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ABSTRACT

At the Naval Postgraduate School (NPS), a small AUV navigation system
(SANS) was developed for research in support of shallow-water mine countermeasures
and coastal environmental monitoring. The objective of this thesis is to test and evaluate
the SANS performance after tuning the filter gains through a series of testing procedures.

The new version of SANS (SANS III) used new hardware components which
were smaller, cheaper, and more reliable. A PC/104 computer provided more computing
power and, increased the reliability and compatibility of the system.

Implementing an asynchronous Kalman filter in the position and velocity
estimation part of the navigation subsystem improved the navigation accuracy
significantly. To determine and evaluate the overall system performance, ground vehicle
testing was conducted. Test results showed that the SANS III was able to navigate within
+15 feet of Global Positioning track with no Global Positioning update for three

minutes.
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I. INTRODUCTION

A. BACKGROUND

Autonomous Underwater Vehicles (AUVs) are capable of a variety of overt and
clandestine missions. Such vehicles have been used for inspection, mine
countermeasures, survey, and observation [Ref. 1]. One of the most important and
difficult aspects of an AUV mission is navigation. Due to intermittent submergence, the
vehicle does not have continuous access to external navigational aids such as the Global
Positioning System (GPS) or Loran. Thus the vehicle itself must be capable of
estimating the current position from onboard sensors that measure speed, heading,
velocity and acceleration. Previous studies have shown that integrating GPS and INS
into a single system makes possible production of continuously accurate navigational
information even when using relatively low-cost components [Ref. 11]. GPS is capable
of supplying accurate positioning when the AUV is surfaced. It is integrated with an INS
to compensate for the loss of GPS signals when the AUV is submerged.

At the Naval PoStgraduate School (NPS), a Small AUV Navigation System
(SANS) was developed for research in support of shallow-water mine countermeasures
and coastal environmental monitoring. The goal was to demonstrate the feasibility of
using a small, low-cost Inertial Measurement Unit (IMU) to navigate between
Differential Global Positioning System (DGPS) fixes.

~ The first prototype of the SANS system (called SANS I) was separated into two
subsysfejrnS [Ref. 12]. The IMU, water speed sensor, compass, GPS antenna, and data

logging computer were housed in one package and placed in a towfish. The GPS
1




receiver, DGPS antenna, and data processing computer were in the towing vessel. The
data collected by the towfish subsystem were transmitted to the processing computer
through a modem cable.

The second generation of the SANS system, or SANS II, was totally contained in
a single package. The software of SANS I and SANS II was based on a twelve-state
constant gain complementary filter. The values of these gains were initially selected
based on bandwidth considerations, and later tuned based on results from bench testing
and ground vehicle testing.

SANS III, the current version of SANS, is composed of the state-of-the-art
components, which include an IMU, GPS/DGPS Receiver, magnetic compass, water
speed sensor, and data processing computer. The 486 based ESP computer used in the
previous versions of SANS was replaced by an AMD 586DX133 based PC/104 computer
to provide more computing power, to increase reliability and provide compatibility with
PC/104 industrial standards [Ref. 4].

In the current version of SANS, the position and velocity estimation part of the
constant-gain filter used in SANS I and SANS II is replaced by an asynchronous Kalman
filter. Kalman filtering is a method of combining all available sensor data, regardless of
their precision, to estimate the current position of a vehicle. Use of a Kalman filter
improves performance, decreases navigational errors, and improves reliability relative to
filters that depend only on one sensor input.

B. - RESEARCH OBJECTIVES
_The objectives of this thesis research are the following:

- to implement Kalman filtering within the SANS III,
2




- to improve navigation accuracy of the SANS III by properly tuning filter gains,

-to test and evaluate the overall performance of the SANS III through ground

vehicle testing in preparation for the at-sea testing.
C. SCOPE, LIMITATIONS, AND ASSUMPTIONS

This thesis reports part of the findings of more than eight years of research in an
ongoing project. The main objective of this thesis is to test and evaluate the current
configuration of the SANS through bench and ground vehicle tests, and tune the Kalman
filter gains to increase reliability and accuracy of the system before at-sea testing.
D. ORCANIZATION OF THESIS

Chapter II provides an overview and description of the current hardware and
software components of the system.

Chapter III describes the Kalman filter for the SANS III.

Chapter IV describes system test procedures and results.

Chapter V presents the thesis conclusions and provides recommendations for

future research.
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,II. SYSTEM OVERVIEW

A. INTRODUCTION

References [13 and 14] include detailed information about the current SANS
bardware and software components. The purpose of this chapter is to present an
overview of the configuration of SANS III hardware and software u;lifs.
B.  SANS IIl HARDWARE OVERVIEW

Most of the previous SANS hardware parts have been replaced with more
powerful, flexible, and reliable components which are faster, smaller, and cheaper.
Figure 2.1 shows the SANS III hardware configuration. The main components are a Real
Time Devices 133 MHz AMD 586 PC/104 module, a Sealevel C4-104 four-port PC/104
compatible RS-232 module, a Real Time Devices DM406/DM5406 analog to digital
(A/D) converter, a Real Time Devices CMT104 IDE hard drive module and data sensors
which include the Crossbow DMU-VG Six Axis IMU, the Motorola Oncore/McKinney
Technology GPS/DGPS Receiver unit, the Precision Navigation TCM2 Electronic
Compass, and the B&G Sonic Water Speed Sensor.

1. Real Time Devices AMD 586DX133 Based PC/104

The Real Time Devices AMD 586DX133 based PC/ i04 is being used as a data
acquisition and processing unit in SANS III system. PC/104 is an industrial standard for
creating embedded computer applications. It fulfills the basic needs of embedded systems
such as iow péwer consumption, modularity, small foot print, high reiiability, good noise

immunity, high-speed operation, and expandability [Ref. 13].



CMT104 IDE CMi12
Controller
And Super VGA
AMD 586DX133 Hard Drive Module
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CPU Module
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GPS/DGPS _[ RS.232 RS2% :l“_' G

Receiver

Figure 2.1 Current SANS Hardware Configuration [After Ref. 13]

The PC/104 can be easily customized by stacking PC/ 104 modules that are
compliant with the PC/104 bus architecture, such as video controllers, network interfaces,
analog and digital data acquisition modules, sound I/O modules, etc [Ref. 4].

The SANS system is equipped with five PC/104 modules. These are the CPU
module, the hard drive module, the VGA module, A/D converter and the serial I/O
module.

2. Sealevel C4-104 Serial I/O Module

The PC/104 compatible Sealevel C4-104 serial I/0 module provides four RS-232
serial I/O- ports for connecting the four sensors of SANS III system. Each serial port can
be conﬁgured to have its own base memory address and Interrupt Request (IRQ)

assignment.




The C4-104 is compliant with PC/104 specification regarding both mechanical
and electrical specifications. The C4-104 utilizes Universal Asynchronous
Receiver/Transmitters (UART) with programmable baud rates, data format, interrupt
control and a 16-byte input and output FIFO [Ref. 7].

3. Real Time Devices DM406/DM5406 Analog to Digital (A/D) Converter

The DM406/DM5406 A/D Converter can receive up to 8 differential or 16 single
-ended analog inputs. It converts these inputs into 12-bit digital da_ta words. The analog
input voltage range is jumper-selectable for bipolar ranges of —5 to +5 volts, —10 to +10
volts, or a unipolar range of 0 to +10 volts. The module is provided with overvoltage
protection to + 35 volts.

A/D conversions are performed in 5 microseconds, and the maximum throughput
rate is 100 kHz. Conversions can be controlled through software, by an on-board pacer
clock, or by an external trigger brought onto the board through the I/O connector.

The converted data can be transferred to PC memory through the PC data bus or
by using direct memory access (DMA). Detailed information for settings and
programming the module is supplied in [Ref. 8].

4. Crossbow DMU-VG Six Axis Inertial Measurement Unit

The DMU-VG is a six-axis measurement system designed to measure linear
acceleration along three orthogonal axes, and rotation rates around three orthogonal axes.
It is designed to provide stabilized pitch and roll in dynamic environments [Ref. 10]. The
IMU has both analog output and RS-232 serial port output.

_The DMU-VG is designed to operate in one of two modes, a scaled sensor mode

and a voltage mode. It was configured to operate in voltage mode for the SANS.
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5. Motorola Oncore/McKinney Technology GPS/DGPS Receiver

The GPS receiver unit used in the SANS system is based upon the Motorola
ONCORE Receiver [Ref. 9]. It is capable of tracking eight satellites simultaneously.
The GPS receiver incorporates a DGPS capability. The DGPS receiver unit was specially
designed by McKinney Technology to operate in the Monterey Bay area. Its data port
interface is RS-232 compatible. The output message consists qf latitude, longitude,
height, velocity, heading, time, and satellite tracking status. The test results conducted
show that the GPS unit with differential corrections can provide a positional accuracy of
15 ft.

6. Precision Navigation TCM2 Electronic Compass

The Precision Navigation model TCM2 Electronic Compass Module is used in
the current SANS hardware configuration [Ref. 3]. Thé TCM2 consists of a three-axis
magnetometer, a two-axis tilt sensor and a small A/D board. The tilt angle compensation
of the sensor depends on the TCM2 model (20, 50, and 80 degrees). Output may include
heading, roll, pitch, temperature, and a three dimensional magnetic field measurement.
The TCM2 standard output format can be configured to provide those parameters
required by the user. Precision Navigation literature lists accuracy as within one half of a
degree in level operation. The TCM2 can be calibrated for local magnetic field
distortions by the user. It provides an alarm in the output data when local magnetic
anomalies are present, and gives out-of-range warnings when the unit is being tilted too

far. The calibration of the compass and its error characteristics are described in [Ref 3].




7. B&G Microsonic Speed Sensor
The B&G Water Speed Sensor (Figure 2.2) has an accuracy of 0.05 Knots. It can

measure the speeds up to 30-40 Knots depending on the conditions of the signal path.

Figure 2.2 Water Speed Sensor

The sensor transmits groups of ultrasonic pulses (short burts of 500 kHz) from
one transducer to the other, swapping transducers after each group. Each received pulse
precisely triggers the next transmitted pulse. The total time taken for each group depends
on the propagation time in the sonic path, hence variations in group time caused by water

flow between the transducers can be measured and converted to the speed of water flow.



.:The microprocessor continually monitors the réceived pulses, adjusting the gain
of the receiver in response to changes in propagation conditions (e.g. air bubbles) and
also detects faulty sonic conditions.

The size of the sensor is also appropriate for the concept of the SANS. It has an
overall length of sixteen inches, and a height of three inches.
C. SANS III SOFTWARE OVERVIEW -

The software of the SANS III was written in C++ and compiled using the Borland
5.0. It is designed to utilize IMU, heading, and water-speed information to implement an
INS based on an asynchronous Kalman filter. It also integrates GPS information with
INS information to obtain continuously accurate navigation information in real time. The

main flow between modules of the system is shown in Figure 2.3.

TOEFISH

T

NAVIGATOR

I_TTi

GPS
T

SAMPLER | ATOD

1 f

COMPASS IMU WATER SPEED

I

-~ . -

~ Figure 2.3 SANS Software Main Modules
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The modules, with the exception of the water speed sensor, take in the data
through the serial ports and supply it to the main program, toefish, for screen set up and
output. The Sealevel C4-104 module provides serial port connections for the devices.
Water speed data is supplied to the system through the A/D converter.

The GPS class object obtains GPS position messages over a RS-232 interface via
the COM1 serial port. The GPS data message length is 76 bytes long. The message
should have proper header and a valid checksum in order to be recognized as a valid
message.

The compass data is received over a RS-232 interface via the COM2 serial port.
The message length for compass data is 60 bytes long. The TCM2 compass is configured
to supply magnetic heading information. Magnetic declination [Ref. 18] is added to
determine the true north. For Monterey Bay, this value is 15 degrees and 6 minutes [Ref.
17]. It depf:nds on location (latitude, longitude) and year.

IMU data is received over a RS-232 interface via the COM3 serial port. The
Crossbow IMU runs in VG mode. The IMU message has 22 bytes of data. The data
packet consists of stabilized pitch and roll angles along with angular rate and linear
acceleration information [Ref. 13].

The water speed sensor data is received through an A/D converter. The output of
the sensor is voltage.

The INS class implements the inertial navigation portion of the SANS. It is based
on an asynchronous Kalman filter. The INS class instantiates a Sampler object from

which it obtains heading, speed, linear acceleration data, and angular rate data. GPS

11




informgtion is also péssed to the INS class via the Navigator object. The INS produces
accurate navigation information by integrating IMU data and DGPS data [Ref 13].

The Sampler prepares raw IMU, heading and water speed data for use by the INS
object. The Sampler controls the data formatting and returns a formatted sample if valid
raw data is available. Otherwise, a negative response is returned.

The navigator object interfaces with both the GPS and INS objects to determine if
they have an updated estimate of the current pqsition, and provides an estimate of the
current position in hours, minutes, seconds and milliseconds of latitude and longitude.
If GPS information is available, the navigator object converts a latitude and longitude
expressed in milliseconds to a grid position in feet and passes it to INS class, so that the
INS object can calculate the current position estimate with new GPS information. If no
GPS information is available, the INS object calculates the current position estimate by
using Kalman Filter equations.

The software description for configuring the Sealevel C4-104 four RS-232 serial
ports can be found in [Ref. 13].

D. SUMMARY

The components in the current SANS hardware configuration were chosen based
on size, cost, power, and ease of operation. The new components réduced the size of the
system by 52% [Ref. 14]. The C4-104 Serial /O Module provided four RS-232 serial
ports for the PC/104 application. The various test results of the SANS III showed that the
AMD 586DX133 based PC/104 computer provided more computing power and, more

importantly, increased reliability and compatibility with PC/104 industrial standards.
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The technological advances in sensors make it possible to change out the current
components of the system for the newer versions in future years. With this feature, more
accurate navigation information can be acquired, as well as smaller size advantages.

All additions and updates to the SANS software were compiled under the Borland
version 5.0, C™ compiler. The software runs on a DOS (standard) platform with an
AMD 586DX/133 MHz processor. -

Since DGPS information is available aperiodically due to asynchronous
reacquisition time of satellite signals and asynchronous submergence and surfacing
duration of the AUV, an asynchronous Kalman filter is needed to optimally integrate
IMU and DGPS data. A Kalman filter was implemented in the INS object to improve the
accuracy of SANS.

Minor changes have been made in the SANS software. The changes were mostly
related to the Kalman filter part of the system. The gains and constants were tuned to
obtain improve accuracy. |

Most of the SANS software is still same as in Appendices A and B of [Ref. 13].

The modified part of the SANS software is presented in Appendix A.

13
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III. SANS ASYNCHRONOUS KALMAN FILTER

A. INTRODUCTION

The objective of the SANS is to produce real time navigation information by
integrating an Inertial Navigational System with a Differential Global Positioning System
(DGPS). The navigation software in the previous versions of SANS was based on a
twelve-state constant gain filter. Filter gains were initially selected based on bandwidth
considerations and later tuned based on tilt table and bench testing. This filter is’ being
replaced by an asynchronous Kalman filter in SANS III. This chapter discusses the
developed discrete time asynchronous Kalman filter (Figure 3.1) that estimates the eight
states of the SANS III model after attitude estimation. A brief discussion will be
provided on Kalman filter basics leading into a derivation of the SANS III Kalman filter
equations. -
B. KALMAN FILTER BASICS

The Kalman filter is a recursive predictive update technique used to estimate the
states of a process which can be defined as a discrete-time or continuous-time model. For
our purpose, we will study the discrete-time model of the Kalman filter. This state-space
filter method has two main features (1) vector modeling of the random processes under
consideration, and (2) recursive processing of the noisy measurement (input) data [Ref.
2]. Given some initial estimates, it allows the states of a model to be predicted and
adjusted with each new measurement. It also provides an estimate of error at each
update. '_Kalman filters incorporate the effects of méasurement noise and modeling noise

in their computational structure.
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We assume that the random process to be estimated can be modeled in the form :

Xp = 0%, +W, (3.1)

In cases where the relationship between model and its measurements is linear, the

observation (measurement) of the random process model (Eq. 3.1) becomes:

z, =H,x, +v, 3.2)

Throughout the remainder of this chapter, various terms are used to better explain the

Kalman filter. The following notations are consistent with [Ref. 2]:.

(n x 1) Vector containing actual states of a process model at time 7, .
(nx 1) Vector containing the current estimated states at 7, .
(n x 1) Vector containing the estimated states at time ¢ before updating with

measurement.
(nx 1) Vector containing the estimated states at the next time sample.

(n x n) Matrix containing the error covariance for g, .

(n x n) Matrix containing the error covariance for %; .

(n x n) Matrix containing the error covariance for %, .

(m x 1) Vector containing the measurement at time #, .

(m x n) Matrix giving the ideal (noiseless) connection between the measurement
and the state vector at time 7, .

(m x n) Matrix denoting the measurement error covariance, which must be known
or estimated a priori.

(n x n) Matrix containing the model relating %,and £;,, in the absence of a forcing
function ( if %, is a sample of a continuous process, ¢, is the usual state transition
matrix).

(n x 1) Vector whose elements are white sequences with known covariance
structure to be used with %, .

(m x 1) Vector whose elements are the measurement errors associated with z, -
assumed to be a white sequence with known covariance structure and having zero
cross-correlation with the w, sequence.

" (1 x n) Matrix containing the covariance of w, . -

(n x n) Kalman Gain matrix that relates the amount of influence that the error
between x; and z, has in deriving %, .
time constant of a given state vector x,
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q; ‘white noise variable with zero mean and variance of element being modeled.
D;  zero frequency white noise density, (magnitude of g;)

The basic discrete-time Kalman filter contains five recursive equations.

Beginning with a prior estimate, the noisy measurement z, is used with a blending factor
K, to improve the the estimate as follows;
x, = %, + K,(z,- H, %) - (3.3)

‘K, (known as the Kalman gain) is now needed to find the optimal estimate %, . It
takes the error covariance (mean-square error) between the current state x,and the
estimated state %, and applies it with H, and R, resulting in

K, =P;H,(H,P;H; +R,)” (3.4)

Once the Kalman gain K, minimizes the mean-square estimation error, a new

covariance. matrix can be computed for £, (Eq. 3.3) with
P, =(1-KH)P, (3.5)

.The updated estimate %, is projected ahead using the state transition matrix g, .
Unlike Equation 3.1 the noise vector w, does not affect the projected states because it
has zero mean and is white (zero correlation with any previous w, ). Thus,

i;+1 = ¢kik (3.6)

Finally, the projected error covariance for X,,, uses the updated error covariance

P, from Equation 3.5, the covariance of w, in Equation 3.1, denoted as Q, , and ¢, the

state transition matrix to form the following:

Pk—+1 = ¢kPk¢kT + Qk (3.7)
18




Equations 3.3 through 3.7 can be placed into an algorithm that can loop indefinitely. This

Kalman filter loop is shown in Figure 3.2.

Enter prior estimate %, and its error covariance P,

v

Compute Kalman gain:

Zy,Z,, -+
/' K, = P/H (BB +R,)" \ ° l

Project ahead: ‘ Update estimate with
%, =9.X, measurement K, :
P. =4,P4 +Q, x=%, +K,(z, ~H,X,)

\ Compute error covariance for / l
updated estimate: %

Xosilﬁ'"
Pk = (I—Kka)PI:

Figure 3.2 Kalman Filter Loop [From Ref. 2]
C. DERIVATION OF SANS III KALMAN FILTER EQUATIONS
Thé SANS III asynchronous Kalman filter has six states for orientation estimation
(still constant gain), and eight states for position estimation. The part of the filter for
orientation estimation remains the same as reported in [Ref. 11]. Figure 3.3 shows the

process model developed by the SANS team [Ref. 11]. In this model, the velocity

relative to water, ocean current, and GPS bias (state variables x; through x,) are

modeled as colored signals generated by white noises g¢,...,q, through first-order
systems. The velocity relative to the ground is obtained by summing the velocity relative

to water (x;, and x,) and the ocean current (x, and x,). This result is integrated to

obtain position estimation (x, and x,).
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Figure 3.3 SANS Process Model (after attifude estimation) [From Ref. 11]
Low-frequency DGPS noise is explicitly modeled based on an experimentally
obtained autocorrelation function. Ocean currents are modeled as a low-frequency
random process. Finally, the asynchronous nature of the DGPS measurements resulting
from AUV submergence or wave splash on the DGPS antenna is also taken into account
by adopting an asynchronous Kalman Filter as the basis for the SANS position estimation

software.

Therefore, the Kalman filter state equations are characterized by:

) 1 1
- xl =‘—_-x1 +"_q1 ~ (3.8)
43! 7
i . 1 1
X, =——Xx +—4¢q, (3.9
T, T




X5 =—-—1—x3 +—l—q3 (3.10)
T3 3

X, =——1——x4 +-l—q4 3.11)
T Ty

Xs =——1—x5 +—1—q5 (3.12)
Ts Ts

Xg =—L.x6 -f--l—q6 (3.13)
T Te

X, =X+ X, (3.14)

Xg =X, +X, (3.15)

T; represents the time constant of the state vector x;. 7, and 7, are the speed
through water time constants, 7, and 7, are the water current time constants, and

75 and 7, are the GPS time constants.

Acceleration signals from the attitude estimation part of the SANS III filter were
not used for velocity estimation because they were judged to be too noisy to provide
useful information in comparison to values for velocity obtained directly from an
accurate water speed sensor. With the process model shown in Figure 3.3, the
measurements used for position estimation are the velocity relative to water provided by
the water speed sensor and position information provided by DGPS. The velocity
measurements are synchronous and available at every sampling time. DGPS information

is asynchronous and is only available when the AUV is surfaced. The two synchronous

measurement equations are:

Z, =%, +V (3.16)
1 1 1
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zZ,=%x,+V, (3.17)
where v,, i=1,2 are white noise. That is, it is assumed that the velocity measurements
contain additive white noise. The two asynchronous measurement equations are:

Z3 =X, + X4 (3.18)

Z, =Xg + X (3.19)
From these equations, ¢y (state transition matrix) was developed.

- 1
X = —ixl +—q, (3.20)

T 1

By taking Laplace transform of Equation 3.20:

le(s)—xl(O)=—-1—x1(s)+—1—q1(s)
Ut

T

(s+ f—)Xl (s)=x,(0)+ Tiql (s)

X,(5) = — = 5,(0) + ————14(s) (3.21)

By taking inverse Laplace transform of Equation 3.21:

—t

: 1 e
x(t)=e ‘x1(0)+1—j.e v g (t)dr

10

So the discrete time model can be written as:

-t Bl L)
x(t,+1)=e ™ xl(tk)+;— Ie ! q,(t)dt, At=t,,, —t,

1 4

Similarléf, the discrete time model for Equations 3.8 through 3.13 can be developed as:
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-lA, 1 eay _l(,k“_T)
X (t,+)=e " x.(t,)+— j e’ g,(t)dv  i=23456 (3.22)

LI 7%

Next, we need to develop the discrete time model for Equations 3.14 and 3.15.

Taking the Laplace Transform of 357 =X, +X;;

$X,(s)=%,(0)=X,(s)+X,(s)

— x%(0) " u(s) + x;(0) + u;(s)

s+-!— 7(s+—) s+i 73(s+l)-
4 7 73 (2

X7(s)=§x7(0)+ a(0) _wls) | %0 | wls) 55

s(s+—) 'cls(s+—1—) s(s+——1—) Ty5(s+—)
T T T3 T3

Finding inverse Laplace transform of
s(s+-)
T

Kl(s+1)+K2s
- T

1 _X K

s(s+l) .s'+l s(s+l)
T T T

1 1
11 =1_ let—te‘lz‘c(l—e") (3.24)
s(s+=) ° s+=
T T

By using the Equation 3.24, we can take the inverse Laplace Transform of

Equation 3.23:
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_.1.] I (t

x,(1)=x,(0)+1,(1~¢ * )x,(0)+ f(l e )ay(v)a

1

1
—— —-—(t-1
+1,(1—e ™ )x,(0)+ j (1-e ™ )g(1)dr  (3.25)
Likewise, solution for Equation 3.15 can be found as:

1

et --I—(I -1}

X (1) =% (0)+ T, (1—e ® )x2(0)+j(1 e )gy(n)dt

—Ll 1 (t

fr(l=e ™ Jx,(0)+ j(l e )k (326)

and the discrete time model for Equations 3.14 and 3.15 can be modeled by using

Equations 3.25 and 3.26:

Al 4y _i t

X (L) =%,(1 )+ 7, (1 e " )x(f )+ I(l—e O r))q1('17)d'c

A lent

+1,(l—e ® )xy(t, )+ j(] e " Jau(v)de (327)

AI leay I 1_1)

Xyt ) = %1, )+ To(1—€ ™ )xy(t, )+ j (-¢ =" )y (v

A fen1

- - —‘I‘(Ikn“’)
+r(l=e " )xy(t )+ [(1—e ™ ")g,(t)dx (3.28)

I

Therefore, the discrete process model of the system is given by

Xt ) = Ox(t ) +w(t,) ) (3-29)

Where the state transition matrix ®, has the form of
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[

e’ 0 0 0 0 0 0 0
L
0 e” 0 0 0 0 0 0
4
0 0 e” 0 0 0 0 0
48
0 0 0 e” 0 0 — 0 0
¢k= ﬂ
0 0 0 0 e” 0 0 0
i
0 0 0 0 0 e’ 0 0
1 1
7| 1-e™ 0 ARER 0 0 0 1 0
14 b}

0 ABER 0 ABEER 0 0 0 1

And the discrete white noises are given by

1%~ t=o) .
wit,)=— [e ™ ‘g(v)d, i712,...6

i

feat ‘TL(’J:H—T) Bt ‘j:‘(’kn—T)
w,(t,)= I l-e ™ g\ (t)dv + I l-e ™ g;(t)dv  (3.30)

19 L

by "—1"('k+1 -1) fewy -L(‘kn -1) ‘
wy(t,)= [|1-e ™ a(t)dt + [|1-e ™ g.(t)dt (331)

L 7
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Itis no;ed that ¢,(t), i=1,2,3,4,5,6 are continuous independent white noise sources with
zero mean and variance D;. Thus;
Elg,(1)g,(v)]=0,i%]
Elg,(1)q,(v)]= D3(t =)
Next, th¢ covariance matrix Q, of w(#, ) is computed:
0, = Ew(t )W (1,)]
By noting the expression of w,(t,) from the previous page, Q, should have the

following form :

g, 0 0 0 0 0 ¢, O
0 g, 0 0 0 0 0 gy
0 0 g, 0 0 0 g, O
0 0 0 g, 0 O 0 g
2= 0 0 o0 gs 0 0 0
0 0 0 0 0 g¢g, 0 0
9 0 g3 0 0 0 g, O
0 ¢, 0 g, 0 0 0 gy

an = E[wl (tk )wl (tk )]

1 L) _Tl(tk”_g) 1 Y -'Tl—(’kn“ﬂ)
=E{— [e" 4 ()dg.— fe™ " "umdn

7 s 1 4

2
7

-~ . . 1 L leay —;l—(tk”—i) -Ti(lkn"l) -
L e B e "z

o4
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Lot

Tl i
2AI
2111 (I=e ™)
Likewise;
D 2

=t l—e © ,i=2,3,....,
9 =3 ( )

i

Deriving equations for the g,, and g,,:

”n= E[W7 tw; (1) ]

fegy l‘(’kﬂ (4 |
-Eﬂ Ja-e " e+ J A= "y )ae

1

a1 lenr

o

vy Tent

LI,

1 st by _j‘(lkﬂ'g) -4
LT

(’L’+l -1)

6

Lear

Lt

Lk l(’kﬂ ! [ i
“(l—e i )u (m)dn + J(l—e B ))us(n)dn }

I

D6(& - n)dfdn}

——(lg =&

1
__..’l

] .
~—(tn-E &
Ja-e =" ) mua-e =" yaedn

——(t;,-N

—1'(’k+l
foi-e " B pu, e pusrpg1- =" yaedn

_’k+l—§ 2

lr+1 =g 2 L
=D, J{l—e i } dé + D, J[l—e ’3 } dé -
. 1

U3
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L La=$ 2t =%) lLat L= 2(41-%)
=D, [{1-2¢ * +e " ldE+ D, [|1-2¢ © +e © ld¢

4 I

D 2 LD 2
g, =D,|At=27|1-e " +—2l l-e % ||+D,;|Ar-275/1-¢ © +—23- l-e ™

Similarly;

MY _2aq N I 2y
e =D,| At —27,]1-¢ © +—22— l-e ™ ||+D,jAr-27,|1-e ™ +—2f‘— l-e ™

For the terms ¢, and g, :

917 =491 =E[Wl (Ew, (2, )]

1

1 tia _r_(’k”—;) S| _’i:«r_l_—_'L fisy _"HTI__”
=Ey= e " w@dg [|1-e * fndn+ fl1-e ® pmdn

1y A

1 et Lk "i(’kn'f) L
=L T B @ |1-¢” 7 fagan
1 ¢ o ‘
_D feay —T‘—](zm—;) l_e-%(tm-f)
2'1 4
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Therefore;

1 N 1 e
93 =q73=E[W3(tk)w7(tk)]=D3[5—e i +~2—e & J

1 _.A_i_ 1 —&
q28=q82=E[w2(tk)w8(tk)]=D2 E—e " +Ee "
1 —é!. 1 —Eﬂ
q s =q84=E[w4(tk)w8(tk)]=D4 E"e " +§e B

| and v; is measurement noise with covariance R

S5 0 00
R= 0 500 with DGPS signal
0 0 0O
0 0 00
BRI :
R= o s without DGPS signal

The H matrix is the noiseless connection between measurement and the state vector at
time # For the SANS asynchronous Kalman filter, two H matrices describe this

connection, one for samples with DGPS the other for samples without DGPS.

1 0 0 0 00 0 O]
01 00 0O0O0OTPO
H= with DGPS signal
000 01 010
0000010 1] ]
M oooooo o], ,
H= without DGPS signal
0100000 0]
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The SANS Kalman filter Model that was developed above, was tested in
MATLAB. The model was assumed stationary throughout the simulation. Simulation
results of the SANS Kalman filter are presented in the following chapter.

The MATLAB source code for the SANS Kalman filter is presented in Appendix
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IV. SYSTEM CALIBRATION AND TESTING

A. INTRODUCTION

This chapter presents the calibration of system components, and the testing results
of the current SANS configuration. After integrating the new hardware and
implementing the new software, calibration of individual devices was required to achieve
better results before testing the overall system. Bench testing was performed to
determine the functionality and accuracy of the entire system. Ground vehicle testing,
with the SANS system was mounted on a moving golf cart, was conducted to
demonstrate the feasibility of the SANS system and to observe system performance
before at-sea testing. These tests were also conducted to further tune the gains and
constants of the SANS Kalman filter.

Matlab simulation results and hardware bench testing results of the SANS
Kalman ﬁlfer are also presented in this chapter.
B. CALIBRATION OF IMU AND COMPASS

1. Tilt Table Calibration of IMU

In order to calibrate the scale factors of accelerometers and determine K1 of the
12-state complementary filter, the IMU unit was placed on a Haas rotary tilt table, model
TRT-7 (Figure 4.1). The table has two degrees of freedom (DOF) and is capable of
positioning to an accuracy of 0.001 degrees at rates ranging from 0.001 to 80 degrees/s

[Ref. 16].
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Figure 4.2 IMU Response to 45 Degree Tilt Table Input

32



:l"uning data for the IMU was obtained by moving the unit through each DOF at
varying rates within a 45 degree range. The attitude as determined by the unit was then
plotted and compared with the actual motion of the table. Through this comparison, it
was possible to determine initial gain values and scale factors. The tilt table data was
then postprocessed using these initial values and once again compared to the actual
motion of the table. This process was repeated several times until the attitude determined
by the filter “matched” the true motion of thé table.

Figure 4.2 shows an example of the results obtained during the tuning process.
The trajectory of the tilt table is not available to plot. Only the response of the IMU unit
to 45 degree tilt table input is plotted. However, given the 10 degree per second pitch
rate of the tilt table, it can be seen that the system accurately recorded each attitude
change as taking 4.5 seconds to complete. The slight overshoots following each motion
may indicaT.e that the scale factor for the y- axis angular rate sensor is slightly high. This
effect may also be due to undersampling problems. The flatness of the curve following
stabilization after each motion indicates that a reasonable gain value has been determined
as does the distance between the tails of each step [Ref. 11].

As exemplified by Figure 4.2, tilt table tests of the IMU unit show that attitude
sensing is achieved to an accuracy of one degree or better under demanding
circumstances.

2. Magnetic Compass Calibration

- To.obtain the heading information in the SANS, the angular rate sensor is used as
a high ffequency input source, and the Precision Navigation Electronic Digital Compass

(model TCM?2) is used as low frequency data source. In a series of ground vehicle tests,

33




X
Q j) o
0 5
1

S0k

(seaifiap)huipeay

-100F

-150

20 30 40 50 60 70 80
time(seconds)

10

|||||||||||||||||||||||||||||

aemmmmayeewean—

[ .

L T T T RN TRy PR

|||||||||||||||||||||||||||||||||||||||||||||||

4
]
2F-

— =) -~

(soaibep)ions ssedwod

Figure 4.3 Compass Heading without Correction vs. DGPS Track

i, ] S

CNOL

heading(degrees)

Figure 4.4 TCM2 Compass Error
34




with continuous GPS update (solid line). It can be seen, particularly during the north-

south run, that the filter was not receiving accurate directional information.

The investigation of compass error focused on three areas: possible interference
produced by the golf cart electric motor, vibration, and error of the compass itself.

The tests performed by Knapp [Ref. 15] showed that, golf cart electric motor
caused interference, but its magnitude appeared to be limited to approximately half of a
degree and could be compensated for with an appropriate value forvthe filter gain. It was
also found that the vibration played a role in compass error, but still could be filtered out
with an appropriate filter gain.

A final test needed to determine the heading dependent compass errors, because
of a different TCM2 was being used by SANS III. The TCM2 compass has a self-
calibration [Ref. 3] routine which is designed to remove the effects of static magnetic
fields cause?d by ferrous materials in the vicinity of the compass. The calibration routine
is not capable of compensating for dynamic magnetic field distortions. From the ground
vehicle testing results, the heading-dependent compass error can be seen. They are
especially noticable on north-south runs. A transit (W. and L.E. Gurley) with an
accuracy of 0.5 degrees was used as a reference to determine the error of TCM2 compass
that was caused by the dynamic magnetic field of the golf cart. Thé TCM2 compass was
mounted in line with the transit on the golf cart facing a distant object with a known
magnetic bearing. By taking this object as a starting point, the compass was swung
through.the entire 360 degrees, taking measurements every 10 degrees by using the
optical scale of the transit. A comparison was made between the two indicated headings,

the one from the optical scale of transit and the reading from TCM2 compass. Figure 4.4
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optical §cale of the transit. A comparison was made between the two indicated headings,
the one from the optical scale of transit and the reading from TCM2 compass. Figure 4.4
shows the difference between measurements of the transit and those of the TCM?2
compass. Using this data, a new lookup table and a linear interpolating function were
added to the SANS code to compensate for heading-dependent errors.

The major sensing component of the TCM2 compass is a-set of magnetic coils
used to sense the magnetic field of the earth. These are not affected by acceleration or
inertia as is the "card" in a mechanical compass. The TCM2 does use a "bubble sensor"
to determine the attitude. This sensor is affected by linear acceleration to some degree.
However, the only purpose of the TCM2 in the SANS system is to provide drift
correction for the high frequency heading information obtained from the rate-sensors in
the IMU. The magnitude and duration of any accelerations experienced in SANS system
are relativ§ly low and TCM?2 data is low-pass filtered. Thus, the static accuracy of the
TCM2 compass is investigated and not its dynamic accuracy in the presence of extended
large magnitude accelerations.

Figure 4.5 shows the data from the TCM2 after compensation using the table data.
C. SYSTEM TESTING RESULTS

1. Simulation and Hardware Bench Testing Results.

The asynchronous Kalman filter was simulated in Matlab, and implemented in
SANS III. Simulation and hardware bench testing results are presented in this
subsection. . In simulation, asynchronism is coded as follows.. Every 20 to 30
milliseconds, the filter takes measurements, to update the position estimates at the next
(synchronous) sample time.
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Figure 4.5 Compass Heading with Correction vs. DGPS Track

In hardware testing, the system is fixed on a laboratory bench. The IMU,
compass, and DGPS are operational. Water speed information is taken from a fixed
voltage source in place of the water speed sensor.

Simulation results are shown in Figures 4.6 and 4.7. The simulation is designed
to simulate the hardware system in the stationary bench testing condition. Thus the
actual position of the system is fixed at (0,0). It is seen in Figure 4.6 that the accuracy of
position estimation is about 15 feet. In Figure 4.7, a north water speed of 10.0
feet/second was entered. Since the system was stationary, the filter was able to estimate
that there was a north current at about —10.0 feet/second as shown in Figure 4.7. The

-

estimated east current stayed zero, as expected.
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_Examples of hardware bench testing results are shown in Figures 4.8 and 4.9. In
Figure 4.8; it is especially interesting to note that there is a long straightline segment
starting from (0.2,0.0) ending -at (0.0,10.0). This is exactly the estimated motion
trajectory of the system during the first second of operation. During this time period, the
filter relied entirely on inertial data. Since the water speed sensor indicated a water speed
of 10.0 feet/second in the north direction, the filter estimated a northerly motion. As soon
as a GPS fix was obtained, the filter updatéd position and current estimates. After about
20 seconds, the estimated north current converges to 10.0 feet/second.

Matlab simulation code for Kalman filtering is presented in Appendix B.

2. Ground Vehicle Testing Results

In addition to the bench testing, a series of ground v¢hicle tests were performed in
preparation for at-sea testing. The SANS III system was placed on a golf cart (Figure
4.10) and ‘was driven along a predetermined path. Most of the tests were conducted
around a surveyed course in the parking lot next to the Mechanical Engineering
Auditorium at Naval Postgraduate School. Some additional tests were also performed in
the parking lot at the Navy Golf Course to observe the behavior of the system in a
different location.

Tests were conducted with continuous DGPS and without DGPS. The path of the
parking lot (at school) taken with continuous DGPS is shown in Figure 4.11. The cart
started from the (0,0) position and traveled northward (at 350 degrees) for about 450 feet,
made a-U-turn, traveled southward 248 feet (at 160 degrees) and about 210 feet (at 150

degrees), made a last turn to westward and returned to the starting point along the last leg
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Figure 4.11 Parking Lot Test Track (at School)
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Figure 4.14 Speed Data Through First Runs
newSpeed = n*measuredSpeed + (1-n)*previousSpeed

previousSpeed = newSpeed

(4.2)

4.3)

The speed value was also scaled, because the later test results showed that the calculated

speed value from the circuit output was slightly higher than the actual value.

These corrections improved the speed data significantly (Figure 4.15).
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Figure 4.15 Speed Data After Filtering
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.:After compensating heading-dependent compass error and fixing the problems
with speed sensor, other ground vehicle tests were performed. These results are depicted
in Figures 4.16 and 4.17. They were taken at the Navy Golf Course parking lot. The plus
signs represent the DGPS measurements of the vehicle trajectory. The solid line is the
trajectory of the vehicle following the same path computed by the SANS III filter without
using DGPS data during the entire run. Taking the DGPS data as_the reference, it is seen
that the result of the SANS III without DGPS is accurate to withinr 15 feet throughout the
run.

D. OBSERVATIONS

The following observations were made while conducting these tests. It is
necessary to receive a proper DGPS signal to run the SANS software. If a valid
differential correction is received about every five seconds, the SANS program will be
able to be_ run in DGPS mode. It took a considerably long time to get a valid DGPS
signal for ground vehicle testing. These are several things that could be the reason for
not getting a proper signal.

One of the reasons could be the differential antenna. It was replaced with a more
powerful one to eliminate thié possibility.

The signal itself could have been the cause the problem. Two ground stations in
Monterey Bay area are transmitting DGPS signals for our specially designed unit at a
certain frequency. If the testing area is open to both stations, the differential unit
sometimes receives both signals back to back which causes the program not to run in
DGPS mode. The signal was tested with a hand receiver, and it was hypothesized that

there is a synchronization problem between the ground stations. Most of the time, the
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Figure 4.16 Continuous DGPS vs. without DGPS Track
(without compass correction)
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Figure 4.17 Continuous DGPS vs. without DGPS Track
(with compass correction)
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signal was reasonably good and strong enough to use.

Eliminating these two possible problems didn’t solve the problem with the DGPS
signal. It turned out that when the computer of SANS was turned on, the DGPS signal
went away. The SANS computer interfered with the DGPS signal. Everything on the
golf cart was grounded to eliminate the noise causing interference and a metal shield for
the SANS computer was fabricated to eliminate any frequency related interference. This
helped, but didn't solve the problem completely.

E. CONCLUSIONS AND SUMMARY

The purpose of this chapter was to present the latest testing results of SANS III
and explain the calibration procedures for the current hardware components. These
results showed that the Crossbow IMU had an accuracy of one degree with proper gains
and scale factors, and the TCM2, after heading dependent error correction, could supply
information with an accuracy of one degree.

The simulation and the hardware bench test results demonstrated that the SANS
Kalman filter was working properly. The ground vehicle tests proved that the overall
SANS III was able to navigate within * 15 feet of Global Positioning traék with no

Global Positioning update for three minutes.
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V. CONCLUSIONS

A. SUMMARY

The purpose of this thesis was to improve the navigation accuracy of the latest
version of SANS by properly tuning Kalman filter gains. It also presents the test and
calibration results.

The research objectives of this thesis were: (1) to implerr:eﬁt £he asynchronous
Kalman filter within the SANS system, (2) to tune filter gaihs by comparing the .
simulation and real hardware bench test results and, (3) to calibrate the components and
test the overall system.

The objective of the SANS system is to demonstrate the feasibility of using low-
cost, small components to navigate inertially between DGPS fixes. To achieve the first
research objective, the previous SANS constant-gain filter was replaced by an
asynchronous Kalman filter, which has six states for orientation estimation (still constant
gain), and eight states for position estimation. The asynchronous nature of DGPS
measurements due to asynchronous reacquisition time of satellite signals and
asynchronous submergence and surfacing of the AUV, made the selection of an
asynchronous Kalman filter algorithm a logical choice. The results in Chapter 4
confirmed that using a Kalman filter improved the accuracy of the system significantly.

Bench test results indicated that the newly designed system provided a higher

level of performance than the previous versions of SANS. Examination of the

experimental data indicated that the new IMU used in this research was capable of

meeting all SANS requirements. The new data acquisition and processing unit increased
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the spegd, reliability, and compatibility of the system. Testing the new asynchronous -
Kalman filter with different speed and heading data indicated that the new navigation
filter worked properly.

Grqund vehicle tests demonstrated that the SANS III was able to navigate with an
accuracy of %15 feet. The current effort was directed toward at-sea testing.

B. FUTURE RESEARCH -

The current hardware components seem to be working at a very reasonable
sampling rate, but technology advances, software development, and the amount of
research put into test and evaluation showed that the future of SANS will be subject to
many changes. New SANS components should be chosen to reduce the size, while
improving performance and decreasing cost.

For the near future, the system is ready for at-sea testing. In order to acquire more
accurate ngvigation information, the interference between the SANS computer and the
DGPS unit should be solved. For future versions, it is suggested that the DGPS unit
should be replaced with a new one which utilizes the broadcast Coast Guard signal.

The performance of the new water speed sensor should be tested. The accuracy
of the sensor seems acceptable for the SANS objective. It might need calibration prior
to at-sea testing.

The asynchronous Kalman filter has been implemented as a navigation filter. The
filter gains were adjusted during the test and calibration period. While conducting at-sea

testing, the filter constants and gains might need to be adjusted further.
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‘:During the ground vehicle testing, it appeared that magnetic compasses are very
sensitive to environmental changes and hard to work with. Today’s laser gyros are
getting smaller and cheaper. They are more robust than a magnetic compass. These
should be considered for the future versions of SANS.

Adding a local area network card to the system would improve SANS portability
and could potentially change the way the sensors are integrated and utilized for

applications other than AUVs.
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APPENDIX A. MODIFIED PART OF NAVIGATION CODE (C++)

A. INS.H

#ifndef INS H

#define INS H

#include <time.h>

#include <math.h>

#include <dos.h>

#include <stdio.h>

#include <conio.h> -
#include <fstream.h>

#include <iostream.h>

#include <assert.h>

#include "toetypes.h"
#include "globals.h"
#include "sampler.h"
#include "MatrixCls.h"

/**-k********-k*****************************************************

CLASS: insClass

AUTHOR: Eric Bachmann, Dave Gay, Kadir Akyol, Suat Arslan
DATE: 11 July 1995 last modified March 2000

FUNCTION: Takes in linear accelerations, angular rates, speed and
heading information and uses Kalman filtering technigues to return a

dead reconing position.
******************************************************************/

class insClass {

public:
insClass () ; // Constructor, initializes gains
~insClass() {} // destructor

Boolean insPosition(stampedSample&); // returns ins estimated
position

// Updates the x, y and z of the vehicle posture
void correctPosition(stampedSample&, double);

// Sets posture to the origin and develops initial biases
void insSetUp(double, stampedSampleé&);

private:

“7/ file for filter data -
. ofstream kalmanData;

Matrix h, h transpose, p, p minus, rl, k1, k, x_hatMinus, x hat,
z, i, phi,phi transpose, g, hl, hl transpose, k2, r2, k3, z3,
zMat;
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“// ins estimated posture (x y z phi theta psi)
float posture[6];
// ins estimated linear and angular velocities
double velocities([6];
// time of last gps position fix
float lastGPStime;

// Accumulates deltaT between GPS data
double gpstimeCounter;

//accumulates deltaT
double cumtime;

// filter time constant
int tau;

samplerClass saml; // sampler instance
matrix rotationMatrix; // body to euler transformation matrix
float current([3]; // ins estimated error current

// Software bias corrections for IMU rate sensors
double biasCorrection[3]:;

// Complementary filter gains for orientation.
float Konel, Kone2, Ktwo, speed;

// Kalman Filter constants
double tau 1, tau_2, tau_3, D1, D2, D3;

// Transforms body coords to earth coords, removes gravity comp.
void transformAccels (double[]):;

// Transforms water speed reading to x and y components
void transformWaterSpeed (double, double[]);

// Tranforms body euler rates to earth euler rates.
void transformBodyRates (double[]);

// Euler integrates the accelerations and updates the velocities
void updateVelocities (stampedSample&);

// BEuler integrates the velocities and updates the posture
void updatePosture (stampedSample&);

// Builds the body to euler rate matrix
matrix buildBodyRateMatrix():;

+-/- Builds the body to earth rotation matrix
void buildRotationMatrix():;

// Calculates the imu bias correction during set up
void calculateBiasCorrections (stampedSample&);
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// Bpplies bias corrections to a sample
‘void applyBiasCorrections (stampedSample&) ;

// Reads filter constants from 'ins.cfg'
void readInsConfigFile();

//constructs h(4*8) matrix
void constructHmatrix();

//constructs P minus(8*8) matrix
void constructPminusMatrix():;

//constructs r(4*4) matrix
void constructRlmatrix();

//constructs h(2*8) matrix (h matrix without GPS)
void constructHlmatrix();

//constructs r(2*2) matrix (r matrix without GPS)
void constructR2matrix();

//constructs phi(8*8) matrix
void constructPhiMatrix (stampedSamples&);

//constructs g(8*8) matrix

void constructgMatrix(stampedSamples) ;
}i
// Post multiply a matrix times a vector and return result.
vector operator* (matrixé&, doublel]);

#endif
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B. INS.CPP

#include <iostream.h>
#include <signal.h>
#include <assert.h>
#include <math.h>

#include "ins.h"
#include "matrix.h"

#define SIGFPE 8 // Floating point exception

/******************************************************?\—***********

PROGRAM: insClass (constructor)
AUTHOR: Eric Bachmann,Dave Gay,Rick Roberts, Kadir Akyol,
. Suat Arslan
DATE: 11 July 1995 last modified March 2000
FUNCTION: Constructor initializes kalman filter gains and linear
and angular velocities ‘
RETURNS: nothing
CALLED BY: navigator class
CALLS: none
******************************************************************/
#ifndef _NO NAMESPACE
using namespace std;
using namespace math;
#define STD std
felse
#define STD
#endif

#ifndef NO TEMPLATE
typedef matrix<double> Matrix;

felse
typedef matrix Matrix;
#endif
#ifndef _NO_EXCEPTION
# define TRYBEGIN({() try {
# define CATCHERROR() } catch (const STD::exception e) { \
cerr << "Error: " << e.what{() <<
endl; }
#else

# define TRYBEGIN()

# define CATCHERROR()
#endif

void myInverse (MatrixCls &);

insClass::insClass () :h("h matrix",4,8),h_transpose("h transpose"”, 8,4),
- 7 7~ p minus("p minus",8,8),rl("rl matrix",4,4), k1("ki", 4, 4),
k("k matrix", 8, 4), x_hatMinus("x_hatmin", 8, 1),

x_hat ("x hat", 8,1), i("unit mat”, 8, 8),

phi transpose ("phitranspose", 8, 8), hl("hl",2,8),

hl transpose("hl transpose”, 8, 2), r2("r2 matrix",2,2),

k2 ("k2", 2, 2), k3("k mat no gps", 8, 2),
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phi ("phi matrix", 8, 8), g("g matrix”, 8, 8),
p("p matrix"™, 8, 8),z3("z3 matrix",2,1),
zMat ("zMat", 4,1),kalmanData ("xhat.dat"),gpstimeCounter (1.0)

cerr << "\nconstructing insl" << endl;

readInsConfigFile(); // Read the config file
constructHmatrix () ; //constructs 4*8 h matrix
constructPminusMatrix(); //constructs 8*8 P_minus matrix
constructRlmatrix(); //constructs 4*4 Rl matrix
constructHlmatrix(); //constructs 2*8 h matrix
con'structRZmatriX(); //constructs 2*2 R2 matrix
velocities[0] = 0.0; // x dot

velocities([1l] = 0.0; // y dot

velocities[2] = 0.0; // z dot

velocities([3] = 0.0; // phi dot

velocities[4] = 0.0; // theta dot

velocities[5] = 0.0; // psi dot

// Set posture to straight and level at the origin

posture[0] = 0.0; // x
posture(l] = 0.0; /Y
posture[2] = 0.0; /! z
posture([3] = 0.0; // phi
posture([4] = 0.0; // theta
posture[5] = 0.0; // psi

cerr << "\nins construction complete" << endl;

}

/******************************************************************

PROGRAM: insPosit

AUTHOR: Eric Bachmann, Dave Gay, Kadir Akyol, Suat Arslan

DATE: 11 July 1995 last modified March 2000

FUNCTION:Make dead reckoning position estimation using kalman
filtering.Inputs are linear accelerations, angular rates, speed and
heading.Primary input data is obtained from a sampler object via the
getSample method. This data is stored in the sample filed of a
stampedSample structure called newSample. The sample field is then
used as a working variable as the linear accelerations and angular
rates it contains are converted to earth coordinates and integrated
to determine current velocities and posture. The data is
asynchronous kalman filtered against itself, speed and magnetic

heading-. -
RETURNS: position in grid coordinates as estimated by the INS
CALLED BY: navPosit (nav.cpp)

CALLS: getSample (sampler.cpp)

findDeltaT (ins.cpp)
transformBodyRates (ins.cpp)
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********i‘—*********************************************************/

buildRotationMatrix (ins.cpp)

transformAccels
transformWaterS

void fpelnsPosit (int sig)

{if (sig == SIGFPE) cerr << "floating point error in insPosit\n";}

(ins)
peed (ins)

Boolean insClass::insPosition(stampedSample& newSample)

{

signal (SIGFPE, fpelnsPosit);

// Working variables

double thetaA, phiA, xIncline, yIncline;
if (saml.getSample (newSample)) {

applyBiasCorrections (newSample) ;

newSample.rawSample[0] = newSample.sample[O0];
newSample.rawSample[l] = newSample.sample[l];
newSample.rawSample[2] = newSample.sample[2];
newSample.rawSample[3] = newSample.sample[3];
newSample.rawSample[4] = newSample.sample[4];
newSample.rawSample[5] = newSample.sample[5];
newSample.rawSample[6] = newSample.sample[6];
newSample.rawSample[7] = newSample.sample[7];

gpsTimeCounter+=newSample.deltaT;
cumtime+=newSample.deltaT;

newSample.sample[0] / GRAVITY;
(newSample.sample[1l] -

(newSample.sample[5] * newSample.sample[6]))
/ (GRAVITY * cos(posture[4])):

xIncline =
yIncline =

!

if (fabs(yIncline) > 1.0 || fabs(xincline)>1.0) {
static int inclineCount (0);
gotoxy(1,24);
cerr << "Inclination errors:
return FALSE;
}

" << +4+inclineCount << endl;

// Calculate low freq pitch and roll
thetaA = asin(xIncline);
phiA = -asin(yIncline);

// Transform body rates to euler rates.
transformBodyRates (newSample.sample) ;

~--//-Calculate estimated roll rate (phi-dot). -
velocities[3] = newSample.sample{3] + Konel * (phiA -
posture([31);
" // Calculate estimated pitch rate (theta-dot).
velocities[4] = newSample.sample[4] + Kone2Z * (thetaA-

posture4]);
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// Calculate estimated heading rate (psi-dot).
velocities([5] =

newSample.sample[5] + Ktwo * (newSample.sample[7] -
posture[5]);

// integrate estimated angular rates to obtain angles
// pitch rate to angle
posture[3] += newSample.deltaT * velocities[3];
// roll rate to angle
posture[4] += newSample.deltaT * velocities[4];
// yaw rate to angle
posture[5] += newSample.deltaT * velocities[5];

// constructs Phi matrix
constructPhiMatrix (newSample);

//constructs Q matrix (8*8)
constructgMatrix (newSample);

//calculate x_hatMinus
x_hatMinus = ( phi * x_hat );

//calculate phi_ transpose
phi.transpose(phi_transpose);

//calculate P_minus
p_minus = ((( phi * p ) * phi_transpose ) + q );

// Beginning Kalman Filter loops
if (newSample.gpsFlag && gpsTimeCounter>=1.0) {

zMat.copy (0,0, (newSample.sample[6] * cos (posture[5])}));
zMat.copy (1,0, (newSample.sample[6] * sin (posture[5])));
zMat.copy (2,0, newSample.est.x);
zMat.copy (3,0, newSample.est.y);

//transpose of matrix h
h.transpose (h_transpose);
kl = (((h*p_minus)*h transpose)+rl);

//take inverse of matrix kil
myinverse (kl);

//calculate matrix Kalman gain
k = ((p_minus * h transpose)* kl);

//calculate x_hat
x_hat = ( x_hatMinus + (k * (zMat - (h * x hatMinus))));

~-//calculate I matrix -
i = i.unitMatrix (8);

//calculate P matrix
p = ((i - (k* h)) * p minus);
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// Writing filter output to file
kalmanData << cumtime << ' !
<< newSample.gpsFlag << '
<< x_hat.getElement (0,0) << v
<< x_hat.getElement(l,O) << ' !
<< x_hat.getElement (2,0) << ' '
<< x_hat.getElement (3,0) << ' '
<< x_hat.getElement (4,0) << ' '
<< x_hat.getElement (5,0) << ' '
: << x_hat.getElement (6,0) << " '
<< x_hat.getElement(7,0)
<< endl;
newSample.gpsFlag = FALSE;
gpsTimeCounter = 0.0;

L}

}o
else {
z3.copy (0,0, (newSample.sample[6] * cos (posture[5])));
z3.copy (1,0, (newSample.sample[6] * sin (posture([5])));

//hl is the h matrix without GPS
hl.transpose (hl_transpose);

k2 = (((hl*p _minus)*hl_transpose)+r2);

// take inverse of matrix k2
myinverse (k2);

//kalman gain matrix without gps
k3 = ((p_minus * hl_transpose)* k2);
x_hat = ( x_hatMinus + (k3 * (23 - (hl * x hatMinus))));

//calculate I matrix
i = i.unitMatrix (8);

//calculate P matrix
p = ((i - (k3 * hl)) * p_minus); }

// Writing filter output to file
kalmanData << cumtime << ' '
<< newSample.gpsFlag <<
<< x_hat.getElement (0,0) << ' '
<< x_hat.getElement (1,0) << ' '
<< x_hat.getElement (2,0) << ' '
<< x_hat.getElement (3,0) << ' '
<< x_hat.getElement (4,0) << ' '
<< x_hat.getElement(S,O) << ' !
<< x_hat.getElement (6,0) << ' '
<< x_hat.getElement (7,0)
~. . << endl; : -

}

// estimated north and east positions
posture[0] = x_hat.getElement (6,0);
posture[1l] x_hat.getElement(7,0);
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}
}

}

// éstimated current values

newSample.
newSample.
newSample.
newSample.
newSample.

newSample.

sample[0]
sample([1]
sample[2]
sample[3]
sample[4]
sample[5]

return TRUE;

else {
return FALSE;

= posture[0] ;
posture[1l] ;
posture(2] ;
posture([3];
posture[4];
= posture[5];

I

// New IMU information was unavailable.

—

/******************************************************************

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

insSetUp

Eric Bachmann,

Dave Gay

11 July 1995

Initializes the INS system. Sets the posture to

the origin.Initializes the heading using magnetic compass

information. Initializes the last GPS fix and last IMU information
times.
RETURNS: void
CALLED BY: initializeNavigator (nav)
CALLS: calculateBiasCorrections (ins)
getSample (sampler)

buildRotationMatrix (ins)
transformWaterSpeed (ins)

******************************************************************/

void fpeIhsSetUp(int sig)

{if

void insClass::insSetUp(double originTime,

{

(sig == SIGFPE)

cerr << "
signal

(SIGFPE,

cerr << "floating point error in inSetUp\n";}

stampedSample& posit)

Initializing INS." << endl;

saml.initSampler();
saml.getSample (posit);

cerr <<
<<
<<

calculateBiasCorrections (posit);

posture(5]

buitdRotationMatrix () ;

fpeInsSetUp) ;

// Initialize the sampler

X accel = " << posit.sample[0]
", Y accel = " << posit.samplell]
", Z accel = " << posit.sample[2] << endl;

= posit.

// set imu biases
sample(7]); //set initial true heading

//set initial speed

traqsformWaterSpeed(posit.sample[6], velocities);

posit.current[0]
posit.current (1]

posit.current[2] =

current [0];
current[1];
current[2];
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lastGPStime = originTime; // initialize times

cerr << " INS initialization complete." << endl;

}

/**********************************************************

PROGRAM: transformAccels

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995 ’

FUNCTION: Transforms linear accelerations from body coordinates
to earth coordinates and removes the gravity component in the =z
direction. .

RETURNS: void

CALLED BY: navPosit

CALLS: none

****-k***-k*********************-k***********************‘****/
void insClass::transformAccels (double newSample[])

{
vector earthAccels;

newSample[0] -= GRAVITY * sin(posture[4]):; »
newSample[1l] += GRAVITY * sin(posture[3]) * cos(posture(4]):;
1)

newSample[2] += GRAVITY * cos(posture[3 * cos (posture[4]):

earthAccels = rotationMatrix * newSample;

newSample{0] = earthAccels.element[0];
newSample[l] = earthAccels.element[1l];

newSample[2] = earthAccels.element[2];

}

/******************************************************************

PROGRAM: transformWaterSpeed

AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Transforms water speed into a vector in earth

coordinates and returns them in the speedCorrection variable.
RETURNS: void

CALLED BY: navPosit

CALLS: none

******************************************************************/

void insClass::transformWaterSpeed (double waterSpeed, double
speedCorrection[])

{
double water[3] = {waterSpeed, 0.0, 0.0};
vector waterVelocities = rotationMatrix * water;

waterVelocities.element([0]; -
waterVelocities.element[1l];
waterVelocities.element [2];

speedCorrection [0O]
spegdCorrection [1]
speedCorrection [2]

I

}

/**-k***************************************************************
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PROGRAM:
AUTHOR:
DATE:
FUNCTION:
RETURNS:
CALLED BY:
CALLS:

transformBodyRates

Eric Bachmann, Dave Gay

11 July 1995

Tranforms body euler rates to earth euler rates
none

insPosit

buildBodyRateMatrix

******************************************************************/

void insClass::transformBodyRates (double newSample[])

{

matrix bodyRateMatrix = buildBodyRateMatrix( );
vector earthRates = bodyRateMatrix * &(newSample([3]);

newSample|
newSample[
newSample |

}

/************

PROGRAM:
AUTHOR:
DATE:
FUNCTION:
RETURNS:
CALLED BY:
CALLS:

k% Kk Kk ok ok ok ok ok ok ok ke ke

matrix insCla

{

matrix rat

float t

3]
4]
5]

earthRates.element [0];
earthRates.element{1];
earthRates.element{2];

i

%k Kk k ok sk ok Sk ok ke ke ok Sk sk sk sk ke ke Yk sk ke k ok ok sk sk sk sk ke ok ok sk ok ke ke ke ke e sk ke ke ke ke ok ke ko e ok ke ok ok ok

buildBodyRateMatrix

Eric Bachmann, Dave Gay

11 July 1995

Builds body to Euler rate translation matrix.
rate translation matrix

insPosit

none
FokkdokkkkkkkhkkhhkkkkFhhhhkkdkkhkkhhkkkkkkhkkkkkkkkkhxk /

ss::buildBodyRateMatrix ()
eTrans;

th = tan(posture(4]),

sphi = sin(posture[3]),

rateTrans.
rateTrans.
rateTrans.
rateTrans.
rateTrans.
rateTrans.
rateTrans.
rateTrans.
rateTrans.

return rat

} .- -~ . .

/*****i******
PROGRAM:
AUTHOR:
DATE:

cphi = cos{(posture(3]),
cth = cos(posture(4]);

element [0] [0] = 1.0;

element [0] [1] = tth * sphi;
element [0] [2] = tth * cphi;
element [1] [0] = 0.0;
element [1] [1] = cphi;
element 1] [2] = -sphi;
element (2] [0] = 0.0;
element {2] [1] = sphi / cth;

element[2]{2] = cphi / cth;

eTrans;

kkhkkhkkhkhkhkkhhkhkhkkhkhrdhdhhkbhkhkhkhhkhhhhkdkhohkhrhkhhhkhhhkkhhhkhkhhhkxxkx

buildRotationMatrix
Eric Bachmann, Dave Gay
11 July 1995
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FUNCTION: Sets the body to earth coordinate rotation matrix.
RETURNS: void

CALLED BY: insPosit, insSetUp

CALLS:’ none

*********************-k*******************************************/

void insClass::buildRotationMatrix()
{

float spsi = sin(posturel5])

cpsi = cos(posture[5]

sth = sin(posture[4])

sphi = sin(posture[3]

]

)

7
Y
7
) s

cphi = cos(posture[3])
cth = cos(posture(4]

r

’

rotationMatrix.element[0] [0] = cpsi * cth;
rotationMatrix.element[0] [1] (cpsi * sth * sphi) - (spsi * cphi);
rotationMatrix.element[0] [2] (cpsi * sth * cphi) + (spsi sphi);

*

I

[
rotationMatrix.element[1] [0] = spsi * cth;
rotationMatrix.element[1] [1] = (cpsi * cphi) + (spsi * sth * sphi);
rotationMatrix.element[1] [2] = (spsi * sth * cphi) - (cpsi * sphi);
rotationMatrix.element[2] [0] = -sth;
rotationMatrix.element[2] [1] = cth * sphi;

rotationMatrix.element [2] [2] = cth * cphi;
}

/***********************-k****************-k'k************************

PROGRAM: postmultiplication operator *

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Post multiply a 3 X 3 matrix times a 3 X 1 vector and

return the result
RETURNS: 3 X 1 vector
CALLED BY:

CALLS: Nonel

******************************************************************/

vector operator* (matrixé& transform, double state[])

{

vector result;

for (int i = 0; i < 3; i++) |
result.element{i] = 0.0;
for (int j = 0; j < 3; Jj++) {

result.element[i] += transform.element[i][]] * state[j]:

}

return result;

}

/*****************************************************************-k

PROGRAM: calculateBiasCorrections
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AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995

FUNCTION: Calculates the initial imu bias by averaging a number
of imu readings.

RETURNS: none

CALLED BY: insSetup

CALLS: none

*****************************************************************/

void fpeCalculateBiasCorrections (int sig)
{if (sig == SIGFPE) cerr << "floating point error in
CalculateBiasCorrections\n";}

void insClass::calculateBiasCorrections(stampedSampleé'biasSample)
{
signal (SIGFPE, fpeCalculateBiasCorrections);

int biasNumber (tau/10);

biasCorrection[0] = 0.0; // p roll rate
biasCorrection([l] = 0.0; // q pitch rate
biasCorrection[2] = 0.0; // r yaw rate

for (int 1 = 0; i < biasNumber; i++) {

// Find the average of the biasNumber packets
while(!saml.getSample (biasSample)) {/* */}; -

// roll-rate/b#

biasCorrection{0] += biasSample.sample([3] /biasNumber;
// -pitch-rate/b#

biasCorrection[l] += biasSample.sample[4] /biasNumber;
// yaw-rate/b# .

biasCorrection[2] += biasSample.sample[5] /biasNumber;

}

// set biasSample correction fields to new bias correction values
// negative biasCorrection value is taken so biases are added to
// sensor values

biasSample.bias[0] = biasCorrection([0] = - (biasCorrection[0]);
biasSample.bias[1l] = biasCorrection[l] = - (biasCorrection(1l]);
biasSample.bias[2] = biasCorrection([2] = - {(biasCorrection[2]);

}

/*************************************-k*-k*************************

PROGRAM: applyBiasCorrections

AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995

FUNCTION: Applies updated bias corrections to a sample.
RETURNS: void -
CALLED BY: insPosit

CALLS: none

*****—;:A—***********************************************************/

void insClass::applyBiasCorrections(stampedSample& posit)
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corist float sampleWght (posit.deltaT/tau):
const float biasWght (1 - sampleWght);

//Calculate updated bias values

biasCorrection[0] = (biasWght * biasCorrection{0])
- (sampleWght * posit.sample([3]);
biasCorrection[l] = (biasWght * biasCorrection[1])

- (sampleWght * posit.sample(4]);
(biasWght * biasCorrection[2])
- (sampleWght * posit.sample[5]);

biasCorrection([2]

//Bpply the bias to the sample

posit.sample[3] += biasCorrection[0];
posit.sample[4] += biasCorrection[1];
posit.sample[5] += biasCorrection[2];

//Save the bias to the sample

posit.bias[0] = biasCorrection(0];
posit.bias[1] biasCorrection([1];
posit.bias[2] biasCorrection[2];

/*****************************************************************

PROGRAM: readlnsConfigFile

AUTHOR: Rick Roberts, Eric Bachmann, Suat Arslan
DATE: 02 Nov 96 last modified march 2000
FUNCTION: Reads filter constants from 'ins.cfg’
RETURNS: void

CALLED BY:ins class constructor

CALLS: none

***-k*************************************************************/

void insClass::readInsConfigFile ()

{
cerr << "Reading ins configuration file." << endl;
ifstream insCfgFile("ins.cfg", ios::in);

if(!insCfgFile) {
cerr << "could not open ins configuration file!" << endl;
}
else {
char comment[128];
insCfgFile
>> Konel >> comment
>> Kone2 >> comment
>> Ktwo >> comment
~-- - >> tau 1 >> comment -
>> tau 2 >> comment
>> tau_3 >> comment
>> D1 >> comment
>> D2 >> comment
>> D3 >> comment
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cout

}

insCfgFi
}

>
>
>
>
>

<<
<<
<<
<<
<<
<<
<<

le.

> tau >> comment

> speed >> comment

> current[0] >> comment

> current(l] >> comment

> current[2] >> comment;
"\nKonel: " << Konel << "\nKone2: " << Kone?2
"\nKtwo: " << Ktwo << "\ntau 1: " << tau 1
"\ntau_ 2: " << tau_2 << "\ntau_3: " << tau_3
"\nDl: " << D1 << "\nD2: " << D2
"\nD3: " << D3 << "\ntau: " << tau
"\nx Current: " << current[0] << "\ny Current: "
current [1] << "\nz Current: "<< currentLg] << endl;
close( );

/****************************************************************

PROGRAM:
AUTHOR:
DATE:

FUNCTION:

RETURNS :

CALLED BY:

CALLS:

constructHmatrix ()
Kadir Akyol

01 March 1999
constructs h matrix
none

ins class constructor
none

*****************************************************************/

void fpeconstructHmatrix (int sig)

{if

(sig == SIGFPE)

cerr << "floating point error in

constructHmatrix\n";}

void insClass::constructHmatrix()

{

signal

(o e Jike i B g

return ;

(SIGFPE,

fpeconstructHmatrix);

}//end constructHmatrix()

/******************************************************************

PROGRAM:
AUTHOR:
DATE:

constructPminusMatrix ()

FUNCTION:

RETURNS:

CALLED BY:

Kadir Akyol, Suat Arslan

01 March 1999 last modified march 2000
constructs P_minus matrix

none

ins class constructor
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CALLS: none

******************************************************************/

void fpeconstructPminusMatrix(int sig)
{if (sig == SIGFPE) cerr << "floating point error in
constructPminusMatrix\n";}

void insClass::constructPminusMatrix()

{

signal (SIGFPE, fpeconstructPminusMatrix);

~s

p_minus.copy(
p_minus.copy (
p_minus.copy(
p_minus.copy(
p_minus.copy {
(
(
(

~

o N

~e

~.

p_minus.copy
p_minus.copy
p_minus.copy

~.

\

[cNoNoNeoNoNoNeNo)

el e

e e e e e
N

~e

return ;
}//end constructPminusMatrix ()

/*****************************************************************

PROGRAM: constructPMatrix ()

AUTHOR: Suat ARSLAN

DATE: 28 May 1999
FUNCTION: constructs P matrix
RETURNS: none

CALLED BY: ins

CALLS:. None

*********************************************************************/

void fpeconstructPMatrix(int sig)
{if (sig == SIGFPE) cerr << "floating point error in
constructPMatrix\n";}

void insClass::constructPMatrix ()

{
signal (SIGFPE, fpeconstructPMatrix);

p.copy(0,0,0.5);
.copy(1,1,0.5);
.copy(2,2,1.0);
.copy(3,3,1.0);
.copy(4,4,10.0);
.copy(5,5,10.0);
.copy(6,6,15.0);
.copy(7,7,15.0);

B R R R R

return ;
}//end constructPMatrix ()

/******'k*-k************************-k********************************
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PROGRAM: constructRlmatrix ()

AUTHOR: Kadir Akyol, Suat Arslan

DATE: 01 March 1999 last modified march 2000
FUNCTION: constructs rl matrix

RETURNS: none

CALLED BY: ins class constructor

CALLS: none

******************************************************************/

void fpeconstructRlmatrix (int sig)
{if (sig == SIGFPE) cerr << "floating point error in
constructRlmatrix\n";}

void iﬁsClass::constructleatrix()

{
signal (SIGFPE, fpeconstructRIlmatrix) ;

rl.copy(0,0,0.01);
rl.copy(1,1,0.01);
return ;

}//end constructRlMatrix ()

/******************************************************************

PROGRAM: constructHlmatrix ()
AUTHOR: Kadir Akyol

DATE: 01 March 1999
FUNCTION: constructs h matrix
RETURNS: none

CALLED BY: ins class constructor
CALLS: None

*********_*********************************************************/

void fpeconstructHlmatrix(int sig)
{if (sig == SIGFPE) cerr << "floating point error in
constructHlmatrix\n";}

void insClass::constructHlmatrix()

{
signal (SIGFPE, fpeconstructHlmatrix) ;

hl.copy(0,0,1.0);
hl.copy(1,1,1.0);
return ;

}//end constructHimatrix()

/*************-k*******************-k********************************

PROGRAM: constructRZ2matrix ()
AUTHOR: Kadir Akyol, Suat Arslan
DATE: 01 March 1999 last modified march 2000

FUNETION: constructs r2 matrix -
RETURNS: none

CALLED BY: ins class constructor

CALLS: None

******************************************************************/
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void fpeconstructR2matrix(int sig)
{(if (sig == SIGFPE) cerr << "floating point error in
construqtRZmatrix\n";}

void insClass: :constructR2matrix()

{
signal (SIGFPE, fpeconstructR2matrix);

r2.copy (0
r2.copy (0
r2.copy (1l
r2.copy(l

}//end constructR2matrix()

/******************************************************************

PROGRAM:

constructPhiMatrix ()

AUTHOR: Kadir Akyol, Suat Arslan

DATE: 01 March 1999 last modified march 2000
FUNCTION: constructs phi matrix

RETURNS: none

CALLED BY: insPosit

CALLS: None

******************************************************************/

void fpeconstructPhiMatrix(int sig)
{if (sig == SIGFPE) cerr << "floating point error in
cunstructPhiMatrix\n";}

void insClass::constructPhiMatrix(stampedSample& delta)

{
signal (SIGFPE, fpeconstructPhiMatrix);

double xx, Z22;

YYr

xx = - (delta.deltaT)/tau_l;
XX = exp(xx);

yy = - (delta.deltaT)/tau_2;
yy = exp(yy)i

zz = - (delta.deltaT)/tau_3;
zz = exp(zz);

phi.copy (0,0, xx);
phi.copy(1,1,xx);
phi.copy(2,2,yY):
phi.copy(3,3,yY);
phi.copy(4,4,22);
phizcopy(5,5,22); -
phi.copy(6,0,((l—xx)*tau_l));
phi.copy (6,2, ((1-yy)*tau_2));
phi.copy (7,1, ((1-xx)*tau_1));
phi.copy (7,3, ((1-yy)*tau_2});
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return ;

}//end constructPhiMatrix ()

/*****************************************************************

PROGRAM: constructgMatrix ()
AUTHOR: Kadir Akyol, Suat Arslan
DATE: 01 March 1999

FUNCTION: constructs Q matrix
RETURNS: none

CALLED BY: insPosit

CALLS: None

******************************************************************/

void fpeconstructgMatrix(int sig)
{if (sig == SIGFPE) cerr << "floating point error in
cunstructgMatrix\n";}

void insClass::constructhatrix(stampedSample& delt)
{
signal (SIGFPE, fpeconstructgMatrix);

double uu, ww, vv,zz,yy,Q661,0662,060,062,071,Q073,066;

uu = -(2.0 * delt.deltaT)/tau_l;
uu = exp(uu);

Ww o= =(2.0 * delt.deltaT)/tau_Z;
WW = exp(ww);

vv = =(2.0 * delt.deltaT)/tau_3;
VvV = exp(vv);

zz = ﬂ(delt.deltaT)/tau_l;

zz = exp(zz);

vy = —(delt.deltaT)/tau_Z;

Yy = exp(yy);

Q661=D1*((tau_l/Z)*(l-uu)—((2*tau_1)*(l—zz))+delt.deltaT);
: Q662=D2*((tau_2/2)*(l—ww)—((2*tau_2)*(l—yy))+(delt.deltaT));
Q66=0661+0662;

Q60=D1* (0.5+(0.5*uu)-zz);
Q62=D2* (0.5+(0.5*ww) -yy) ;

Q71=060;

Q73=Q62;
q.copy(0,0,((uu)*(Dl/(Z.O*tau_l))));
g.copy(1l,1, ((uu)*(D1/(2.0*tau 1))));
q.copy(2,2,((ww)*(DZ/(Z.O*tau_l))));
q.copy (3,3, ((ww)*(D2/(2.0*tau_1))));
g.copy (4,4, ((vv)*(D3/(2.0*tau 1))));
g.copy (5,5, ((vv)*(D3/(2.0*tau 1)))); -
g.copy (6,6, (Q66));

g.copy (7,7, (Q66));
g.copy (0,6, (Q60));

CFI-COPY(G: 0, (Q60));

g.copy (2,6, (Q62));
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}//end constructgMatrix()

/***-k**************************************************************

PROGRAM: myInverse (MatrixClsé&)

AUTHOR: Suat ARSLAN -
DATE: 29 july 1999

FUNCTION: invert the matrix

RETURNS: none

CALLED BY: ins

CALLS: None

******************************************************************/

void myInverse(MatrixCls& k1) {
Matrix k3;

k3.SetSize(kl.getCol (), kl.getRow());
for(int i = 0; i < kl.getCol(); i++) {
for(int j = 0; J < kl.getCol(); J++) {
k3(i, j) = kl.getElement (i, )
}
}
k3 = 1k3;

for{int i = 0; i < kl.getCol(); i++) |
for(int j = 0; j < kl.getCol(); J++) {
kl.copy{(i, j, k3(i, 3)):
}
}

}// end of function
// end ins.cpp




C. ATOD.H
#define ATOD H

#include <stdio.h>
#include <fstream.h>
#include <iostream.h>
#include <dos.h>

#define ENABLED 1
#define DISABLED O

#define INPUT 1
#define OUTPUT O

//#define TRUE 1
//#define FALSE 0

#define STATUS_BYTE O
#define START_ CONVERSION O
#define READ DATA 1
#define DAC UPDATE 1
#define CLEAR BOARD 2
#define SCAN_BURST_SLCT 3
. #define CHANNEL SLCT 5
#define GAIN_SLCT 5
#define IRQ ENABLE 5
#define EXT TRIG_ENABLE 5
#define PPI_A 4

#define PPI_B 5

#define PPI_C 6

#define PPI_CTRL 7
#define TIMER_ A 8
#define TIMER B 9
#define TIMER C 10
#define TIMER CTRL 11
#define DACl_LSB 12
#define DAC1_MSB 13
#define DAC2_LSB 14
#define DAC2 _MSB 15
#define CLEAR IRQ STAT 14
#define CLEAR _DMA DONE 15

#define PPI_PORT A 0
#define PPI_PORT B 1
$define PPI_PORT C 2

#define DISABLE_ BOTH O
#define "SCAN ENABLE 1
#define BURST_ ENABLE 2

#define SOURCE_AD START O
#define SOURCE_DMA DONE 1
#define SOURCE TRIGGER 2
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#define>SOURCE_PACER_CLOCK 3
class atqulass{
public:

atodClass () {}:
~atodClass () {};

void Initatod();

void InitializeBoardSettings(unsigned , float );

float DigitalToReal (int DigitalValue);

void ResetBoard(void);

void ClearBoard(void);

void ClearIrgStat (void);

void ClearDmaDone (void);

void SetChannel (unsigned char);

void SetGain{unsigned char);

void SetIRQStatus(char);

void SetExternalTrigger (unsigned char):

void SetInterruptSource (unsigned char);

void ScanBurstEnable (unsigned char);

void SetScanChannels(int);

void StartConversion(void);

int ConversionDone();

int ReadData(void);

void ClockMode (unsigned char, unsigned char);
void ClockDivisor (unsigned char, unsigned int);
void SetUserClock(float);

«old SetPacerClock(float);
_//Boolean ClockDone (unsigned char);

unsigned char ReadDigitalIO(unsigned char);
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Yoid WriteDigitalIO(unsigned char, unsigned char);
void ConfigureIOPorts(unsigned char, unsigned char);
void UpdateDAC (unsigned char, float);

}i

#endif
//end atod.h
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D. ATOD.CPP
#include "atod.h"
unsigned BaseAddress;

float VoltageRange,
DACSlope,
ConversionFactor,
Baseline ;

int DACOffset;

void atodClass::Initatod()
{
InitializeBoardSettings(768,10.0);
ResetBoard();
ClearBoard();
SetChannel (1) ;
SetExternalTrigger (DISABLED) ;
SetGain (1) ;

/**********************************************************************

InitializeBoardSettings

The InitializeBoardSettings procedure is used to set the Base address
variable and calculate the conversion factor for converting between
digital

values and volts. Since the base address variable is not set until
this

procedure is called, make certain that you call this procedure before
any others in this file.

*********************************************-k************************/
void atodClass::InitializeBoardSettings(unsigned BA, float Range)

{
BaseAddress = BA;
VoltageRange = Range;
ConversiconFactor = VoltageRange / 4096.0;
Baseline = 0;
}

/***********-k**********************************************************

The Function DigitalToReal converts a digitized value to a real world
value. In these sample programs the conversion factor and baseline
correspond to converting between digitized values and volts.

**********************************************************************/
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float atodClass::DigitalToReal{int DigitalValue)
{ B

return(DigitalValue * ConversionFactor + Baseline);

}

/******************************-k***************************************

ResetBoard

The ResetBoard procedure is used to reset the DM5406. The 8255 PPI is
configured so that ports A and C are input and port B is output, a
dummy A-D conversion is performed and then the clear board command is
sent.

— -

**********************************************************************/

void atodClass: :ResetBoard(void)

{

outportb (BaseAddress + PPI_CTRL, 0x99); /* Set PPI Port B for
output */

outportb (BaseAddress + PPI_B, 0); /* Channel 0, Gain 1,
Ext Trig =

outportb (BaseAddress + SCAN_BURST SLCT, 0);
outportb (BaseAddress + CLEAR BOARD, 0);

outportb (BaseAddress + START_CONVERSION, 0); /* Start a Dummy
conversion */

delay(5);
outportb (BaseAddress + CLEAR BOARD, 0); /* BAny value will do */
}

/**********************************************************************

ClearBoard

The clear board procedure writes to the CLEAR BOARD port on the
DM5406.

**********************************************************************/
void atodClass::ClearBoard(void)

{
outportb (BaseAddress + CLEAR BOARD, 0); /* Any value will do */

}

/****;9«:****************************************************************

ClearIrgStatus
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The ClearIrgStat procedure reads from the CLEAR IRQ STAT port on the
DM54067

*********9’(************************************************************/

void atodClass::ClearIrgStat (void)

{
inportb (BaseAddress + CLEAR IRQ STAT);

}

/**********************************************************************

ClearDﬁaDone

The ClearDmaDone procedure reads from the CLEAR DMA ONE port on the
DM5406.

*******************************************************************-k**/

void atodClass::ClearDmaDone (void)

{
inportb (BaseAddress + CLEAR_DMA DONE) ;

}

/**********************************************************************

SetChannel

The SetChannel procedure is used to set the channel bits, B0..B3, in
the CHANNEL SELECT register (BA + 5). Note how this procedure sets

only
the channel select bits; it does not change the other bits in this

register.
This is important because if you unintentionally clear the other bits

it
can cause unexpected behavior of the DM5406.

********-k*************************************************************/

void atodClass::SetChannel (unsigned char ChannelNumber)

{
unsigned char B;

B = inportb(BaseAddress + CHANNEL SLCT); /* read current byte */
B =B & 240; /* clear BO - B3 */
B = B | (ChannelNumber - 1); /* set channel bits */

outportb (BaseAddress + CHANNEL SLCT, B); /* write new byte */

}

/******—****************************************************************

SetGain
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The SetGain procedure is used to set the Gain bits on the DM5406.

Note how this procedure sets only the channel select bits; it does not

change the other bits in this register. This is important because if

you unintentionally clear the other bits it can cause unexpected
behavior

of the DM5406.

-k*********************************************************************/

void atodClass::SetGain(unsigned char Gain)

{

unsigned char B;

switch (Gain)

{

case 1 Gain = 0; break;
case 2 Gain = 1; break;
case 4 : Gain = 2; break;
case 8 : Gain = 3; break;
default Gain = 0; break;

B = inportb(BaseAddress + GAIN SLCT); /* read current byte */
B =B & 207; /* clear B4,B5*/
B =B ]| (Gain * 16); /* set gain bits */

outportb (BaseAddress + GAIN_SLCT, B); /* write new byte */
}

/*************-A--k*******************'}e***********************************

SetIRQStatus

The SetIRQStatus procedure is used to set or clear the IRQ Enable bit
on the DM5406. A value of 1 passed to this procedure enables
interrupts

a value of 0 disables interrupts.

*****-k****************************************************************/

void atodClass::SetIRQStatus(char IRQStatus)
{

unsigned char B;

B = inportb (BaseAddress + IRQ ENABLE); /* read current byte */
B =B & 127; /* clear B5 */
B = B | IRQStatus * 128; /* set IRQ select bit */

outportb (BaseAddress + IRQ ENABLE, B); /* write new byte */
}

/*****-*************'k***********************************t***************
SetExternalTrigger

The SetExternalTrigger routine is used to set the external trigger bit
on the DM5406. A value of 1 passed to this procedure enables the
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external trigger, a value of 0 disables the external trigger.

**********************************************************************/

void atodClass::SetExternalTrigger (unsigned char TriggerStatus)

{

unsigned char B;

B = inportb (BaseAddress + EXT_TRIG_ENABLE); /* read current byte */
B =B & 191; /* clear B6 */
B = B | TriggerStatus * 64; /* set Trigger bit */

outportb (BaseAddress + EXT TRIG_ENABLE, B); /* write new byte */
1 :

/************************************************.**********************

SetInterruptSource

The SetInterruptSource procedure determines the source used for

generating
interrupts for the DM5406. Passing SOURCE_AD_START selects the A/D

start
convert; passing SOURCE_DMA DONE selects DMA done; passing

SOURCE_TRIGGER
selects the trigger; finally, passing SOURCE PACER CLOCK

to this procedure selects the pacer clock.

**********************************************************************/
void atodClass::SetInterruptSource (unsigned char Source)

{

unsigned char B;

B = inportb(BaseAddress + SCAN_BURST_ SLCT); /*read current
byte*/ '

B =B & 207; /*clear bits 4 and
5%/

B = B | Source * 16; /*set new bits*/

outportb (BaseAddress + SCAN_BURST SLCT, B): /*write new byte*/

}

/********************************************-k-k************************

ScanBurstEnable

The ScanBurstEnable procedure allows the user to enable either scan

mode .
or burst mode. A value of 0 passed to this procedure disables both

modes;~- - -
a value of 1 enables scan mode; a value of 2 enables burst mode.

*****—;****************************************************************/

void atodClass::ScanBurstEnable(unsigned char Enable)
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{

unsigned_char B;

switch (Enable)
{
case DISABLE_BOTH: Enable = 0; break;
case SCAN_ENABLE: Enable = 2; break;
case BURST_ENABLE: Enable = 3; break;
default: Enable = 0;
}

B = inportb(BaseAddress + SCAN BURST_SLCT); /*read current byte*/
B =B & 63; /*clear bits 6 and 7*/
B = B | Enable * 64; /*set new bits*/
outportb (BaseAddress + SCAN BURST_SLCT, B); /*write new byte*/

}

/**********************************************************************

SetScanChannels

The SetScanChannels procedure determines how many channels are scanned
or

bursted while in the appropriate mode, selected using ScanBurstEnable.
The parameter passed in this procedure is simply the number of
channels the

user wishes to include.

**********************************************************************/
void atodClass::SetScanChannels (int NumChannels)

{

unsigned char B;

B = inportb(BaseAddress + SCAN_BURST_SLCT); /*read current
byte*/

B =B & 240; /*clear bits 0
through 3*/

B = B | (NumChannels - 1); /*set new bits*/

outportb (BaseRddress + SCAN_ BURST_SLCT, B); /*write new byte*/

/**********************************************************************

StartConversion

The StartConversion procedure is used to start conversions.

**********************************************************************/

void atodClass::StartConversion (void)
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outportb (BaseAddress + START_CONVERSION, 0);
} i

/*******‘*;\'*************************************************************

ConversionDone

The ConversionDone function returns TRUE if a conversion is complete,

FALSE
if a conversion is in progress.

*******************-k**************************************************/

int atodClass::ConversionDone ()

{

unsigned char Status;

Status = inportb(BaseAddress + STATUS_BYTE); /* read board status
*/

if ( (Status & 1) == 1)

return 1; /* if BO is set return TRUE */
else

return 0; /* if BO is not set return FALSE */

1

/**********************************************************************

ReadData

The ReadData function retrieves two bytes from the converter and
combines -
them into an integer wvalue.

***********-k**********************************************************/

int atodClass::ReadData(void)

{
unsigned char MSB, LSB;

int DigitalValue;

MSB inportb (BaseAddress + READ DATA);
LSB = inportb(BaseAddress + READ DATA);

DigitalValue = (MSB * 256 + LSB);

return(DigitalValue);

}

/********************-k*************************************************

ClockMode

The ClockMode procedure is used to set the mode of a designated

counter
on the 8254 programmable interval timer (PIT).
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******:*********************’k******************************************/

void atddClass::ClockMode(unsigned char Clock, unsigned char Mode)

{
unsigned char StatusByte;

StatusByte = (Clock * 64) + (Mode * 2) + 48;
outportb (BaseAddress + TIMER CTRL, StatusByte);
}

/**********************************************************************

ClockDivisor

The ClockDivisor procedure is used to set the divisor of a designated
counter on the 8254 programmable interval timer (PIT). This procedure
assumes that the counter has already been set to receive the least
significant byte (LSB) of the divisor followed by the most significant
byte (MSB).

******************-k***************************************************/

void atodClass::ClockDivisor (unsigned char Clock, unsigned int Divisor)
{

unsigned char MSB, LSB;

unsigned int PortID;

PortID = BaseAddress + TIMER A + Clock;
LSB = Divisor % 256;

MSB = Divisor / 256;

outportb (PortID, LSB);

outportb(PortID, MSB);

}

/**********************************************************************

SetUserClock

The SetUserClock procedure is used to set the programmable interval
timer (PIT) on the DM5406 such that the output of counter 2 goes high
at the specified rate. The maximum attainable rate this procedure, as
written, is 250,000 Hz although you can easily change this by
adjusting

the divisors accordingly.

******************'k***************************************************/

void atdelass::SetUserClock(float Rate)

{ &=~ -
ClockMode (0, 2);
ClockDivisor (0, 8);

ClockMode (1, 2);
ClockDivisor (1, (500000.0 / Rate));
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ClockMode (2, 2);
ClockDivisor(Z, 2);
| .

/***********************k*******z\'***************************************

SetPacerClock

The SetPacerClock procedure is used to set the programmable interval
timer (PIT) on the DM5406 such that the output of counter 1 goes high
at the specified rate. The maximum attainable rate this procedure, as
written, is 250,000 Hz although you can easily change_ this by
adjusting '

the divisors accordingly.

Note that the Pacer and User clocks are really the same device and
cannot be used independently.

**********************************************************************/

void atodClass::SetPacerClock(float Rate)

ClockMode (0, 2);
ClockDivisor (0, 16);

ClockMode (1, 2);
ClockDivisor(l, (500000.0 / Rate)):;

/**********************************************************************

Read DigitallO

The ReadDigitallO function returns the value of the specified digital
input port. Each digital input line is represented by a bit of the
return value. Digital in O is bit 0, digital in 1 is bit 1, and so on.

**********************************************************************/

unsigned char atodClass::ReadDigitallIO(unsigned char InputPort)

{
return (inportb (BaseAddress + PPI_A + InputPort));

}

/**********************************************************************

WritePigitallIO -

The W@iteDigitalIO function sets the value of the digital output port

to
equal the value passed as parameter v. Each digital output line is

represented by a bit of v. 'Digital out 0 is bit 0, digital out 1 is
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bit 1,
and so on.

********‘*.*************************************************************/

void atodClass::WriteDigitalIO(unsigned char OutputPort, unsigned char
V)

{

outportb (BaseAddress + PPI_A + OutputPort, v);

}

/**********************************************************************

ConfigureIOPorts .

The ConfigureIOPorts procedure is used to configure the ports A and C
on ,

the 8255 PPI for either input or output. A value of 1 means input, a
value

of 0 is for output. It is advisable to use the INPUT and OUTPUT
constants

defined in this file.

Port B remains set for output.

**********************************************************************/

void atodClass::ConfigureIOPorts(unsigned char PortA, unsigned char
PortC)
{

unsigned char ControlByte;

ControlByte = 128 + (PortA * 16) + (PortC * 9);
outportb (BaseAddress+PPI_CTRL, ControlByte);
}

/**********************************************************************

UpdateDAC

The UpdateDAC procedure outputs the specified voltage to the specifed
DAC. The DACSlope and DACOffset variables must be set to the values
required for the output range of the DACs.

**********************************************************************/

void atodClass::UpdateDAC (unsigned char DAC, float Volts)
{

int Value;

Value = (int) (Volts
outportb (BaseAddress
outportb (BaseAddress
outportb (BaseAddress
}

//end atod.cpp

DACSlope) + DACOffset;

DAC1 LSB + (DAC - 1) * 2, Value.% 256);
DAC1 MSB + (DAC - 1) * 2, Value / 256);
DAC_UPDATE, 0);

+ + 4+ *
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APPENDIX B. MATLAB CODE FOR SANS KALMAN FILTER

clear all
format long

gps_flag time=1;
cum_time=0;
x_hat=zeros(8,1);
simulation time=5.0; %
samples=(simulation_ time * 60)
heading=6.2832; % for north
speed=10;

x_hat plot=zeros(samples,9);
temp=zeros(1l,9);

in minutes

% Time Constants

tau_1 = 10; % seconds for velocity
tau 2 = 3600; % seconds for current
tau 3 = 60; % seconds for GPS

$R1 matrix

rl=[.01 000 ; O .01 00
0000 ; O0O0OO0];

$R2 matrix

r2={.01 0 ; O .01};

$ P minus matrix

p minus = [.1 0 O 0 O 0 O O
o.1 0 0 0O O O 0
o 0.1 0 O O O o0
o 0 0.Fr 0O O O O ;
0o 0 0 0.1 O O O
0o 0 0 0 0.1 0 O
o 0 0 0 0 0.1 o0
0O 0 0 0 O 0 0 .11:

% P matrix

©

p=1[.5 0 0 0 0 0O O O3
0.5 0 0 O 0 O 0 :
0 01.0 0 0 O O 0 ;
0 0 01.0 0 O O 0
0 0 0O 010.0 0O O O ;
O 0 0 O 0 10.0 O O ;
O 0 0 0O 0O 0 15.0 0 ;
0 0 0 0O 0O O 0 15.01;
$H1 matrix
hl=[1 0 0 0 0 0 O O ;
0100000O0O0;
00001010 ;
00000101},
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$H2 matrix

h2=[1 0 0 0 0 0 O O ;
0100000 07;

D1=0.01;

D2=0.01;

D3=0.5;

Dl _ p = 0.01;

D2 p = 0.01;

D3 p = 0.5;

$ initial process state
x_previous = [0; 0; 0; 0; 0; 0; O; 01;

gfor piotting only.
gps_plot = [ 0; 0];

'beginning kalman filter loops'
for i=l:samples

delta_t=0.02; % 0.0l*rand

gps_flag time=gps_flag time+delta_t;
cum_time=cum_ time+delta_t;

% construct Phi matrix

uu=exp (~delta_t/tau 1);

vv=exp (-delta t/tau 2);

ww=exp (-delta_t/tau_3);

phi = [uu 0 0 0 0 0 0 O ;
Ouu 000 0O O ;
00w OOOOO;
000w O0OOOO;
0 00O0wwOOO;
000O0O0wWwOO ;

tau 1*(l-uu) 0 tau 2*(l-vv) 0 0 0 1 0 ;

0 tau_1*(1l-uu) O tau_2*(l-vv) 0 0 0 1];

gconstruct Q matrix for Kalman filter
xx=exp ( (-2*delta_t)/tau 1);
yy=exp((-2*delta_t /tau _2);
zz=exp ((-2*delta_t /tau 3);

Q00=((D1/(2*tau_1))*( ;
Q22=((D2/(2*tau_1) *( ;
Q33=({(D2/(2*tau_1) *(yy

)
)
)
Q11=((D1/(2*tau_1)})
)
)
) *

x)
x)
y)
)
Q44=({(D3/(2*tau_1) z)
Q55={-(D3/(2*tau_1))* (zz)

1*(1-uu)+(tau 1/2)*(1-xx));

2% (1-vv)+(tau 2/2)*(1l-yy));

Q661=D1* (delta_t-2*tau

Q662 D2* (delta_t- 2*tau

066=0661+Q0662;

Q77=D1* (delta_ t-2*tau_l1*(l-uu)+(tau_ 1/2)* (1—xx))+D2
*(delta t- -2%tau 2% (1-vv)+(tau_2/2)* (1-yy)):
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Q06=D1* ((1/2)-(uu)+(1/2)*xx);

Q60=006;
Q26=D2* ((1/2)-(vv)+(1/2)*yy):
062=026;
Q17=006;
Q071=017;
Q37=0Q62;
Q73=0Q37:;
2Q matrix
g = [Q0O0 0 000 0 Q060 ;
0 Q11 00 0 0 0 Q17 ;
0 0 Q22000026 0 ;
000 Q33000 Q37 ;
0000 Q44 000 ; -
00000Q55 00 ;
Q60 0 Q62 0 0 0 Q66 0;
0 Q71 0 Q73 0 0 0 Q77];

%$construct Q matrix for process model
xx=exp ( (-2*delta_t)/tau_1);

yy=exp ( (-2*delta t)/tau _2);

zz=exp ((-2*delta_t)/tau_3);

QOO=((D1_p/(2*tau_1)) (xx));

Q11=((D1_p/(2*tau_1))* (xx));
Q22=((D2_p/(2*tau_1))*(yy)):
Q33=((D2_p/(2*tau_1))*(yy)):
Q44=((D3_p/(2*tau_1))*(zz));

Q55=((D3_p/ (2*tau_l1))*(zz));
Q661=D1_p*(delta_t-2*tau_1*(l-uu)+(tau_1/2)*(1-xx));
Q662=D2_p* (delta_t-2*tau 2*(1l-vv)+(tau_2/2)*(l-yy)}:

Q66=0661+0662;
Q77=D1 p*(delta_t-2*tau_ l*(l-uu)+(tau_1/2)*(1-xx))+D2_p
*(delta t-2* tau 2* (1-vv)+(tau 2/2)* (1l-yy))

Q06=D1_p* ((1/2)—-(uu)+(1/2)*xx);
Q60=Q06;
Q26=D2_p* ((1/2)-(vv)+(1/2}*yy):
Q62=026;
017=0Q06;
Q71=0Q17;
Q37=062;
Q73=037;
g _process = [Q00 0 0 0 0 0 Q06 O ;
0 011 00 0 0 0 Q17 ;
0 0 Q22 00 0 Q26 0 ;
0 00Q33 000 Q37 ;
000O0Q44 00 O ;
00O0O0O0 Q5500 ;
Q60 0 062 0 0 0 Q66 O;
~ 0 Q71 0 Q73 0 0 0 Q77]; -
% Erocess model noise
white noise = randn(8,1);
W= qrtm(q_process) * white_noise;
w(l) = w(l) + 0.02; % input to generate some speed
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x = phi * x previous + w;
x_previous = X;

% measurement noise from water speed sensor
v = 0.2*randn(2,1);

those two equations are here for smoothing rather than prediction.
_hat_minus=phi*x_hat;
p_minus= (phi*p*phi')+g;

» oo

tmp (1) = cuﬁ_time;

if (gps_flag time>=1)
z_with_gps = hl * x; $measurement with GPS
z_with_gps(l) = z_with_gps(1l) + v(1);
z_with gps(2) z_with _gps(2) + v(2);

z_with gps(3)

0.0 + x(5);
z_with_gps(4) 0.0 + ;

X
x(6)

% kl=p minus*hl'*inv((hl*p_minus)*hl'+rl);

kinv=inv((hl*p minus)*hl'+rl);
kl=p minus*hl'*kinv;

ii=ii+4;

%x_hat=x_hat_minus+kl*(z_with gps-(hl*x_hat_minus));
p=(eye(8)-kl*hl)*p minus;

gps_plot(l) = z_with_gps(3);
gps_plot(2) = z_with_gps(4);
% for printing purpose
for j=1:4

tmp (j+1) = z_with gps(J):
end

gps_flag time=0;

else .
z no_gps = h2 * x; % measurement without GPS
Z_no_gps = z_no_gps + V;

$ k2=p_minus*h2'*inv((h2*p_minus)*h2'+r2);

k2inv=inv ( (h2*p minus)*h2'+r2);

k2=p minus*h2'*k2inv;

k2invtmp=[k2inv(1l,1) k2inv(1l,2) 0 O;
k2inv(2,1) k2inv(2,2) 0 0];

x_hat=x_hat_minus+k2*(z_no_gps—(h2*x_hat_minus));
_p=(eye(8)-k2*h2) *p_minus;
for j=4:5 . .
tmp(j) = gps_plot(j-3);
end
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for §=2:3
tmp(j) = z_no_gps(Jj-1);
end

end %end if statement

% collecting measurement for plotting purpose
z_plot(i,:) = tmp;
% collecting x hat for plotting purpose
temp2 (1)=cum_time;
temp3 (1)=cum_time;
for j=2:9
temp2(3)=x_hat (j-1);
temp3(j)=x(j-1);
end

x_hat_plot (i, :)=temp2;
x_plot(i,:) = temp3;

end %end of Kalman Filter loop
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