exploits
knowledge of suboptimal heuristic decision rules to
obtain approximations to the optimal cost-to-go for use
in NDP. We develop different rollout algorithms for
risky multi-platform scheduling, and illustrate the
relative performance of the rollout algorithms and the
original suboptimal decision rules in the context of a
specific example. The results illustrate that significant
performance improvements can be obtained using
rollout algorithms, with a modest increase in
computation complexity.

2 Illustrative Overview

To illustrate the types of problems of interest and
results developed in this paper, consider the data
collection problem illustrated in Figure 1. There are
several data collection assets, which may travel to
examine targets. There is a value associated with
collecting the information on each target. Platforms also
run the risk of destruction while performing collection
on a asset, due to the presence of local defenses.

Figure 1 lllustration of Data Collection Problem

Ideally, each data collection asset will be provided a
schedule of targets for information collection, which is
coordinated among assets to ensure maximal value
collected. However, due to the risk inherent in the
collection process, platforms can be destroyed, and
thus the original schedules should be adapted
whenever a destruction event occurs in order to recover
the most collection value. If these abrupt events are not
anticipated in the original schedules, the possible
modifications to the schedules may be so constrained
that highly sub-optimal performance results.

The basic theory of dynamic programming provides a
framework for developing schedules which anticipate
the future occurrence of contingencies such as platform
destruction, and hedge the selected schedules in
anticipation of needed retasking. Thus, the resulting

schedules can be adapted to contingencies with minimal
performance degradation, resulting in robust, stable
control.

The computational requirements of DP depend on
the number of future states required to describe the
system. To illustrate the number of states required,
assume that there are N targets, M collection assets, and
that we simplify physical position descriptions to
describe only the N positions of the targets. Then, the
number of possible combinations of positions is M",
and the number of possible uncollected target sets at a
given time is 2, resulting in numbers of states em.
For modest numbers of assets and targets, the number
of states far exceeds our capability for computing and/or
storing the resulting optimal decision rules.

Using NDP principles such as rollout strategies
greatly reduces the resulting computational complexity.
DP considers all of the possible states and computes a
tentative decision for each possible state, whereas NDP
only computes decisions for states that actually occur
in the scenario. Thus, the number of states considered
by NDP considered is much smaller, but can only be
determined in real-time. In the rollout methodology,
once the scenario reaches a given state where a
contingency has been observed, new plan options are
evaluated in real-time to select the future actions. The
result is a practical algorithm for feedback control in
complex multi-platform planning and scheduling
applications. The fundamental questions about this
approach are how good is the performance achieved,
and how much real time computation is required. These
questions are explored in greater detail in the
subsequent sections.

3 Rollout Algorithms

Consider a discrete-time version of a dynamic
decision problem,

Xpa1 = f(xk Uy ’wk)
where x, is the state, u, is the control to be selected
from a finite set U(x, ), and @, is a random

disturbance. Denote the single-stage cost of control u
from state x and disturbance @by g(x,u,a)).

A control policy 7z ={u,,u,,--} maps, for each
stage k, a state x to a control value y1 (x)e U(x). In the

N-stage horizon problems considered herein, k takes
values 1,..-,N -1, and there is also terminal cost

G(x,, ) that depends on the terminal state x, . The cost-




to-go of policy 7 starting from a state x, at time k can

be computed using the following DP recursion
Ji@)=Efg b, ()0)+ T Flem(xo)} (D

for all k and with the initial condition
J "N(x)= G(x)
The rollout policy based on sz is denoted by

7 ={g,, I, -}, and is defined by the operation
i (x)=arg min Elg(ru,0)+ I3, (7 0))} (D)

for all x and k. Thus the rollout policy selects decisions
by balancing the current cost with future costs-to-go,
where the optimal costs-to-go are approximated by the
performance of the base policy 7.

A straightforward approach for computing the rollout
control at a given state x and time k is to use Monte
Carlo simulations of the base policy. To implement this
approach, we consider all possible controls we U(x)

and generate a “large” number of simulation trajectories
of the system starting from x, using # as the first
control, and using the policy z thereafter. Thus the
simulated trajectory has the form

X = flo, 1 )@) i=k+1,--N-1
where the first generated state is
e = f(x’”’wk)

The costs corresponding to these trajectories are
averaged to obtain the Q-factor

Qx,u)= E{g(x, u,0)+J e (f(x, u,w))}

In reality, only an approximation é(x,u) is obtained

because of the associated simulation error. The
approximation becomes increasingly accurate as the
number of simulation trajectories increases. Once the
approximate Q-factor (Q(x,u) corresponding to each
ue Ulx) is obtain the

approximate rollout contro! fI f (x) by the minimization

control computed, we

1, (x)=arg min 0, (x,u)
uel(x)

4 Example: Data Collection Problem

The graph in Figure 2 corresponds to an example
data collection problem. Each node represents a
geographical area of interest with a one-time value (i.e.,
data may only be collected once from each location).
The arcs represent connectivity among the geographical
regions and may be successfully traversed with a
known probability. Platforms traverse the graph and

collect data (value) at each node, or else they are
destroyed while traversing specific arcs. If a platform is
destroyed on an arc, the value of the destination node is
not collected, which can result in retasking other
platforms.

Figure 2 Graph Representation of the Data
Collection Problem

The objective is to control the platforms in order to
maximize the expected total value collected after N
stages (N =10 will beused). Each platform begins at a
base node (in this case, node O for all platforms) and
may traverse one arc during each stage. If a platform
does not return to its base node within N stages, there
is a penalty associated corresponding to platform loss.

4.1 The Base Policy: Greedy

As a base policy for rollout, we use the greedy policy
7 ={,, 1, -}, Which is defined by the operation

i (x)=argmax E{g (x, u,0)}

for all x and k. The control u is a vector of locations
corresponding to the next destination of each platform.
Similarly, each element of (x)=b1£(x),u]“(x),...J
corresponds to a specific platform.

To reduce the computational overhead, we consider
the platforms sequentially. The control for the first
platform, ,uf(x), is selected independent of the other
platforms’ controls as:

18(e)= mas Bla(0)
where U°(x) are feasible controls for platform 0. The

control, u/(x), for subsequent platforms is conditioned




on all the previously selected controls
0 (%), pth (x),+-+, /™" (x) and defined by the operation

() = max Efgon 0l (- ()}

This allows the greedy policy to anticipate the arrival
of platforms at specific nodes based on previously
selected controls.

The greedy policy also forces platforms to return
within N stages by constraining the set U, (x) of

feasible controls to those for which a return within N
stages is possible

The performance of the greedy policy corresponds to
the cost-to-go from the initial state x, .

N4

J"o(xo)=E{G(x,,)+2g(xi,u,(x,),w,)}

i=0
where the expectation is taken over simulation

trajectories of the form
xi+l =f(x,~,.ll,(xi),a)i) i:O,...’N_]

The performance of the greedy policy provides a
baseline for evaluating the rollout policy.

4.2 Rollout Algorithm

The rollout policy is computed using the greedy
policy as its base policy, as indicated in equations (1-2).
The performance of the rollout policy is evaluated in a
manner similar to the greedy policy, by using the cost-
to-go from the initial state x .

J%o(x,)= E{G(xN »+ ﬁ glx, I (x).0, )}

with the simulation trajectories
xi+l =f(xi,,l-[,-(xi),mi) l =0’...N_1

To reduce the relative variance of performance
values, we use the same simulation trajectories in the
evaluations of all policies.

One drawback of this approach is that many on-line
Monte Carlo simulations may be required to compute
the rollout decision at a state. As an alternative, we can
use approximations trained with off-line simulations, as
discussed in the next subsection.

4.3 Rollouts and Neural Approximations

To reduce the on-line computational overhead of the
rollout policies, we propose to train off-line a parametric
approximation of the greedy policy performance based
on features which characterize the current state. In
particular, the features that we use correspond to the
values achieved by the greedy policy under a small

number of certainty-equivalence scenarios, which
capture the graphical dependence of the scheduling
problem. This approach was initially proposed in [2].

To compute a feature at a given state x, at time &,

we fix the remaining disturbances at some nominal

values ®,,®,,,,"-*,®,,, and generate a state and

control trajectory of the system using the base policy 7
starting from x, and time k. The corresponding cost is

denoted by jk" (xk ), and is a feature which is used to
estimate the true cost J7(x,). We use a small number

of disturbance trajectories corresponding to different
scenarios. The feature values computed for each of
these scenarios are combined parametrically to
approximate the cost of the base policy using the
functional form:

T r)=r 3 nCils) 3

where r = (ro,r],---,rM) is a vector of parameters to be
determined, and C, (x,) is the cost corresponding to

the m™ scenario. The parameters r are determined by an
off-line training process using simulations of the base
policy. Equation (3) can then be used on-line,
computing the costs C,(x,), to evaluate the base

policy cost from state x, at time k.

5 Experimental Results

A series of experiments were performed on the
example problem presented in section 4.1, evaluating the
performance of the base greedy policy and different
variations of rollout algorithms.

The greedy heuristic used for the baseline policy is
based on an objective function with two terms, one
associated with the achievable value of data collected
and the other associated with the potential loss of the
vehicle. These values depend on probability ratios
associated with risk. The objective function for vehicle
k at state x, is given by

& 7, 0) =, )(lp—”)
where n, (x) is the achievable value of option j given
the current state, v, is the value of vehicle &, and p, is
the transition probability associated with option j ( P,

characterizes the disturbance @). This objective
function is a risk neutral strategy that computes the
marginal difference between the largest acceptable loss




and the smallest acceptable gain associated with option
j.

The greedy heuristic is evaluated by determining the
cost-to-go from the initial state x .

J%o(x,)= E{G(xm )+ i glx, 1, (x), o, )}

where the expectation is approximated with 100 Monte
Carlo simulation trajectories of the form

X, =f(x,,,;1i(xi ),w,.) i=0,-9
The evaluation of the greedy heuristic resulted in an
estimated value of 569.3 (the standard deviation of the

estimate is 12.2). As a benchmark, the total value
achievable is 714, arising from:

Total Collectible Value 610
Total Vehicle Value 104

We conducted three types of experiments, exploring
different rollout options. The first set of experiments
used different number of Monte Carlo runs in the rollout
algorithm to evaluate the relative performance of the
different controls for each state considered. Tested
conditions ranged from 5 to 40 Monte Carlo experiments
per decision.

The second set of experiments evaluated alternatives
in the planning horizon considered in the rollout
problem. It has been conjectured [2] that the
performance of rollout strategies degrades after
increasing the planning horizon beyond a threshold,
due to the approximation of the optimal future policy by
a base policy. This approximation becomes less
accurate with increasing planning horizon. To test this,
we conducted experiments where we varied the horizon
used by the rollout policy to evaluate the base policy.

The final set of experiments compares the
performance of the Monte Carlo rollout algorithms with
the performance of the algorithms based on parametric
function approximations using certainty equivalence
features.

5.1 Variations in Monte Carlo Runs

In these experiments, the number of Monte Carlo
runs used to evaluate the performance of the base
policy in the rollout algorithm varies from 5, 10, 20, 30,
and 40 Monte Carlo runs. For each of these
experiments, evaluation of the rollout policy
performance is conducted in a manner identically to the
evaluation of the greedy policy performance described
previously. That is, 100 independent Monte Carlo
simulation trajectories are used, of the form

Xin =f('xi’ﬁi(xi)’wi) i=0,--9

where [T (x, ) is the rollout control policy defined by the

i

operation
T (x)=arg ll;nua(x)E{g(x,u,w)-kJ"m (f(x,u,(u))}

and this last expectation is also approximated with either
5, 10, 20, 30, and 40 Monte Carlo simulations.

The results of this experiment are shown in Figure 3.
As the results indicate, the performance achieved by the
rollout strategies using 20 or more Monte Carlo
simulations range on average from 600 to 610, a range
which is far superior to the greedy policy performance
average of 569.3. The results suggest that a modest
number of simulations are required to select good
controls in this example.

Rollout Performance
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Figure 3 Rollout Performance

5.2 Variations in Planning Horizon

The rollout algorithm performs a single policy
improvement step on the greedy heuristic. This allows
the rollout trajectory to deviate significantly from the
greedy trajectory, especially over long horizons. In this
case, the cost-to-go estimate derived from greedy
trajectories may not reflect the actual cost-to-go of the
rollout algorithm. One way of avoiding this problem is to
evaluate the future cost-to-go of the base policy over a
limited horizon. Figure 4 shows the performance of this
rollout algorithm with various horizons, where 20 Monte
Carlo experiments are used to evaluate each policy.
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The results in Figure 4 do not support the conclusion
that there is a maximum planning horizon beyond which
the rollout performance degrades. However, the results
need closer examination to understand whether the use
of a different base heuristic would exhibit similar
behavior.

5.3 Off-Line Training vs Monte Carlo

In these experiments, we compare the performance of
rollout algorithms based on the parametric
approximations of Section 4.3 with the Monte Carlo
rollout algorithms of Section 4.2. The parametric
approximations were based on certainty equivalent
features, which corresponded to selecting specific
threshold values and declaring all arcs with probabilities
of survival greater than the threshold to be safe, and all
arcs with probabilities of survival less than or equal to
the threshold to have a certainty of destroying any
vehicles on those arcs. The resulting graph is a
deterministic graph, which leads to fast evaluation of
the base policy. The performance obtained for different
values of thresholds provided the base features for the
parametric approximation.

Several rollout algorithms were evaluated: First, we
used algorithms based on single features, with trivial
parametric approximation. Second, we used algorithms
using weighted combinations of features, with weights
trained off-line using training data. Finally, we used
optimized weights, searching in the space of possible
weights for optimal performance; this is not a practical
algorithm, but provides a baseline for the achievable
performance from training algorithms.

The experimental results are summarized in Figure 5.
These experiments used only two features in the
parametric interpolation, corresponding to two different
values of thresholds. In Figure 5, four pairs of features
are considered along the x-axis. For each pair of
features, the rollout performance is evaluated with

optimal weights, and with trained weight. Rollout
performance is also evaluated for each of the features
used in isolation.

In Figure 5, the upper dashed line represents the best
performance achieved using the Monte Carlo rollout
approach, and the lower dashed line represents the
performance of the greedy heuristic. The dotted line
indicates the performance using two statistically
determined features combined with equal weights.

The results of Figure 5 are surprising, in that the
algorithms based on off-line training seldom approach
the performance achieved by the optimal weighted
combination. Figure 5 shows that the rollout algorithm
based on features with trained weights was not able to
offer a consistent and significant improvement over the
greedy heuristic. In some cases the combination of
features with trained weights were not able to perform
as well as the features individually.
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'@ Maximum Single Feature
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Figure 5 Rollout Performance with Feature
Pairs

Figure 5 shows that the optimally selected weights
using the features 0.6 and 0.9 achieved an overall
performance close to that of the Monte Carlo approach.
However, when other pairs of features were used, the
performance was significantly worse. An alternative to
training or optimization is to select the parameters
analytically. The dotted line in Figure 5 shows the
performance of a combination of features that were
selected with equal weights to “match” the statistical
distribution (mean and variance) of risk within the
problem. This approach provides a significant
improvement over the greedy heuristic without the
computational cost of training or optimization. This
approach appears worthy of further investigation due to
its simplicity.

In sum, rollout algorithms using parametric
approximations did not perform as well as rollout
algorithms using Monte Carlo simulations.




6 Conclusions

In this paper we have considered the use of rollout
algorithms for adaptive multi-platform scheduling in a
risky environment. We explored different variations of
rollout algorithms, using combinations of on-line Monte
Carlo simulation and parametric approximations. Our
experimental results show that rollout algorithms using
on-line simulation perform significantly better than the
reference base heuristic policies, using only a modest
number of Monte Carlo trajectories.

In our experiments, we found that rollout algorithms
based on parametric approximations to the cost-to-go
failed to achieve the level of performance of similar
rollout algorithms using on-line Monte Carlo
simulations. The parametric approximations suffered
from two limitations: First, the training techniques often
failed to identify the best weight combinations. Second,
the parametric approximations were unable to generalize
accurately across the broad class of states which
occurred in the problem. Our experiments were limited
to simple classes of parametric approximations using the
concept of certainty equivalence scenarios. Exploration
of alternative approximations using different features is
an area for future investigations.

The main limitation of the Monte Carlo rollout
algorithms is the amount of on-line computation
required to evaluate the different options at each state.
We are currently investigating techniques based on
discrete-event systems and perturbation analysis [4] to
reduce the number of simulations required to evaluate
multiple alternatives.
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Closed-Loop Control for Joint Air Operations

Jerry M. Wohletz, David A. Castafion, and Michael L. Curry

Abstract— This paper focuses on the problem of providing
real-time, closed-loop feedback control of Joint Air Opera-
tions (JAO) via near-optimal mission assignments. For this
application, a rollout algorithm is employed which is based
on the theory of stochastic dynamic programming. The pri-
mary benefits of this technology are agile and stable control
of distributed stochastic systems. The rollout algorithm is
applied to a small JAO scenario that includes limited assets,
risk/reward that is dependent on mission composition, ba-
sic threat avoidance routing, and multiple targets, some of
which are fleeting and emerging. Simulation results illus-
trate the benefits of the closed-loop feedback control. It is
shown that the rollout strategy provides statistically signifi-
cant performance improvements over an open-loop feedback
strategy that uses the same baseline heuristic. The perfor-
mance improvements are attributed to the fact that the roll-
out algorithm was able to learn near-optimal behaviors that
were not modeled in the baseline heuristic.

Keywords— Large-scale control, approximate dynamic pro-
gramming, stochastic systems, adaptive control.

I. INTRODUCTION

URRENTLY , air operations are executed according

to an Air Tasking Order (ATO) which is developed ev-
ery 24 hours. If you included the end-to-end development
time — the air operations planning, tasking, and executing
— the process takes 72 hours. Given the dynamic nature of
air operations where things can change in a matter of min-
utes, this open-loop control strategy suffers from a lack of
agility. Moreover, given our current information gathering
capability, our awareness of the battle space has never been
greater. The goal of this research is to take advantage of
the battle space information and develop closed-loop con-
trol strategies to improve the agility of air operations.

Ideally, air packages are assembled and assigned to tar-
gets such that their coordinated effect efficiently achieves
a campaign objective with the available resources. How-
ever, due to the inherently uncertain JAO environment,
i.e. popup threats, time critical targets, asset destruction,
etc., the original tasking should be adapted whenever a
significant event occurs in order to achieve the campaign
objective. If these abrupt events are not anticipated, the
possible modifications may be so constrained that signifi-
cant performance degradation results.

In this paper, the JAO problem is view as a stochastic
control problem and an Approximated Stochastic Dynamic
Programming (ASDP) technique known as the Rollout Al-
gorithm (RA) is applied. This control strategy anticipates
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future significant events, and hedges assets for the oppor-
tunity of recourse. Thus, the resulting missions can be
adapted to contingencies with minimal performance degra-
dation, resulting in robust, stable control.

In Section II, an overview of the control methodology is
presented. Simulation results for a small JAO scenario are
presented in Section III. Finally, conclusions are presented
in Section IV.

II. METHODOLOGY

The JAO environment is an uncertain dynamical sys-
tem that has the following attributes: control decisions
made over time; probabilistic transition from one state to
the next, which is dependent on the choice of control; and
risk /rewards that are accumulated during each transition,
which is dependent on control and state transition out-
come. Thus, the tasking of air packages in a JAO envi-
ronment can be viewed as a sequential decision problem
where each decision is based on the observations of certain
discrete events.

This class of problems can be formulated as a Markov
decision problem [1]. The principal approach for solving
such problems is Stochastic Dynamic Programming (SDP).
Using the SDP formulation, an optimal control solution
is computed off-line, and on-line computation is reduced
to feedback rule evaluation or table lookup interpolation.
However, it is well known that this approach suffers from
the curse of dimensionality and is intractable for realisti-
cally sized JAO problems.

A subtle but significant attribute of the SDP formula-
tion is that it explicitly models the feedback mechanism,
i.e. the dependence of future control decisions on future
information arrival, in the mathematical formulation. By
modeling the feedback mechanism in the mathematical for-
mulation, the SDP formulation generations proactive ver-
sus reactive solutions that are able to anticipate likely con-
tingencies; this trait produces guaranteed superior perfor-
mance for stochastic problems [2]. This proactive attribute
is imperative for stable and agile control of the JAO enter-
prise because future information arrival and control oppor-
tunities are dependent on stringent spatial, temporal, and
coordination constraints.

Note, in this paper, we have adopted Dreyfus’s [2] termi-
nology with respect proactive versus reactive feedback con-
trol solutions. Closed-Loop Feedback (CLF) will refer
to feedback control solutions that explicitly model the feed-
back mechanism, and Open-Loop Feedback (OLF) will
refer to feedback control solutions that neglect the feedback
mechanism in the control optimization problem.

Given the well-known strengths and weaknesses of the
SDP formulation, there has been a great deal of research
on ASDP methods in recent years. These methods gen-
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erally maintain the SDP structure, but use a variety of
techniques to approximate the optimal cost-to-go. In this
paper, we apply one such technique known as the Rollout
Algorithm [3], [4] to the JAO problem. The rollout algo-
rithm — which has been used for a wide variety of dynamic
decision problems [4], [5], [6], [7] — is a technique that ex-
ploits knowledge of a suboptimal decision rule to obtain an
approximate cost-to-go for use in the SDP framework. Be-
cause the RA maintains the SDP structure, it falls within
the category of closed-loop control; accordingly, the termi-
nology RA and closed-loop feedback will be used synony-
mously in this paper.

An overview of the RA is presented below. Consider a
discrete event version of a dynamic decision problem,

ey

where zj is the state taking values in some set Xy, ug is
the control to be selected from a finite set Uy (z), wy is a
random disturbance, and f is a given function. We assume
that the disturbance wy, k = 0,1, ... has a given distribu-
tion that depends explicitly only on the current state and
control. Define a control policy, which is a sequence of feed-
back functions py(zr) that map each state z to control a
Uy

Tht1 = fe(@r, vk, wi)

2

thus, the control at time k is ux = pr(zx) € Uk(zg). In
the N-stage horizon problems considered herein, the single-
stage cost function is denoted by gx(zk, px (zx), wi) and the
terminal cost function is denoted by Gryn(zk+n). The
cost-to-go for policy 7 starting from state z; at time k can
be computed as follows:

e = {pr(@r), ter1 (Tot1)s o e N—1 (TheN—1)}

k+N-1
Ji(zx) = E {Gk+N($k+N) + 0y gi(wi,ﬂi(fﬂi),wi)}
. i=k
)

and can be represented in the SDP recursion format as
follows

Ji(z) = E {gk(zmuk(%‘k),’wk) + J§+1(f($k,ﬂk($k)ywk))}

for all £ and with the initial condition @
Jirn = GeanN(TranN) (5)

The N-stage, SDP solution is as follows
Th = argmiNg, u.ev,(z:) B {gx(Tk, pr(Tr), wi) (6)

+ I (F @k, e (@), wi)) }

The RA exploits this formulation by replacing the control
mapping for times k+1 — k+ N — 1 with a predetermined
baseline heuristic f(z;). Additionally, the RA is solved
forward in time, and is computed at the actual state xy
versus all possible states at time k. Thus, the RA has the
following policy:

RO (7)

= {ur(zr), B(Zrs1)s s B(ZraN-1)}

Using this policy, the approximate optimal control solution
at time k is
ufo = arg minukeyk(mk) E {gk(ﬂ?k, Uk, wk)

I (f (ks wi))

8)

Thus, the rollout policy is a one-step lookahead policy with
the optimal cost-to-go approximated by the cost-to-go of
the base policy. The RA computes the best control at the
current state z; at time k by balancing the current cost
with an approximate cost-to-go using a baseline heuristic
to model future control decisions.

The computation of the cost-to-go of the base policy is
by no means trivial. When the number of states is very
large, the recursion may be infeasible. A straightforward
approach for computing the rollout control at a given state
z; and time k is to use Monte Carlo simulations of the
baseline policy. To implement this approach, we consider
all possible controls u; € U(zy) and generate a “large”
number of simulation trajectories starting from z. Thus,
the simulated trajectory has the form:

f(@r, ur, wi)
f("z:h ﬁ(xi): wi)

Tr+1 =
Tip1 = i=k+1,.,k+N-1

9)
The costs corresponding to these trajectories are averaged
to obtain the Q-factor

Qzr,u;)) = E {gk(xk,ui,wk) + Jgff(f(ﬁk,ui,wk))}

(10)
Due to the finite number of simulations, only an esti-
mate for the Q-factor Q(zx,u;) is obtained. The approx-
imation becomes increasingly accurate as the number of
simulation trajectories increases. Once the estimated Q-
factor QQ(xr,u;) corresponding to each candidate control
u; € U(zy) is computed, the optimal rollout control at
time k for state zy is

af® =arg  min  Q(zx,ur)
ur €UL(zr)

(11)

Thus, the RA starts with a baseline heuristic and im-
proves the policy by using on-line learning and simulation.
The algorithm is related to the SDP formulation and is
based on policy iteration ideas. As a result, the RA is not
as ambitious as the SDP, and only provides modest guar-
antees of near-optimality [4]. It is an intermediate method-
ology between heuristics and SDP.

III. SIMULATION RESULTS

This section presents implementation and simulation re-
sults of the RA applied to a simplified JAO environment.
The purpose of this implementation is to highlight the ben-
efits of approximate optimal control for the JAO enterprise.
Thus, results will be presented for open-loop (OL), open-
loop feedback (OLF), and closed-loop feedback (CLF) con-
trollers, and both performance and behavioral characteris-
tics will be highlighted. All controllers generate mission or-
ders based on the current state of the JAO environment. A
mission order includes target assignment, coarse level rout-
ing, air package composition, and desired time-on-target.




A. Demonstration Scenario

As a proof of concept, a small and simple scenario, il-
lustrated in Figure 1, is used to demonstrate the benefits
of CLF for the JAO enterprise. The scenario has a single
airbase, located to the left, that includes three strike and
three weasel aircraft. Enemy assets include two surface-
to-air missiles sites (SAMs) and six targets of which T} is
fleeting and Ty is either fleeting —Scenario A— or time
critical —Scenario B.

P D5

Fig. 1. Simplified JAO Vignette

The important attributes of this scenario include limited
assets, risk/reward dependent on package composition, ba~
sic threat avoidance routing, and multiple targets, some of
which are fleeting and emerging. Asset attrition is highly
likely since SAMs occupy the airspace between the airbase
and targets. Also, given the number of targets and limited
assets, multiple strike packages and waves will be required
to service the targets. Finally, the performance in this
scenario is governed by the controllers’ ability to manage
attrition while servicing the fleeting targets.

The state dynamics in (1) can be represented as a dis-
crete event system using a finite state, stochastic timed
automaton formulation[9]. As will be shown, the state
dynamics can be constructed through composition of in-
dividual asset automata. Accordingly, the individual as-
set dynamics, i.e. aircraft, threats, and target, will be
presented followed by the composition of these dynam-
ics into a high-level, stochastic timed automaton. To
simplify this discussion, the notion of an automaton for
each asset will be illustrated via a state transition dia-
gram. The state transition diagram for an aircraft is il-
lustrated in Figure 2. Based on this diagram, the aircraft

-

- :_..‘Threat Engage

~

Fig. 2. Aircraft State Transition Diagram

Launch -~
7

state is defined as Xac = {Base, Ingress, Egress, Dead}
and significant event set is defined as f4c =
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{Launch,Threat Engage,Target Engage,Land}. As
mention at the beginning of this section, the output of
the control optimization problem presented in Section II is
mission orders that consist of list of air packages assigned
to targets. An air package AP; is defined as the product
composition of n strike aircraft AC,; and m weasel aircraft
ACy:

AP; = ACs, x -+ x ACs, x ACy, X --+ X AC,y,, (12)
Accordingly, the composite state is defined as Xap, =
{Xac, s Xac, _} and the event set is defined as Eap, =
{Launch, ThreatEngage TargetEngage, Land}. The dis-
tinguishing feature between strike and weasel aircraft is
that a strike aircraft destroy targets where weasel air-
craft destroy SAMs. A SAM may destroy both aircraft
types. As illustrated in the above diagram, all transitions
are deterministic with the exception of the threat engage-
ment. For the threat engagement event, the state transi-
tion p(zap, . [TAP, TsaM,, Threat Engage) is dependent
on both air package state x 4p and the threat state zsanr,
and is thus defined as an interaction event.

The state transition diagram for a target is illus-
trated in Figure 3. Thus, the target state Xpr =

_——-~~

=~ Target Engage

Emerge

Fig. 3. Target State Transition Diagram

{Known,Unknown, Dead} and significant events & =
{Emerge, Hide, Target Engage}. For the scenario pre-
sented in Figure 1, there are four normal targets, 11, T3, T5,
and T that have the following constraints :p, (Known) = 1
and neither {Hide} or {Emerge} is a triggering event
w.p. 0. Target T» is a fleeting target with the following
constraints: p,(Known) = 1 and {Emerge} is a trigger-
ing event w.p. 0. For Scenario A, target Ty is fleeting
and has identical transitions to target T5. For Scenario B,
target T4 is a time critical target with the following con-
straints: p,(Unknown) = 1. For all of these target types,
the state can only transition to Dead from the Known
state, and this interaction event is governed by transition
matrix p(zr,,, |[TAp, , T1,, Target Engage).

Finally, the state transition diagram for the SAM is il-
lustrated in Figure 4. Thus, the SAM state Xsapy =
{Active, Inactive, Dead} and significant events Esan =
{Activate, Deactivate, Threat Engage}. It is impor-
tant to note that the threat engagement event can
only occur if the SAM is Active, i.e. radar on, and
this transaction is governed by the transition matrix
P(TSAM. 1T AP, TsAM,, Threat Engage).

Thus, state dynamics (1) can be constructed through
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Activate

Fig. 4. SAM State Transition Diagram

parallel composition || of the individual asset automata:

zry1 = AP [[AP T - - || T6||SAML||SAM,

= (X,¢€, F(.’Ek),p(.'tk+1 Iwka ek+1)apo($o): G)
(13)
where X is the composite state space for each asset, £ is
the composite event set, ['(z) is a state dependent set of
feasible events, i.e. ['(z) CEV z € X, p(Ti41|Tk, k1) =
P{Xx+1 = Ti+1|Zk, ex+1} is the state transition probability
defined for all zxy1,71 € X, ext1 € &£, and such that
P(zpi1lzr,ens1) = 0V erpa ¢ D(zx), po(z) = P{x =
z,} Vz € X, and G ;i is the clock structure for event
i € &, air package j € {APy,...,AP,}, and enemy asset
ke {T,...,Te,SAM;,SAM;}. Note, the subscripts i or

j may be omitted if the interaction is irrelevant.

The definition of the first five terms of the automaton in
(13) follow from the discussion in the previous paragraphs,
and all that remains is to define the stochastic clock struc-
ture G; j  that defines the triggering event. To simplify the
composite clock structure, time &k has been normalized into
unit increments T where each increment corresponds to a
transition from one waypoint to another in Figure 1. Thus,
it take 2.5T to transition from the base to a target; likewise,
it takes 6T to perform a cycle: 5T for a base-target-base
transition and T to turn aircraft around. Another simpli-
fication is introduced by limiting the control loop closures,
i.e. formation and launching new air packages, to time
increments of w3T where w € Z > 0 is the wave number.

Given these simplifications, the clock structure for a
given air package AP; launched at k = 3wT is as follows:

Gropa; = {w3T}wp. 1
GDE,PA,-,SAMl = {(w3+1)T, (U)3+5)T} w.p 0.5
Grrpa;sam;, = {(w3+1)T,(w3+5)T} wp. 1
Gac.pa;sam = {(w3+2)T,(w3+6)T} wpl
Gpe,pa;sam, = {(w3+2)T,(w3+4)T} wp. 0.5
Grrpa;,sam, = {(w3+2)T,(w3+4)T}wp. 1
Gacpa;sam, = {(w3+2)T,(w3+4)T} wp. 1

Grapran = {(w3+3)T}wp. 1
Ginpa; = {(w3+6)Twp. 1

where Gry,pa; = {w3T} w.p. 1 implies P{PA; Launch
@ k = w3T} = 1. Additionally, the clock sequences for
targets T» and Ty, which are dependent on clock time cT
where ¢ € Z > 0, are as follows:

Gupr, = {10T}w.p. 1
Gupr, = {5T} w.p. 1
or
Gemr, = P{Emerge<cT}=3%:02(1-02)""!

Gupr, = {Gemmr, +3T}wp. 1

where the distinction is made for Scenario A and B.

Due to this time synchronization and the fact that
multiple air packages APi||---||AP, maybe in a given
wave, multiple events will occur at the same time. As
a result, a priority rule is imposed such that all feasible
non-interaction events, i.e. {Launch, Land, Emerge, Hide,
Activate, Deactivate}, occur first followed by feasible inter-
acting events, i.e. {Threat Engage,Target Engage}. In
the case of multiple air packages engaging the same SAM,
the engagements are treated separately and the triggering
events are executed in the order of lowest to highest pack-
age number.

B. Controller Implementation

As noted in the previous section, control loop closures,
i.e. optimization problem solved to determine formation
and launching new air packages, occur on time intervals of
w3T where w € Z > 0 is the wave number. For this sce-
nario, the objective of the control problem is to service as
many targets possible while preserving our own force. To
quantify this objective, a valuation scheme is used. Tar-
gets are valued, depicted in Figure 1, from 25 to 150, strike
aircraft at 20, weasel aircraft at 40, and no values are as-
signed to the SAMs. Thus, the objective function may be
represented as follows:

JE (an) = E{zf Jz1(z7, (N) = Dead)
+ ¥ -20 1(zac,, (N) = Dead)
+ $!-40 1(z4c,, (N) = Dead) |

where 1(z4c,, (N) = Dead) in an indicator function and
equals 1 if za¢,. (N ) = Dead and 0 otherwise, and N = 0o
is the planning ‘horizon used for this implementation. As
noted in Section II, the Q-factor estimate, Q(zk, u;) 1 1s sub~
stituted for (14), and the optimal rollout control 4£° €
U(zy) is determined from (11). For this 1mplementat10n 10
simulations trials where used to compute Q(z,u;). Also,
the admissible control set U(zy) can be summarized as fol-
lows: aircraft at base can be sent out on missions to specific
targets, for which the minimum risk route is determined a
priori, or they can stay at base in reserve.

Asillustrated in Section II, the RA uses a baseline heuris-
tic fz(z;) to model future decisions. For this implementa-
tion, a generic greedy planning heuristic that generates a
complete set of mission orders is used. The heuristic is
greedy because for each target, the best mission package is
selected without consideration to the available assets and
the mission priority, which is proportional to the value of
the target. The details of this algorithm are as follows:
for each target T;, the best mission packaged—consisting
of n strike and m* weasel aircraft—is determined via the
following maximization:

(14)

(n*,m*) = argmax; <2 [Jr; P{zr; (k) = Dead}
-20 Z? P{IAC” (k) = Dead}
40" P{z ac,, (k) = Dead}]
/ [20n 4 40m)]
(15)




the probabilities are computed by propagating a Markov
chain from time k = 3wT to k¥ = 3wT + 6T using the
dynamics in (13) with only a single air package with n strike
and m weasel aircraft Note, & = 3wT + 6T corresponds
to the end of the planning horizon which is a single wave
launched at 3wT.

A few properties of the greedy heuristic are noteworthy.
First, as a simplification, the target’s window of vulnera-
bility is not modeled in the Markov chain; Couple this with
the 1-wave lookahead, the heuristic is not capable of recog-
nizing the importance of aggressively prosecuting fleeting
and time critical targets. Additionally, resource constraints
are not modeled. As a result, the greedy algorithm’s output
is a complete list of mission orders and should be viewed
as a launch queue where only the highest priority missions
are launched given the available resources.

C. Simulation Results

In this section, RA simulation results are presented for
both versions of the JAO scenario described above. As a
basis of comparison, these results will be presented relative
to a loose Stochastic Upper Bound (SUB) and relative to
both OL and OLF controller implementations. For both
versions of the JAO scenario, a SUB is computed opti-
mistically by determining the expected value E{J(z)}
(14) while assuming no threats, and is thus a loose bound.

The comparison of the RA with OL and OLF will quan-
tify the performance benefits of feedback control over OL
and the performance benefit of a proactive versus reactive
control. For the OL and OLF controller implementations,
the greedy heuristic described in Section III-B is used to
generate mission orders. In the OL implementation, a list
of mission orders for each target is determined based on the
state of the environment at k = 0, and this plan is not up-
dated. In the OLF implementation, the mission orders are
updated for each loop closure time k = w3T forw € Z > 0.

C.1 Scenario A Results

Figure 5 shows the Scenario A performance results of the
OL, OLF, and CLF strategies. These results show that the
RA outperforms the OLF strategy, which attains a statis-
tically significant improvement over the corresponding OL
strategy. It is seen that the optimal control framework
was able to achieve 86% of a loose SUB whereas the OLF
was only able to achieve 67% of the bound, and the OL
controller was only able to achieve 45% of the bound. The
performance improvement is attributed to the fact that the
RA develops strategies that are not inherent in the base-
line heuristic. For Scenario A, these strategies include stag-
ing packages and opening attack corridors to manage as-
set attrition, aggressively prosecuting fleeting targets, and
reserving assets for likely contingencies. Thus, a simple,
generic heuristic used in the rollout framework does gener-
ate near-optimal behaviors and results.

As an example, at K = 0 when all targets and SAMS
are alive, the RA sends a APy[0,2] — T, followed by a
AP,[2,1] = T4 and leaves the remaining strike at base.
Note, AP;[n,m] — Tj is shorthand for AP; with n strike
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Fig. 5. Open-Loop, Open-Loop Feedback, and Closed-Loop Feedback
Results for Scenario A (86 Monte-Carlo)

and m weasels assigned to T;. For this same situation,
the greedy heuristic recommends sending a AP;[2,2] = T
instead of Ty and leaving the remaining strike and weasel
aircraft at base since alternative missions appear too risky.
This decision encapsulates many of the behavioral charac-
teristics that are learned by rolling out candidate controls.
The RA sends the AP;[0,2] — T4 out first to manage attri-
tion by opening an attack corridor. This mission is followed
by a AP[2,1] = Ty, which is time critical; a weasel air-
craft is included in this package in the event that a SAM is
alive. Furthermore, by modeling the next loop closure at
k = 3T, a strike aircraft is held in reserve for the potential
opportunity to launch at T3 in the event that both SAMs
are destroyed. This provides a maximum of two strike op-
portunities on this high valued target. Thus, the RA learns
the concept of time and managing attrition without coach-
ing since neither of these traits is modeled in the baseline
heuristic. Granted, a more sophisticated baseline heuristic
could have been used; however, by customizing the baseline
heuristic, generality would be lost which is clearly undesir-
able for applicability to other JAO scenarios. But the point
must be stressed, that by modeling the feedback mecha-
nism, the RA was able to position assets for opportunities
of recourse, and this resulted in better performance over
the OLF implementation.

C.2 Scenario B Results

Figure 6 shows the Scenario B performance results of the
OL, OLF, and CLF strategies. Again, these results show
that RA outperforms the OLF strategy, which attains a
statistically significant performance improvement over the
corresponding OL strategy. It is seen that the optimal
control framework was able to achieve 81% of a loose SUB
whereas the OLF was only able to achieve 73% of the bound
and the OL controller was only able to achieve 52% of the
bound. Like Scenario A, the performance improvement is
attributed to the fact that the RA develops strategies that
are not inherent in the baseline heuristic. For Scenario B,
these strategies include developing a Combat Air Patrol
(CAP) over the emerging target region, staging packages
and opening attack corridors to manage asset attrition, ag-
gressively prosecuting fleeting targets, and reserving assets
for likely contingencies.

Of these behaviors, the CAP is the most interesting. Be-
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Fig. 6. Open-Loop, Open-Loop Feedback, and Closed-Loop Feedback
Results for Scenario B (200 Monte-Carlo)

cause of the uncertain value function for Ty, the RA devel-
ops a policy of continuously maintaining an ingress mission
to Ty as soon as possible. Note, this simulation environ-
ment does not have loiter capability. At & = 0 when all
targets and SAMs are alive, the RA sends a AP;[0,1] — T3
followed by a AP2[2,2] — T and leaves the remaining
strike at base. The greedy heuristic’s recommendation is
the same as it was for Scenario A. The RA sends the AP,
out first to manage attrition by opening an attack corri-
dor. The mission is then followed by a APs to aggressively
prosecute To so that it can free up resources to establish
the CAP. Given that Ty emerges on average at =~ 47T, the
reserve aircraft will be in position to launch at the next
loop closure k = 3T'. Likewise, when the first wave returns
to base, these aircraft will immediately be turned around
to continue the CAP. This process will continue until the
target emerges and expires. The remaining normal targets
are then serviced.

Viewing the results presented in Figure 5 and Figure 6,
it appears that OL and OLF performance increases for Sce-
nario B. It is true that there is a performance percentage
increase; however, this is a result of the invariance of the
OL and OLF results and a decrease in the SUB between
the two versions. The OL and OLF results are statisti-
cally equivalent because neither control strategy services
T, regardless whether the value function is deterministic
or stochastic. On the other hand, the decrease in the SUB
and the resulting reduction in rollout performance reflect
the difficulty of Scenario B. Because of the requirement
to maintain an ingress mission to Ty in anticipation of the
target emerging, fewer aircraft, on average, are able service
the high-value, fleeting target T5.

IV. CONCLUSIONS

This paper focuses on the problem of providing a military
commander with real-time, closed-loop feedback control of
Joint Air Operations (JAQ) via near-optimal mission as-
signments, which anticipate possible mission modifications
due to uncertain future events. Based on the theory of
stochastic dynamic programming, an approximate optimal
control strategy known as the rollout algorithm is presented
in this paper. In this framework, the feedback mechanism,
i.e. the dependence of future control decisions on future
information arrival, is explicitly modeled in the control op-

timization problem; as a result, future significant events
are anticipated and assets are hedged for opportunities of
recourse. Thus, the resulting missions can be adapted to
contingencies with minimal performance degradation, re-
sulting in robust, stable control. The rollout algorithm
is applied to a small JAO scenario that includes limited
assets, risk/reward that is dependent on package composi-
tion, basic threat avoidance routing, and multiple targets,
some of which are fleeting and emerging. Simulation results
illustrate the benefits of the approximate optimal control
strategy. It is shown that the rollout algorithm provides
statistically significant performance improvements over an
open-loop feedback strategy that uses the same baseline
heuristic. The performance improvements are attributed
to the fact that the rollout algorithm is able to learn near-
optimal behaviors — establishing combat air patrol over
time critical areas, staging packages and opening attack
corridors to manage friendly asset attrition, aggressively
prosecuting fleeting targets, and reserving assets for con-
tingencies — that are not modeled in the baseline heuristic.
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ABSTRACT

A key component of a Joint Air Operation (JAO) environment is the planning and dynamic control of missions
in the presence of uncertainties. This involves the assignment of resources (e.g., different aircraft types) to targets
while taking into account and anticipating the effect of random future events and, subsequently, dynamic control in
response to various controllable and uncontrollable events as missions are executed in a hostile and rapidly changing
setting. The objective is to maximize the reward associated with targets while minimizing loss of resources. In this
paper, we first formulate the problem of optimal mission assignment and identify the complexities involved due to
combinatorial and stochastic characteristics. We then describe a discrete event simulation tool developed to model
the JAO environment and all of its dynamics and stochastic elements and to provide a testbed for several methods
we are developing to solve the problem of agile mission control. We describe some of these methods, including
approximate dynamic programming using rollout algorithms and optimal resource allocation schemes, and present
some numerical results.

Keywords: Discrete Event System, Stochastic Dynamic Programming, Simulation, Mission Planning.

1. INTRODUCTION

The Joint Air Operations (JAO) environment may be viewed as a stochastic dynamic system in which “entities”
such as aircraft, threats (e.g., hostile air defenses), and targets interact, and a variety of events take place, some of
which are controlled (e.g., the decision of an aircraft to engage a target) and some are random (e.g., an aircraft being
destroyed by a threat). Traditionally, operations are carried out based on a predefined plan, typically created as an
Air Tasking Order (ATO) about 24 hours in advance of an actual mission. This approach, however, lacks “agility”,
since it cannot anticipate changes in the battle space nor take advantage of ever-increasing sensor capabilities that
can provide additional information on a continuous basis. Therefore, a critical need is to develop dynamic control
mechanisms that not only incorporate anticipative capabilities regarding future uncertain events, but are also able
to swiftly react to observed events and make adjustments (e.g., retasking an airborne aircraft or aborting a mission).

In order to accomplish the goal of agile control, two essential tasks need to be carried out. First, we need to
develop an appropriate modeling framework for the JAO environment. Since this environment is extremely complex,
one is tempted to develop a highly detailed model, normally in a simulation setting. While such a model may contain
great descriptive value, it is often of little use for prescriptive purposes, i.e., as the basis for deriving the agile control
schemes we seek. This is because higly detailed models are not only computationally intensive so that real-time
applications are out of the question, but they often obscure the salient features which are needed to determine the
right action for a given situation (the analogy of “missing the forest for the trees” applies here). Therefore, the
challenge is to identify the appropriate level of modeling which will yield “just enough” useful information to make
optimal decisions. The second task is that of formulating and solving optimization problems, based on an appropriate
battle space model, which capture the fundamental objective of JAO: maximize the reward associated with targets
while minimizing the loss of friendly assets. While the formulation of such problems can be quite straightforward
when an appropriate model is available, their solution is far from feasible due to a variety of complexities which we
will discuss. ¢

In this paper, we present a stochastic dynamic model for the battle space, which is designed to suit the JAQO level
of detail. This is accomplished by adopting a Discrete Event System (DES) framework® and identifying events and




state transitions which capture the key features of the processes describing battle space entity interactions (Section
2). This framework forms the basis of a simulation tool we have developed, which is briefly described in Section
3. In Section 4, we formulate a stochastic dynamic optimization problem the solution of which provides the agile
control mechanism desired. The complexity of such a problem, however, is such that obtaining an exact solution is
infeasible. One must therefore seek approximate solution methodologies. Some such methodologies are presented in
Wohletz et al.,!* where the advantages of closed-loop (dynamic) control schemes over open-loop (static) schemes
are illustrated. In this paper, we include a more recent approach that combines a rollout strategy, as described in
- Wohletz et al.,}* with the “surrogate problem” method presented in Gokbayrak and Cassandras.®

2. MODELING FRAMEWORK

We adopt a view of the battle space as consisting of several interacting entities:

1. Friendly assets which originate at bases. These assets are further classified into different types, such as Strike
Aircraft (SA), Wild Weasels (WW), and Jammers. SA carry munition to be delivered to targets. WW provide
support to the SA to protect them from enemy threats, while Jammers provide electronic air defense suppression
capabilities.

2. Threats are typically air defense resources, such as SAMs, which may engage aircraft on their way to various
targets or may be positioned so as to directly protect a target.

3. Targets are the ultimate destination of SA and they may contain their own air defense resources that can engage
friendly assets.

A mission is the process of creating a “package” of friendly assets located at a base and assigning it to a target.
The package is subsequently also assigned a route from base to target. For the purpose of JAO, we do not care to
model the flight of each member of the package in detail. Instead, we represent the route from base to target as a set
of “way points” {Wy, Wy,...,W,}, where Wy denotes the base and W, denotes the target. A way point is selected
to represent a predefined point along the route or a known threat. In addition, there may be unknown threats in
between way points, in which case the model must automatically create a new way point for the mission. The travel
time between way points is a random variable based on aircraft speed and location of way points. Thus, a typical
mission consists of traveling from one way point to the next and possibly engaging threats that may either be known
or unknown. When (and if) the package arrives at its target, it engages it and subsequently must return to base by
reversing its route (which may be modified depending on new information).

The state of a mission is defined by the number of each aircraft type in the package that are still alive and
the location of the package. In addition, the state may include remaining munitions for each aircraft and other
information that we shall not take explicitly into account at this level of modeling. The state of a target is binary
representing whether it is “alive” or “destroyed”. The state of a threat is similarly defined. Thus, the overall state
of the battle space is described by the states of all missions, threats, and targets.

In order to systematically capture the dynamics of the battle space as its entities interact, as well as the effect
of uncertain factors, we view it at the level of a DES and adopt a Stochastic Timed Automaton model.> A simple
automaton is defined by (X, E,\ T, f,zo), where (i) X is a countable set of states, (ii) E is a countable set of events,
(433) I'(z) is the set of feasible events when the state is z; this is a subset of E containing all events which are allowed
to occur at state z, () f(z,e) is a state transition function such that when event e occurs at state x the next state
is ' = f(z,e); this can easily be replaced by a probabilistic mechanism such that the next state =’ is determined
with probability p(z'; z,e), (v) zo is a given initial state. To obtain a timed automaton, a clock mechanism is added
so that the stochastic DES can determine the next event to occur at state z, since I'(z) generally contains more than
one feasible events. Thus, whenever an event occurs and the state is z, every event i € I'(z) is associated with a
clock value y; and the next event to occur, denoted by ¢/, is the one with the smallest clock value; formally:

’ .
e = arg min {y;
g iel(a) {y:}
f
When such an event occurs, the next state is simply given by

2 = f(z.e) (1)
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Moreover, if state z was entered at time ¢, then the new system time after event e’ occurs is given by
t' =t + min {y;
ier(m){‘/‘}

Observe that time is only updated when an event occurs; all battle space activity in between events is irrelevant to
this model, a fact that maintains simplicity and computational efficiency. At time ¢’ all events that remain feasible
in the new state have their clocks decremented by setting

i =i - min {vi}
since min;ep(z){%:} time units have elapsed since the last event. An event such that ¢ € I'(z) and ¢ ¢ ['(z') is
eliminated and its clock discarded. Finally, if ¢’ € I'(2’), this event is assigned a new clock value v; (also referred
to as the event’s lifetime). In a stochastic timed automaton, this value is a random variable characterized by some
distribution G;(). In a simulation setting, v; is a sample from G;(-) obtained through a pseudo-random number
generator. Further details are omitted but may be found in Cassandras and Lafortune.®

The event set E required to model the battle space includes all events that may cause a state transition in any of
the entities we have defined. The key events that describe a typical mission state evolution are shown in Figure 1 in
the sequence in which they may occur. The mission is initiated at a base with a LOAD event, representing the process
of loading munitions and configuring all assets to be included in the mission package. When this is completed, a
DEPART_BASE event becomes feasible and may be scheduled. After this occurs, the package is physically airborne,
on its way to the next way point in its route. Omitting way points that involve no threat encounters, the next
event shown is either DETECT_.THREAT or ARRIVE_TARGET. In the former case, a threat engagement process
is initiated, whose details we omit. After END_.ENGAGE occurs, the states of both the threat and the package will
generally change. If no engagement actually takes place (e.g., because of the effect of jamming), then END_ENGAGE
simply coincides with DETECT_.THREAT. Note that a new DETECT_.THREAT may occur, since subsequent way
points can include additional threat encounters. It is also possible the package is destroyed or decides to abort the
mission and return to base, as shown in Figure 1. In the case where the package reaches the target, a similar process
takes place.

In addition, it is possible that the package makes a rerouting decision, which may consist of aborting the mission,
selecting a new target, or specifying a new way point that includes a threat encounter. It is at this point that control
decisions are critical and the role of feedback and solving an optimization problem enter the whole process. Moreover,
note that the’se decisions may well depend on information supplied by other packages, which creates a “cooperative
control” setting. In some cases, for example, it is possible to combine two or more packages and define a new mission
or split a package up so that other missions are provided with additional assets. Although details are omitted, all
these possibilities are part of this DES setting.
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Figure 2. Typical screen snapshot of simulation tool

3. SIMULATION MODEL

Using the Stochastic Timed Automaton structure described in the previous section, a discrete-event simulation model
was developed that includes a graphical user interface for defining the battle space and for monitoring all mission
activity. A typical screen shot is shown in Figure 2, with a magnified view provided through a zooming in and
out capability shown in Figure 3. The simulation environment allows one to define all battle space entities and
their attributes (e.g., target location and value, threat location and range). When a simulation is executed, a state
trajectory unfolds which may be graphically observed, while a detailed event trace is also provided (see bottom of
screen in Figure 2).

The main value of such a simulation tool is to allow us to test different mission planning and control strategies.
In addition, the underlying simulation engine may also be used as an integral part of some controllers which involve
estimating alternative performance-related quantities.

4. OPTIMAL MISSION PLANNING AND AGILE CONTROL

The dynamics of the battle space, viewed as a DES, are described by the state transition mechanism of the stochastic
timed automaton previously described. Thus, letting k = 1,2, ... index all events that take place over a given time
interval, we can rewrite the state transition function (1) as

Trr1 = [Tk, ur, wi) (2)

where z; € X is the battle space state, uy is a control decision which can be made following the kth event and
which is selected from a finite set Ui (zt), and wi represents random factors that affect the state. In general, the
control decision uy is a function of the observed state zx, so we can write ux = px(zx) € Ur(zk). A control policy my,
applied for a time horizon that includes N events into the future is a sequence of functions that map each state z;
to a control u; for all events 1 =k,...,k+ N — 1:

1 e = {r(@k),s a1 (Thg1), oo g N1 (TN 1)} (3)

In order to make optimal choices whenever a decision is made, cost functions gi(z, px(zx), wi) forall k = 1,2, ... are
defined that quantify the immediate effect of selecting uy = pi(z«). In addition, a terminal cost function Gy n (Tr+n)




Figure 3. Magnified screen snapshot of simulation tool

is defined. Then, the total expected cost incurred by a policy initiated at & (also known as the expected cost-to-go)
is

k+N—-1

Ji(zx) = E {Gk+f\'(1'k+N) + > gi(In#i(iEi),wi)} (4)
i=k

which can also be rewritten recursively as

JE (k) = E {gr(zr, pe(@e), wi) + I (f (e, pa(@e),wr)) ), k=1,2,... (5)
with the initial condition
Jisn = Gran(Trsn) (6)
This is the basis of the well-known Stochastic Dynamic Programming (SDP) algorithm? which provides a solution
to the problem of determining 7 = {u;‘_, ey Uy N_l} minimizing the total expected cost; in particular, the optimal
policy is obtained from
up =arg  min E [gi(Tk, wg, wi) + Jipy (f (@, ur, )] (7
ux €Uk (xk)
where J,,(f(@k, uk,wx)) is the optimal cost-to-go starting at k + 1 with J2, y = Gryn(Tk+n). Although in
principle one can apply this algorithm to obtain an explicit solution to the problem, this approach is computationally
intractable for all but very simple problems. When it comes to using it in the JAO context, there are four broad
areas of complexity we are facing: combinatorial, stochastic, distributed, and computational. First, the problem is
combinatorially complex since the number of states and control options grows exponentially with the number of assets
and targets. Second, the time scale of interest in mission control is long, which results in a high degree of future
uncertainty contributed by (among many factors) sensor inaccuracies, unexpected hostile actions, and deviations
from a plan upon its execution. Another difficulty arises from distributed complexity, which includes collection
and management of information from different assets, together with coordination and communication strategies to
achieve cooperative control. Finally, computational complexity is due to the need for real-time decisions which must
normally be implementable onboard an aircraft.

One of the most common ways used to overcome these complexities is based on “decomposition” of the overall
problem into smaller, more manageable components. If such decomposition is time-based, we can first solve an
optimization 'problem aimed at determining uy = pi(zx) that minimizes

k+N-1
Ji(ze) = E{ Z gi(miyumwi)} (8)

i=k

/




instead of (4) over a limited time horizon reflected by the choice of N. Since there are often events following which
control actions may not be taken, it is reasonable to decompose a campaign in this fashion, choosing appropriate
time intervals based on “significant events”. For example, when packages return to base it is reasonable to collect
all returning assets and plan new missions; on the other hand, an event such as detecting a threat may not warrant
re-evaluation of all possible control actions. Although (8) is a static optimization problem requiring the specification
of a single control uy, rather than a sequence {ug, 41, ..., Up+N—1}; it is still a very challenging task. The drawback
of this approach is that it prevents the controller from making decisions that take into account future events beyond
the selected time horizon. As an example, if a time-critical high-value target is identified for some future time outside
the present decision horizon, the controller is not able to reserve adequate resources to define a mission for this target.
To deal with this issue, there are two options. First, one can extend the time horizon and increase the dimensionality
of the the control vector u; to account for future decisions, thus trading off performance for computational efficiency.
Alternatively, one can approximate the expected cost-to-go by replacing u;(z;) in (4) for ¢ > k with a baseline
heuristic fi(x;). At each subsequent event, the problem can be resolved “rolling out” the time horizon forward, hence
the term “rollout algorithm”3 which was used in Wohletz et al.!* In this case, the approximate optimal control

obtained at k is

RO
uf® =arg min E [gk(mk,uk,wk) +Ji (f(a:k,uk,wk))} 9)
ur €Uk (z1)

Thus, the rollout algorithm seeks the best control at state zy that includes the current one-step cost and an approx-
imate cost-to- -g0 obtained through a baseline heuristic to model future decisions. However, evaluating the expected

value E[J,H_1 (f(zk, uk, wk))] is still a difficult problem. More generally, the problem is to estimate the so-called
(?-function

Qarw) = E {gi(wi, usywi) + Iy (f(za s w0)) ) (10)

for any control u; € U(zy). One approcah is to estimate this expectation through simulation. Thus, using the
simulation model discussed earlier we can generate sample paths starting at state z; and satisfying

Ty = f(@r, uk, w) (1)
Tip1 = flo, g(z),w) i=k+1,.,k+N-1

The resulting estimate is denoted by Q(zk, u;). Thus, this approach reduces to solving an optimization problem to
determine

~ RO A

U~ = ar min Tk, Uk 12

A gUkEUk(mQ( ko Uk) (12)

This problem is far from simple, as the dimensionality of Uy (zy) is typically enormous (in the billions of possible
control choices). In the remainder of this paper, we will discuss an approach for its solution, based on the premise
that the cost function Q(zk,ur) can be adequately approximated.

4.1. Optimal Mission Planning

We begin by using the model discussed in Section 2 for a JAO setting in order to identify the precise structure of the
control choice set Ur(z) when the state is zj. Let us assume that this state reflects an initial condition whereby
missions are being assigned to various targets at some base. Let M be the number of targets this base is responsible
for and let @ be the number of different asset types that may be used to design strike packages (for our purposes,
we set () = 3 representing the three types of aircraft configurations mentioned earlier, i.e., SA, WW, and Jammers)
The control decision can be expressed as a vector of dimensionality M - Q of the form

U= (U1, ULQs UMy - - - UMQ) (13)

where u; 4 is the number of assets of type g allocated to target i. The set of possible decisions at this state, denoted
by U, is limited by the capacity constraints

M
duig<Ky g=1,...,Q (14)
i=1

1

where K, is the total number of assets of type ¢ available at the base. There may also be additional constraints such
as Big S uiq < Vi fori=1,..., M, if a package assigned to target i is not allowed to exceed 7;  assets of type q




and is required to include at least f; , assets. For example, a constraint may be imposed that no mission can use
more than a given number of WW or that it must include at least one SA.

As already mentioned, the optimization problem we are interested in formulating is intended to maximize the
reward obtained from successful destruction of targets while minimizing the cost of asset loss. In order to formulate
such a problem, we associate a value V; with the ith target and a cost C; with an asset of type ¢. In addition, let
PT(u) denote the probability of successfully destroying target i under a control vector u, and P7(u) the probability
that an asset of type ¢ is lost during the execution of the ith mission under u. Then, ignoring any future missions,
the optimization problem is to determine u in (13) so as to maximize the total expected reward of the mission

M

Jw) =Y |ViPT(u Zc u; o P (15)

i=1

subject to the constraint (14) and possibly more mission-dependent constraints. Note that for some choices of u it is
possible that J(u) < 0. Clearly, the solution of this problem requires knowledge of the probabilities P (u) and P{(u)
fori=1,...,M,q=1...,Q and for all possible u € U. These probabilities depend on factors such as the outcome of
engagements with threats and targets and the possible cooperation across missions that may fly over common threats,
as well as basic parameters such as the firing rate of aircraft and the effectiveness of various weapons. It is possible to
evaluate PT (u) and P{(u) analytically using the stochastic timed automaton model of Section 2 enhanced by more
detailed engagement models and by making some simplifying assumptions. Alternatively, it is possible to estimate
them through simulation, although this becomes a prohibitively time-consuming task. Yet another approach is not
to attempt to solve an explicit optimization problem, but rather to rely on heuristics such as the “greedy heuristic”
described in Wohletz et al.!*

Note that the solution of (15) does not include any future decisions beyond a single wave of missions. Looking

t (10), this problem considers only the first term and not the expected cost-to-go term E[J,:f:lo(f(xk,uk,wk))],

However, using a rollout approach as described earlier, this can be combined with (15) so that the problem we face
is (12) with the control decision being of the form (13).

In what follows, we will present a methodology based on the “surrogate problem” idea® and provide some
numerical examples comparing it to some alternatives.

4.2. The “Surrogate Problem” Method

A crucial difficulty with the problem of maximizing J(u) in (15) is that the control vector u in (13) is discrete. This
prevents us from using optimization techniques from conventional nonlinear programming with continuous decision
variables, which are typically based on gradient information. The alternative is to rely on methods for discrete
optimization. However, even in a deterministic setting this class of problems is NP-hard and one must rely on some
form of a search algorithm (e.g., Simulated Annealing,! Genetic Algorithms!!). In a stochastic environment such
- as in JAO, the problem is further complicated by the need to estimate the objective function of interest, such as
Q(z,ux) in (12). This generally requires Monte Carlo simulation or direct measurements made on the actual system.
Most known approaches are based on some form of random search, as in algorithms proposed by Yan and Mukai,!®
Gong et al,° Shi and Olafsson.'® Another recent contribution to this area involves the ordinal optimization approach
presented in Ho et all® and used by Cassandras et al* to solve a class of resource allocation problems. The main
difficulty with all these methods is that they are more suited to be off-line approaches lacking the real-time speed
required in JAO.

The key idea in the “surrogate problem” method introduced by Gokbayrak and Cassandras® and generalized by
the same authors” is to transform the discrete optimization problem (12) into a “surrogate” continuous optimization
problem which is solved using standard gradient-based methods; its solution is then transformed back into a solution
of the original problem. Thus, suppose that we begin by relaxing the integer constraint on all u; 4 in (15) so that
they can be regarded as continuous (real-valued) variables. The resulting “surrogate” problem then becomes: Find
p* € U, that minimizes the cost function J.(p) over the continuous set U,, i.e.,

, Je(p") = min Jo(p) = min Eu[Lo(p.o)] (16)

where p = [b1,1,-~-,,Dl,Q,"',PM,hu-,PM,Q], piq € Ry, is a real-valued vector, U, is a constraint set such that
U c Ue, and Lc(p,w) is the cost function over a specific sample path (denoted by w) when the state is p. Omitting




details which may be found in Gokbayrak and Cassandras®,” we outline below the basic “surrogate problem” scheme.
Initially, we set the surrogate control vector to be that of the actual one, i.e., pg = ug. To avoid dealing with integer
values in the surrogate problem, let us perturb the components of ug by arbitrary small amounts ¢; # 0 as long as
the constraints are not violated, so that

pPo=1ug+¢€

Subsequently, at the nth step of the process, let H,{u,,wn) denote an estimate of the sensitivity of the cost J.(py)
with respect to p, obtained over a sample path w, of the actual system operating under control u,,. Two sequential
operations are then performed at the nth step:

1. The continuous state p, is updated through

P+l = 'Yn+1[pn - Uan(Umwn)] (17)

where v,41 is a projection function onto the set U, so that pn,+1 € U, depending on the nature of the set U,
and 7, is a “step size” parameter

2. The newly determined control vector of the surrogate problem, p,.1, is transformed into an actual feasible
discrete vector of the original system through

Un+1 = fn+1(pn+1) (18)

where fo+1 : U, — U is a mapping of feasible continuous controls to feasible discrete controls which must be
appropriately selected.

One can recognize in (17) the form of a stochastic approximation algorithm!? that generates a sequence {p,}
aimed at solving (16). However, there is an additional operation (18) for generating a sequence {u,,} which we would
like to see converge to u*, the solution of {15). It is important to note that {u,} corresponds to feasible realizable
controls based on which one can evaluate estimates H,(un,,w,) from observable data, i.e., a sample path of the
actual system under u, (not the surrogate control p,). We can therefore see that this scheme is intended to combine
the advantages of a stochastic approximation type of algorithm with the ability to obtain sensitivity estimates with
respect to discrete decision variables. In particular, sensitivity estimation methods for discrete parameters based on
Concurrent Simulation® are ideally suited to meet this objective.

The cornerstones of this method are the selection of the mapping f,+1 in (18) and of a surrogate cost function
L.(p,w) whose relationship to the actual cost must be made explicit. In addition, the estimates Hp(un,w,) necessary
for the optimization scheme described above must be obtained. These are dicussed in detail in Gokbayrak and
Cassandras.”

4.3. A Mission Planning Scenario Example

We illustrate our approach to optimal mission planning using a sample scenario shown in Figure 4. In this scenario
there are M = 16 targets with different values protected by 16 SAM sites as shown. Our task is to plan missions at
a base with two asset types (i.e., @ = 2), SA and WW, such that we have at our disposal K; = 20 SA and K, = 8
WW. We then seek a 32—dimensional vector u = [u1,1,u1 2, -, U16,1,- - -, U16,2] tO Mmaximize a reward function of the
form (15) or, if we approximate the cost-to-go E[Jgfl (f(zx, uk, wg))] in (10), we can minimize Q(z,us) in (12).
As shown in Figure 4, packages are assumed to fly in a straight line between base and assigned target and must,
therefore, engage threats on their way to a target or during the returning part of the mission. The number of possible
solutions to this problem is about 10'®, and that is only reflective of the combinatorial complexity aspect of it.

An added complication in this problem is the fact that there are multiple local optima. The “surrogate problem”
method provides an attractive means of dealing with this difficulty because of its convergence speed. Our approach
in this case is to randomize over the initial controls uy (equivalently, po) and seek a (possibly local) minimum
corresponding to this initial point. The process is repeated for different, randomly selected, initial controls so as to
seek better splutions. For deterministic problems, the best allocation seen so far is reported as the optimal. For
stochastic problems, we adopt the stochastic comparison approach in Gong et al.? The algorithm is run from a
randomly selected initial point and the cost of the corresponding final point is compared with the cost of the “best
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Figure 4. A mission planning scenario example
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point seen so far”. The stochastic comparison test® is applied to determine the “best point seen so far” for the next
run.

The surrogate problem approach was applied for a single mission wave and its performance was compared to three
alternatives as shown in Figure 5. Here, “Greedy” refers to a simple greedy heuristic used also in Wohletz et al'*
in which targets are ordered on the basis of their value and missions are assigned from most to least valuable target
without takix}g into account the number of available assets at the base. Another heuristic, labeled “MMR”, uses
the maximal marginal return in expected mission reward and assigns packages based on this metric, computed using
an analytical model that includes detailed engagements and a limited amount of interdependencies of packages in
engaging threats (therefore, it tends to be conservative). Finally, “Rollout” refers to a rollout algorithm? applied to
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a single mission wave. Note that performance in these results is measured as the fraction of total attainable reward
with respect to the total target value. In addition to the scenario described above, the results in Figure 5 include an
average over a number of randomly generated scenaria.

In the case of a campaign with multiple mission waves, the surrogate problem method was applied independently
from one wave to the next and the performance results are shown in Figure 6 (which includes confidence intervals). In
this case, “MMR+Surrogate” refers to the use of the MMR algorithm to determine an initial point for the surrogate
problem method, which accelerates its convergence. Note that this method brings the campaign to an end faster
than the other approaches shown; its lack of anticipative capabilities shows in that it does not attain additional value
that the MMR heuristic, for example, can at the expense of a longer campaign. This is also illustrated in Figure
7: The surrogate problem method is seen to destroy approximately the same number of targets as the other three
approaches in less time, but at the expense of higher asset attrition. The “MMR+Surrogate” controller, on the other
hand, can significantly reduce attrition at the expense of a somewhat longer campaign.

5. CONCLUSIONS AND FUTURE WORK

The quest for agile control in a JAO environment depends on appropriate battle space modeling and formulation of
a stochastic dynamic optimization problem for mission planning. In this paper, we have described the complexities
associated with these tasks and some approaches for solving optimal mission planning problems. These approaches
combine approximation methods for solving notoriously hard dynamic programmimg problems with more recent
advances in optimal resource allocation techniques. They all require estimating performance-related quantities under
alternative controllers, which is often accomplished using discrete event simulation. Thus, part of our ongoing work
involves the development of simulation tools and related efficient estimation methods.

Our ultimate goal is to develop closed-loop control and optimization methods capable of taking advantage of battle
space data as they become available in real time, while also anticipating uncertain future events. Toward this goal,
we are exploring new approximation methods and optimization algorithms that can incorporate simulation-based
estimates. It is possible, for example, to exploit the structure of the uncertainty factors entering in this problem by
extracting key features rendering estimation more efficient with little loss of accuracy. At the same time, we need
to include additional features of the JAO setting into our models, such as the presence of time-critical targets or
“intelligent” threats.
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Figure 7. Performance comparison over different solution approaches (single mission wave)
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