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Abstract

As Distributed Interactive Simulation (DIS) exercises continue to grow in scale, the need
to support a large number of players has become apparent. The demands on the network and
the simulation hosts in large exercises, though, have proved to be prohibitive, requiring
significant computational overhead to filter through the information and extract what is
relevant to a particular simulation. Some mechanism is needed to reduce irrelevant network
traffic received by a system, while increasing the bandwidth available for the DIS exercise.
Previous research efforts in this area have centered primarily on fixed geographic partitions
of the battlespace to reduce the traffic at a given host. This geographic partitioning cannot
adapt to the changing battlespace, and requires relatively significant pre-exercise setup and
coordination. Our research has been to implement a DIS exercise system using native ATM
interfaces, and to determine if a dynamic partitioning system is feasible and will provide a
sufficient reduction in network traffic to allow DIS exercises to scale to the target 100,000
entities. A support infrastructure for DIS over ATM was developed and tested with current
AFIT DIS applications, and a prototype dynamic partitioning system using geographic

criteria was implemented.




1. Introduction

Modern warfare has become increasingly complicated as technology has moved onto
the battlefield. Gone are the days when the “citizen soldier” could be relied upon to provide
national defense; the weapon systems employed by today’s military forces have progressed to
the point where extensive training is required. Traditionally, the United States Armed Forces
have relied on field training exercises to gain this training [25]. While these exercises serve a

valid purpose, they are not without their drawbacks:

1) Field training exercises are extremely expensive, both in terms of money
and materiel; weapon$ and equipment wear out faster when employed in
real-world training exercises.

2) Assembling all the players necessary to conduct a successful training
exercise is difficult, particularly given the increased mission requirements
on each unit caused by the drawdown.

3) Potential exercises must be weighed against any environmental concerns.

4) In some cases, it is impossible to duplicate the parameters of a required

scenario with enough realism to be useful.

Recognizing these limitations, in 1983 the Defense Advanced Research Project Agency
(DARPA) initiated an effort to harness the increasing capabilities of computer-based
simulation. The goal was to develop simulators and training systems that would be capable of
providing the desired level of tactical coordination training at a minimum cost. The United
States Army had already developed stand-alone simulators and training systems for major
weapons system purchases [16]; what made this effort unique was its emphasis on
interconnected simulations. The result of this research was the Distributed Simulator
Networking (SIMNET) protocol [1]. SIMNET allowed information produced by a simulator
(such as an entity’s location and armament) to be transmitted over a computer network via
“messages” known as Protocol Data Units (PDUs) and received by other simulators

participating in the same exercise [17, 18].
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While highly successful in its purpose, SIMNET was originally designed for use with
United States Army simulators only. This limitation proved difficult to overcome as other
services began entering the simulation arena. For example, the SIMNET Vehicle Appearance
PDU field that describes object types only allowed for army vehicles; an attempt was made to
add other vehicles, but with little success [3]. To address these deficiencies, in 1989 DARPA
and the Army Project Manager for Training Devices (PM TRADE) began the process of
developing a “follow-on” to the SIMNET protocol [16]. This protocol became the
Distributed Interactive Simulation (DIS) protocol, and incorporated all the essential elements

of SIMNET.

1.1 DIS Limitations

As the DIS protocol began to proliferate in the simulation community, it became
obvious that as the number of pérticipants in a simulation increased, so too would the amount
of traffic on the network. DIS requires that each entity in a simulation transmit information
about itself as changes occur; however, even a quiescent entity must send a “heartbeat” PDU
every 5 seconds, since an entity that has been quiet for 12 seconds or longer is considered to

have left the exercise [12].

In its original implementation, DIS assumed the use of broadcast addresses, in which all
simulation hosts receive all information from each other, and each receiving host is
responsible for sorting out what information is relevant to the entities it supports. Similar to
the SIMNET protocol, information sent to other hosts is encapsulated into a network packet
known as a Protocol Data Unit (PDU). In any DIS exercise, however, only a subset of all DIS
PDUs are relevant to a given receiver; only this relevant subset needs to be transmitted and
processed [28]. Under a broadcast paradigm, though, each host must examine each PDU it

receives to determine if it contains relevant data.

1.1.1 Limitations on computing resources

The main constraint in any DIS simulation system is the limited number of times per

second a host (a computer participating in a simulation) can service network interrupts
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(receive and process a PDU) and still be able to simulate its entities with reasonable fidelity
[20]. Since each PDU arriving at a host must be examined for relevance, the obvious solution
is to reduce the number of PDUs that each host receives. The problem becomes one of
ensuring the host receives all PDUs that are relevant to the entities it is simulating (for
example, all PDUs that are within a certain proximity to its entities), while reducing the

number of non-relevant PDUs received.

A possible solution to this problem that has been presented is to segment, or partition,
the traffic on a network into areas of interest [20]. Each host would then receive PDUs from
only those partitions in which it was interested [26]. Work done to date on partitioning has
concentrated on static partitions; the division of the battlespace is determined before the
exercise begins, and remains constant throughout. Little effort has been directed toward the
development of dynamic partitions—a division of the battlespace that adapts to the exercise in
progress, changing partitioning criteria as necessary to optimize partitions and present the

minimum number of excess PDUs to a host.

1.1.2 Limitations on network resources

The network bandwidth available for DIS exercises is also a limiting factor. It has been
calculated that future planned DIS exercises will need to support network loads of 140,000
packets per second, with bandwidth requirements reaching 230 Megabits per second (Mbps)
[4]. Most Local Area Networks (LANS) in use today provide bandwidth ranging from 10
Mbps (Ethernet) to 100 Mbps (FDDI/Fast Ethernet); Wide Area Networks (WANs) are
typically 1.544 Mbps (T-1) to 44.736 Mbps (T-3) [24]. Clearly, existing network

infrastructure will not support the requirements of expanding DIS exercises.

A possible solution to the network bandwidth limitations is the use of Asynchronous
Transfer Mode (ATM). ATM is capable of speeds ranging from 51 Mbps (OC-3) to 9,953
Mbps (OC-192), and is available for both WAN and LAN applications.
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1.2 Problem Statement

I propose to create a program interface to allow existing AFIT simulations to take
advantage of ATM’s greater bandwidth. In addition, I seek to develop and evaluate a
dynamic relevance filtering mechanism that will allow adaptive partitioning of the DIS

battlespace.

1.3 Assumptions

To successfully conduct this research, I assume the availability of an installed ATM
network. The expected configuration will consist of 9 SGI workstations connected via OC-3
multimode fiber-optic strands to a Fore Systems ASX-1000 ATM switch. Each system
should be running IRIX 6.2 or later, and have installed the software libraries necessary to

allow program interface with the underlying network.

1.4 Thesis Presentation

This thesis is divided into six chapters, with two appendices. Chapter Two presents a
brief overview of ATM, as well as an outline of current research work in the area of relevance
filtering for DIS exercises. Chapter Three presents the approach I took in development of the
exercise system, with a discussion of the rationale behind some of the decisions made.
Chapter Four describes the system that was implemented to meet the requirements set forth
above. Chapter Five covers the results of this research, and Chapter Six details requirements
not fulfilled as well as providing recommendations for future work. Appendix A lists the
function prototypes for the DIS ATM library developed for this work. Appendix B covers

the PDUs developed to support the partitioning infrastructure.
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2. Background

This chapter presents a brief description of Asynchronous Transfer Mode (ATM), and
will cover several current research efforts in the area of data partitioning. A discussion of the

limitations inherent with IP multicast groups is included as well.
2.1 Asynchronous Transfer Mode (ATM)

2.1.1 History

Communications networks have evolved tremendously since the first telephone
exchange was installed in 1878. The édvent of such services as telegraphs, cable television,
and packet-switched networks (such as the Internet) have resulted in a plethora of dedicated
networks, with each of these being able to transfer a single type of information (voice, data, or
video). Attempts have been made to combine services and integrate emerging technologies
into the existing networks, but in most cases the best option was to simply install a new

network [2, 10, 22].

The invention and proliferation of digital transmission and digital switching technology
introduced the possibility of combined networks, in which data of any type could be carried
efficiently by a single network. In 1972 the Comite Consultatif Internationale de
Telegraphique et Telephonique (CCITT), also known as the International Telegraph and
Telephone Consultative Committee, issued recommendation G.705, which defined the first
vision of an Integrated Systems Digital Network (ISDN) that would combine voice, video,
data, and other services onto a single network. Two interface rates were defined: The basic
rate interface at 144 kilobits per second (kbps), and the primary rate interface at 1.5 or 2.09‘
megabits per second (Mbps). While these two rates can support a wide range of services such
as voice and data transfer, high-bit-rate services such as image and video services required
much greater bit rates. Accordingly, ISDN was divided into narrowband ISDN (N-ISDN)
operating at the 2.09 Mbps maximum rate, and broadband ISDN (B-ISDN) at higher rates.

To better categorize the types of traffic B-ISDN was envisioned to service, four classes of
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service were defined, as shown in Table 2-1. In 1990, CCITT selected ATM as the transport
technique for B-ISDN [10, 22].

Table 2-1: B-ISDN service classes [22].

Criteria Class A ClassB |  ClassC Class D
Bit Rate “Constant Variable
Connection Mode Connection-oriented | Connectionless
Timing Synchronization Required Not Required
Example Telephony [ Video [ Data Transfer | LAN Interconnection
2.1.2 ATM

In broad terms, ATM describes a data encapsulation and switching method in which
fixed-size data units, or cells, are rapidly switched from the source via a sequence of virtual
paths and channels through any interconnected switches to the destination. An ATM cell is
53 bytes long, with 5 bytes of header information and 48 bytes of data; the fixed cell size

allows switching to be done in hardware, resulting in dramatically increased throughput.

2.1.2.1 ATM Adaptation Layers (AALSs)

An ATM Adaptation Layer (AAL) serves as the interface between higher later services

and the ATM layer (see Figure 2-1). The AAL consists of two internal layers:

1) The Convergence Sublayer (CS) provides required encapsulation of data,
flow control and error recovery where necessary, and segmenting into

Service Data Units (SDUs).

2) The Segmentation and Reassembly (SAR) segments the SDUs from the
CS into 48-byte payloads for the ATM cells.




Convergence Sublayer

Figure 2-1: ATM Layer Hierarchy [2].

Initially, 4 distinct AALs were defined, to correspond to the 4 service classes. It was
later determined that there was little functional difference between class C and D services, so
AAL3 and AAL4 were merged [6]. An additional adaptation layer (AALS) was later added
to address the relatively large overhead incurred with AAL3/4 [2, 10].

2.1.2.1.1 AAL1

AALL1 is an unreliable service for connection-oriented constant bit rate (CBR) traffic
such as telephony. The AALIL CS treats each transmitted bit individually, and when either
368 or 376 bits have been received (depending upon the connection), they are blocked into a
46- or 47-byte PDU and passed to the SAR, along with sequencing and control information.
The SAR adds error and parity checking information to fill out 48 bytes, then delivered to the

ATM layer to be placed into a cell and transmitted [2, 10].
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2.1.2.1.2 AAL2

AAL2 has not yet been fully defined, since there are few data devices that require a
synchronous connection with a variable bit rate. An example of this would be a video

transmission system which transmits only that information that has changed [2].

2.1.2.1.3 AAL3/4

AAL3/4 deals with asynchronous variable bit rate (VBR) traffic such as that found on a
LAN. Variable length data blocks up to 65,535 can be handled by AAL3/4; it is assumed that
larger blocks will be segmented by higher layers before being passed to AAL3/4. AAL3/4
has stronger error checking than any of the other AALs, and also includes information to
assist the destination system in reassembling the data. The AAL3/4 CS adds 8 bytes of
information to the data block, and then delivers 44-byte segments to the SAR where

additional control and error-checking bits are added to fill out the 48-byte cell [2].

2.1.2.1.4 AALS5

AALS, also known as Simple and Efficient Adaptation Layer (SEAL), was developed to
address the minimum 16.9% overhead associated with AAL 3/4. No information is added to
assist data reassembly, and the error checking is over the entire data block as opposed to each
cell (as with AAL3/4). The AALS CS adds 8 bytes of control information, but the SAR adds

nothing, so 48-bytes of the CS data is sent per cell [2].

2.1.2.2 Virtual Paths and Channels

Section 2 of ITU-T Recommendation 1.150 defines ATM as “a connection-oriented
technique, in which connection identifiers are assigned to each link of a connection when
required, and released when no longer needed” [5]. To facilitate routing through an ATM
network, each ATM cell header includes a connection identifier which contains a Virtual Path
Identifier (VPI) and Virtual Channel Identifier (VCI). The VPI/VCI has local significance

(on the current link) only; at each ATM switch either or both of these fields may be changed
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depending on the routing of the cell. Virtual Channel Connections (VCCs) detail end-to-end
paths, and are made up of Virtual Channel Links (VCLs) [2, 24]. VCLs are made up of
segments where switching is done based solely on the VPI, as shown in Figure 2-2. In this

example, VCC 1 consists of two VCLs (VCL1 and VCL2).

VPl 4 VPI 6

VCI 1 VCI1

VCL 1 VCL?2
VCC 1

Figure 2-2: Virtual Circuit and Virtual Path Switching

2.2 Data Partitioning

Initial DIS exercises centered around single-site networks, consisting of small numbers
of simulators (< 10) with relatively few entities (< 1000) [20]. However, recent exercises such
as the Synthetic Theater of War-Europe (STOW-E) have shown this expectation to be severely
inadequate, and future exercises are being planned with over 100,000 entities spread across

50 sites [4].

In DIS exercises of such magnitude, the main constraint is the limited number of times
per second a computer can service network interrupts and still be able to simulate its entities
[8, 27]. To allow DIS exercises to scale as envisioned, some mechanism must be used to

reduce the amount of unwanted data a simulation host receives during the exercise.

The goal of data partitioning (also called relevance filtering) is to present to each host
on the network the smallest subset of all PDUs such that the simulation running on that host
receives all information pertaining to those entities that it can detect. This may mean that
some small amount of extraneous information is presented to the host, but this is acceptable;

what is not acceptable is the host not receiving information it needs concerning an entity.

2-5




Several research projects are currently underway seeking ways to partition the data in
DIS exercises. In the sections to follow I will cover the three most prominent: RITN, JPSD,

and NPSNET.

2.2.1 RITN

The Real-Time Information Transfer and Networking (RITN) is a joint Advanced
Research Projects Agency (ARPA)-Defense Modeling and Simulation Office (DMSO)
sponsored program that is part of ARPA's Synthetic Theater of War (STOW) program.
Located at the Massachusetts Institute of Technology, the RITN program is providing basic
technology development in high speed wide area networks, network security, and Application

Control Techniques (ACT). The RITN program has been underway since late 1994.

The primary goal of the RITN research group with respect to DIS is to provide
scaleability for DIS exercises by developing protocols and algorithms to permit construction
of simulations which can operate successfully in exercises of any scale. To achieve this, they

have developed a specialized system architecture required at each exercise site (Figure 2-3)

[4]:

Wide Area Network

Figure 2-3: RITN System Architecture
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The High-Performance Application Gateway (HPAG) serves as a “gateway” to the
Wide Area Network (WAN), and handles Internet Protocol (IP) multicast group traffic routing
[26]). The Agent Host (AH) is responsible for establishing IP multicast groups based on the
simulations’ data requests (matching subscribers for data with publishers of that specific

data). A data logger is also employed (but not necessary) for traffic analysis [29].

In the Fall of 1995, the RITN program conducted a series of tests referred to as
Engineering Demonstration 1A (ED-1A). The battlefield used for these tests was partitioned
a priori into a uniform array of square, two-dimensional grid cells, with an IP multicast group
uniquely associated with each grid cell. Several different grid sizes, ranging from 1.25 km to
5 km, were tested, and resulted in an average PDU reduction at each workstation of

approximately 53% [29].

While demonstrating the efficacy of IP multicast groups in reducing irrelevant network
traffic, the actual improvement at each workstation was significantly less due to the inherent
limitations of current commercial network interfaces. In a typical Ethernet shared-media
environment, most multicast packets are actually received and processed by a workstation’s
kernel; those packets of interest are passed on to the application, while the rest are rejected.
This is obviously an improvement over a broadcast paradigm (in which all packets are passed
on to the application), but CPU cycles are still being wasted while the kernel examines each
packet. It is estimated that better filtering of multicast packets in hardware (either at the
interface, or within the network) could reduce the number of packets handled at each

workstation by a factor of two or more [29].

2.2.2 JPSD

The Army’s Joint Precision Strike Demonstration (JPSD) program incorporates the
concept of “interest management”, wherein client simulators are supported by a Run Time
Gateway (RTGW), which manages the client interest expressions and communicates with other

RTGWs to pass PDUs to those simulators that have an interest in them. Similar to the RITN
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structure, the JPSD RTGW acts as a “gateway” to the rest of the virtual world, as shown in

Figure 2-4 [20].

Sim | eee |Sim| | Sim '
DIS PDUs RTGW —
g
Sim cee Sim Sim g
@ &
-
DIS PDUs RTGW — ‘glﬁ
R
Sim s Sim Sim EZ
-
DIS PDUs RTGW [+

Figure 2-4: JPSD System Architecture
Each segment in the JPSD architecture is associated with a unique IP multicast group,
and the RTGWs communicate with each other via multiple IP multicast groups (one for
interest expressions, and a number for PDU transmissions). In this manner, the majority of
the network burden is shifted from the simulator hosts to the RTGW; each host need only
subscribe to one IP multicast group, and conceptually each simulator views the RTGW as a
single, giant host capable of simulating all the external entities in which the simulator is

interested.

To take maximum advantage of the RTGW infrastructure, JPSD requires a priori
knowledge about the exercise in order to properly segment the simulators, associating those
with similar interests behind a common RTGW. Ad hoc joining of simulators to the exercise

degrades the advantages of the RTGW topology.

The JPSD RTGW also employs a Ground Truth Database (GTD) which tracks each

entity and allows calculation of A-values, such as when an entity has moved, or has changed




appearance. The GTD enables the RTGW to perform a limited culling of PDUs, allowing

simulators to request updates either more or less frequently than they would typically receive.

The Interest Expression (IE) schema of JPSD allows not only a geographic partitioning
of the data (as with RITN), but virtually any other type of partitioning as well with suitable
IEs. For example, a simulator could request to receive only information about a certain type

of entity, or only entities from a certain simulator [20].

2.2.3 NPSNET

The Naval Postgraduate School is developing a grid-based partitioning schema for use
with its NPSNET 3D vehicle simulator. Similar to the RITN structure, the NPSNET system
associates a unique IP multicast address with each grid; however, the NPSNET system uses 4-
km radius hexes instead of squares. As with RITN, a priori knowledge of multicast addresses
is necessary for a simulator to know which addresses to subscribe to. NPSNET does not
employ a dedicated server (such as RITN’s Agent Host) to handle multicast group
subscription and management; instead, the oldest entity within a multicast group is considered
the “leader” of that group and responds to all join requests sent by entities wishing to receive
information concerning that group. While this reduces the overhead and complexity of the
NPSNET exercises, it causes additional overhead on the simulator that is responsible for the

current “leader” of a multicast group [15].

2.3 IP Multicast

In each research effort discussed so far, the method used for selectively broadcasting

PDUs is IP multicast. There are several reasons for this:
1) IP Multicast is an IETF standard (RFC 1112) and is supported by a variety
of operating systems including SGI’s Irix and Sun’s Solaris [9].

2) Most modern computer systems employ some level of multicast group
filtering relatively low on the network protocol stack, resulting in early

discard of irrelevant packets [29].




3) From a DIS perspective, IP multicast network addressing closely resembles
the broadcast medium for which DIS was developed; minimal

modifications to DIS applications are necessary [20].

4) Protocols such as Internet Group Management Protocol (IGMP) and the
Multicast Backbone (MBONE) allow limited multicast-group
transmissions across WANs including the Defense Simulation Internet

(DSI) and the commercial Internet [9].

As was shown in ED-1A, however, most interface hardware only supports schemes for
hashing IP multicast addresses into a relatively small number of bins, accepting or rejecting
packets based on bin number, as shown in Figure 2-5. While the exact number of bins varies
between manufacturers (and also between machines from the same manufacturer), this
hashing scheme means that in order to receive packets from a particular multicast group, all
packets whose address hashes into the same bin must be processed by the kernel as well. The
large number of multicast groups necessary for relevance filtering (ED-1A used over 400

[29]) lessen the effectiveness of this approach.

A [ 1 1)
Figure 2-5: Notional IP multicast group address hashing. Example based on IP-to-Ethernet
multicast hashing, in which the low-order 23 bits of the IP multicast group address determine
which bin a packet is placed into [9].

2.4 Conclusion

The preceding summary of current DIS research efforts in the area of data partitioning

indicates that all three efforts have selected geographic grid-based partitioning as the model
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that will be used. Primary focus has been in the area of IP multicast group allocation, with
relatively little notice paid to emerging technologies such as the Xpress Transfer Protocol
(XTP) or Asynchronous Transfer Mode (ATM) backbones (beyond serving as a lower
protocol for IP). Further, efforts are aimed primarily toward a static partitioning scheme,
which requires significant pre-simulation setup and coordination. The next chapter will
attempt to address some of these problems, both from the perspective of harnessing emerging

network technology and in reducing (or eliminating) pre-simulation preparation.
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3. Approach

Previous research efforts in the area of relevance filtering have primarily centered
around a fixed geographic partitioning scheme, using IP multicast as the underlying
network protocol. While attempting to capitalize on the success of these efforts, I seek
to improve on them by exploring other network transport options as well as examining

a dynamic battlespace partitioning method to optimize relevance filtering.

3.1 Network Protocols

As was shown in the previous chapter, all research efforts to date have used IP
multicast as the underlying network protocol, with each geographic “cell” being
assigned a unique multicast address. This approach has the advantage of being easily
transportable from network to network; however, as was shown in Chapter Two, it is not
always the optimal solution. Given my initial research goal to develop a solution for an
ATM-to-the-desktop system, I have three different options: Local Area Network
Emulation (LANE), IP-over-ATM, and native ATM. I will briefly cover the advantages

and disadvantages of each, and explain my rationale for choosing to use native ATM.

3.1.1 Local Area Network Emulation (LANE)

Fore Systems’ ATM adapters support the ATM Forum’s LANE 1.0 protocol. By
using LANE, one or more “virtual LANs”, known as emulated LANs (ELANs), can be
set up on a single network, with traffic on each LAN being distinct from the others.
ELANSs transparently support multicast and broadcast. To applications, the ELAN
appears as another network interface, and no modifications are required to software
beyond specifying this new interface. Using ELANs would allow a heterogeneous
simulation environment containing both bridges to other LANs, legacy Ethernet or
FDDI/CDDI systems (depending on the ATM switch configuration), and ATM-based

systems, and could be bridged using standard equipment for use across WANs. In




addition, ELANs support a limited level of security, in that the systems which are

permitted to join the ELAN can be limited to a predefined list.

LAN emulation is expensive, however. The LAN emulation software is run on
each host, incurring CPU overhead for the network operations. In addition, there is a
significant overhead associated with LAN emulation, as Figure 3-1 shows; a typical 144-
byte entity state PDU (ESPDU) requires 265 bytes to be transmitted. Table 3-1 shows

the overhead for the three most prevalent PDUs in a DIS exercise.

User Data (ESPDU, 144 octets)

UDP Header (8 octets) User Data (144 octets)

P Header (20 octets) UDP Data (152 octets)
EH Header (2 octets) | Ethernet Header (14 octets) | IP Data (172 octets)
{ LANE Data (188 octets)| Pad (44 octets) | AALS Trailer (8 octets)

Cell Header (5 octets) | AALS CS Data (48 octets)

Figure 3-1: Encapsulation of a 144-byte ESPDU using LANE. The pad in the AAL5 Convergence Sublayer
is required to ensure 48-byte segmentation. [2, 13, 14]

Table 3-1: Overhead associated with LANE.

DIS PDU Type | Length | UDP | IP LAN ATM | Total | % Overhead
(bytes) Emulation Length
Entity State 144 8 | 20 16 77 | 265 45.6
Fire 88 8 20 16 27 159 44.6
Detonation 104 8 20 16 64 212 50.9

In addition to CPU and network overhead, either an ATM host on the network or
the ATM switch itself must run software to handle ELAN administration and
maintenance. This additional requirement, in conjunction with the packet overhead

shown above, results in significantly lessened network throughput, as Table 3-2
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illustrates. For example, LANE throughput on a WebForce Indy (65.2 Mbps) is over
45% less than that achieved using IP-over-ATM on the same architecture (120.3 Mbps).
Table 3-2: Performance Figures for ATM adapters available at AFIT. MTU is the Maximum Transmission

Unit. SPANS is Fore Systems’ proprietary signaling protocol used for establishing ATM connections
between host adapters, and indicates IP-over-ATM throughput [13].

ATM Adapter MTU Size | Window Size | Buffer Size Demonstrated
(bytes) (bytes) (bytes) Throughput (Mbps)
GIA-200E LANE 1516 64 32768 65.2
(WebForce Indy) | SPANS 9188 64 8192 120.3
ESA-200E LANE 1516 48 24576 58.5
(Indigo 2 Impact) | SPANS 9188 64 12288 84.8
VME-200E LANE 1516 48 24576 59.4
(Onyx) SPANS 9188 64 49152 117.6

3.1.2 IP-Over-ATM

Another option is IP-over-ATM. Fore Systems’ ForeThought 4.0 software
implements both RFC 1577 Classical IP and their proprietary implementation of
TCP/IP, known as FORE IP. The conceptual view of IP-over-ATM showing the
successive encapsulation layers is shown in Figure 3-2 [11]. Because the existing
TCP/IP interface is used, the underlying ATM infrastructure is transparent to the
application; this allows the use of generic TCP/IP structures with little or no

modifications.




Existing TCP/IP Interface ATM API Interface

| Socket Ilnterface |

[ U]l)P | | T(llP |

| Y | | ATM API
e ]
ATM Adaptlation (SAR) |

Figure 3-2: ForeThought implementation of TCP/IP and ATM API protocols.

By using [P-over-ATM, any of the existing partitioning schemes could be used as
a base for this research. IP is the most ubiquitous of transport protocols, forming the
basis of the DSI network and the commercial Internet, so any partitioning scheme
developed could be used on a number of different networks. JPSD, for example, was
developed using IP-over-ATM, and has been successfully bridged to other networks.
FORE IP supports the IETF standard multicast, albeit with the same multicast limitations
that were discussed in the previous chapter. IP multicast packets can be transmitted over
WANS through the use of multicast routers, which will “tunnel” the multicast group

information as necessary for transport across the Internet or other WAN.

IP-over-ATM is computationally less expensive than LANE, since the LANE
encapsulation operations are not required. However, each PDU sent over an IP network
(ATM or otherwise) incurs a fixed packet overhead due to the requirements for
encapsulation. Figure 3-3 shows the ESPDU from Figure 3-1 as it is successively
encapsulated for IP-over-ATM down to the ATM AALS cell level, and Table 3-3 lists
the overhead associated with each of the three PDUs in Table 3-1 when transmitted via

an IP-over-ATM network. Note that the detonation PDU requires 47 bytes of pad in
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the AAL5 Convergence Sublayer, resulting in over half the total transmitted

information being overhead.

User Data (ESPDU, 144 octets)

UDP Header 8 octets) User Data (144 octets) .

Figure 3-3: Encapsulation of a 144-byte entity state PDU using IP-over-ATM. The pad in the AALS
Convergence Sublayer is required to ensure 48-byte segmentation. [2, 14]

Table 3-3: Overhead associated with IP-over-ATM.

DIS PDU Type | Length | UDP | IP | ATM | Total | % Overhead
(bytes) Length
Entity State 144 8 | 20| 40 212 32.1
Fire 88 8 | 20 | 43 159 44.6
Detonation 104 8 20 80 212 50.9

3.1.3 Native ATM

The final option available is to use native ATM as the network transport
mechanism. At first glance, native ATM appears to be the obvious choice: By
removing the IP encapsulation and going straight to the ATM adaptation layer (as
shown in Figure 3-4) the per-PDU overhead drops. In those cases where the PDU is
aligned on a 48-byte boundary within the convergence sublayer, the decrease is fairly

significant, such as with the fire PDU (Table 3-4).




Pad (40 octets) | AALS Trailer (8 octets)

Cell Header (5 octets) | AALS CS Data (48 octets)

Figure 3-4: Encapsulation of a 144-byte entity state PDU using native ATM. The pad in the AAL5S
Convergence Sublayer is required to ensure 48-byte segmentation. [2, 14]

Table 3-4: Overhead associated with native ATM.

DIS PDU Type | Length ATM Total % Overhead
(bytes) | (AALS) | Length

Entity State 144 68 212 32.1
Fire 88 18 106 16.9
Detonation 104 55 159 34.6

Complementing the decreased overhead (more PDU data per ATM cell), the host
also has less decapsulation to do, resulting in increased data rates within the host itself.
In his testing for the JPSD project, Dr. Edward Powell determined that on average, a
host running with a Fore Systems ATM adapter could process approximately 2.5 times
as many native ATM packets as it could IP-over-ATM packets before experiencing

packet loss due to interface congestion [19].

Another advantage to using native ATM is that an ATM network, by nature, is
already WAN-adapted; no further encapsulation or “tunneling” of information is
required for transport across ATM WANS, since no logical distinction is made between a
VPI/VCI that ends at a host and a VPI/VCI that connects ATM switches. Each host on
an ATM network is identified by a unique 20-byte sequence, which identifies the switch
and port for that host. Fore Systems has implemented the International Code
Designator (ICD) ATM addressing scheme, as shown in Figure 3-5. For a local (on the
same switch) ATM connection, however, only a Network Service Acceés Point (NSAP)

and an Application Service Access Point (ASAP) are needed. The NSAP is an 8-byte
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address which is analogous to an IP address, and refers to the specific switch and port;
the ASAP is numeric, similar to an IP port number, and indicates the connection over

which a specific application will accept connections.

[ ! I I ] I I I I I I I I I I
AFI| ICD HO-DSP ESI SEL}
] ] | | | | ] | I ] I ] ] ] I

AFI
HO-DSP
SEL

Authority and Format Identifier ICD = International Code Designator
High-Order Domain Specific Pat ESI = End System Identifier (MAC address)
Selector

Hnn

Figure 3-5: ICD ATM addressing scheme

Native ATM supports a form of multicasting as well. On AFIT’s switch, up to
4096 multicast groups per switching fabric can be established (depending on the
memory model selected), with up to four fabrics installed, for a total of 16,384 multicast
groups. This is a bit misleading, though, in that ATM multicast groups are not many-
to-many, but are one-to-many, with sender-initiated joins. This is required because
ATM is inherently a connection-oriented (point-to-point) system. To support the
broadcast paradigm of DIS, each simulation host could open a multicast connection
with every other host in the exercise, which would require N-1 inbound connections at
each host for an exercise with N hosts. A better option is to use one or more
rebroadcast hosts, which will serve as the root of a multicast tree and will rebroadcast all
PDUs to all hosts participating in the exercise, as shown in Figure 3-6. In this manner,
each host requires only one outbound connection and one inbound connection for-
each rcbro.adcast host. While this scheme may seem inefficient, since each PDU must be
transmitted twice, the actual cell replication is handled in hardware by the switch,
resulting in negligible additional latency when compared with IP-over-ATM or other

broadcast methods.
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Rebroadcast Host

(A) Host sends an ATM PDU
to the rebroadcast host

ATM Switch (B) Rebroadcast host resends
PDU to a multicast group

(A)

(C) ATM switch replicates cells as necessary,
sends PDU to all hosts in multicast group

Figure 3-6: Multicast rebroadcasting using an agent.

In the end, I decided to use native ATM as my transport protocol. While some
form of rebroadcast agent is necessary to emulate higher-level broadcast abilities, my
primary goal is to reduce the CPU overhead on each simulation host as much as
possible. By removing the IP or LANE encapsulation overhead, I feel that the best

utilization of resources is realized.

3.2 Dynamic Partitioning

Early in the thesis formulation I considered several static partitioning schemes. I
examined the fixed geographic grid of RITN and NPSNET, and the adaptive scheme
implemented with JPSD. While all three methods reduce irrelevant traffic delivered to a
host, they all require a large investment in pre-exercise setup and coordination. What

has not been implemented is a dynamic, run-time-adaptive partitioning, wherein

intelligent simulation management agents (“managers”) monitoring the exercise would
determine the ideal partitioning of the network traffic based upon the state of the

exercise at any given time. With our decision to use native ATM as the network
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protocol, it becomes clear that the rebroadcast agents can also serve as these managers,
with each handling a portion of the network traffic based on adaptive segmentation
criteria. Further consideration of this problem led us to adopt a “supermanager”,
which is running at a predetermined location on the network. The supermanager
maintains state information on the current partitioning scheme as well as address
information for each of the rebroadcast managers. In this manner, a simulation can
join the exercise at any time with no a priori information needed beyond the address of
this supermanager. The supermanager determines which rebroadcast agents are
responsible for the joining simulation’s entities and communicates the necessary
address information to the joining simulation, which then directs all future PDUs from
those entities to the specified rebroadcast agent. An additional agent is necessary on the
simulation host to track entity-address mappings, and to change those mappings as an

entity moves around the virtual battlespace.

To reduce the computational overhead on the individual components, to avoid
unnecessary network traffic, and to provide a clear demarcation of simulation
management responsibilities, all components are as self-contained as possible. The
rebroadcast agents themselves determine when their partition should be divided, based
on such factors as their CPU load, network interface load, or entity count. When a
partition divide is indicated, the agent communicates this to the supermanager.
Included in this information are “hints”, if possible, indicating how the partition
should be split; for example, if the partition criteria is geographic, then the agent could
include information about where the highest concentration of entities is, thus aiding the

supermanager in determining an optimal split.

3.3 Component Hierarchy

Having each component be self-contained implies that an actual hierarchy of
these agents is necessary, with each component having specialized knowledge about the
virtual world. The superagent becomes the Battlespace Manager (BSM), responsible for

overall battlespace partitioning and tracking of address information for the rebroadcast
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agents. The rebroadcast agents become Partition Managers (PMs), rebroadcasting

PDUs to interested simulations. Finally, the simulation agent becomes the Daemon

Manager (DM), which tracks the address each entity sends to. These three components

interact as shown in Figure 3-7.

BSM

— DM

Duplex (PM <-> BSM, DM <-> BSM)
- — - Simplex (DM -> PM)
........... Multicast (PM -> DM)

Figure 3-7: Component interaction

3.3.1 Daemon Manager (DM)
The DM is responsible for addressing and transmitting PDUs received from the

simulation. The conceptual view of the DM depicting network interaction is shown in

Figure 3-8.
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| Simulation
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Daemon Manager PDUs
CTRL) PDUs
CTRL

atm_send atm_recv

DATA|

DATA|
ATM Adaptation Layer
Network

Figure 3-8: DaemonManager conceptual view

Each simulation will have its own DM. The DM maintains an entity lookup table,
which contains information indicating which PM is managing each entity that is being
controlled by the simulation. If no address information exists for a specific entity, all

PDUs from that entity are sent to the BSM.

The DM generates an Interest Expression (IE) for each entity it maintains address
information on. The DM transmits this IE to the PM for that entity three times during

an exercise:

1) When the entity is first assigned to a PM;
2) When the IE for that entity changes (due to sensor degradation,
environment, or damage);

3) When the PM controlling the entity changes.

3.3.2 Partition Manager (PM)

The PM acts as the root of a multicast tree, rebroadcasting all PDUs that it
receives. When a PM is notified (by the BSM) that a DM wishes to join the multicast
tree, it opens a branch connection on its multicast tree for that DM. When a PM is

notified that a DM is no longer interested in receiving its PDUs (for example, when an
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entity is destroyed, or when the entity moves beyond sensor range of the partition), it

prunes that specific branch only. The PM conceptual view is shown in Figure 3-9.

Criteria Sets I Multicast Membership Information

Partition Manager

CTRL PDUs
CTRL PDUs

atm_send atm_recv

< food

ATM Adaptation Layer
Network

Figure 3-9: PM conceptual view

Each PM is assigned a criteria set by the BSM. This criteria set determines the
parameters for which that PM has responsibility; for example, a PM might be
responsible for all entities within a certain geographic region. All PDUs received by the
PM are tested against this criteria. If an entity no longer meets this criteria, the PM

forwards the PDU to the BSM in addition to sending the PDU to its multicast group.

When a PM receives an IE from a DM, it calculates any modifications to the IE
(for example, expanding the range of a geographic IE to encompass the entire range of

the PM) and sends the (possibly) modified IE to the BSM.

If the number of entities a PM services exceeds a given threshold (either in terms
of total count, total network traffic, or other predefined discriminator) the PM requests
to be split by the BSM. If possible, information suggesting an optimal partition division

is included in the request to the BSM.
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3.3.3 Battlespace Manager (BSM)

The BSM creates the initial PM for an exercise, and creates new PMs as necessary
to divide an existing partition. The BSM calculates each PM’s criteria set and passes

this to the PM as necessary. Figure 3-10 shows the BSM conceptual view.

PM Criteria Sets | PM Address Information
Battlespace Manager
CTRI PDUs
CTRL PDUs
atm_send atm_recv
DATA|
DATA
ATM Adaptation Layer
Network

Figure 3-10: BSM conceptual view

When the BSM receives an entity state PDU (from either a DM or a PM) it
determines which PM has responsibility for this entity and notifies the DM controlling

that entity of the new address information.

Upon receiving an entity’s IE from a PM the BSM determines which PMs have
information in which the entity is interested and notifies those PMs to add the receiving
address of the entity’s DM to their multicast trees. All other PMs are notified to remove

the entity from their multicast tree if they were sending to it previously.

3.4 ATM-Specific Issues

With the choice to use native ATM, two other issues present themselves: Quality
of Service (QoS) to request, and the Maximum Transmission Unit (MTU) to allocate for

each connection.
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3.4.1 Quality of Service (QoS)

QoS requests are specific to ATM, and indicate the expected bandwidth
requirements for each ATM connection. When opening an ATM connection using the
AALS5 API, these requirements are specified in terms of peak, mean, and mean burst, as
shown in Table 3-5. Each parameter is further refined into a “target” and
“minimum” value. When the connection request is received by the switch, it attempts
to allocate resources (such as cell buffers) to meet the target bandwidth request. If
insufficient resources are unavailable to provide the target bandwidth, the minimum
request is considered. If the system is unable to provide even the minimum requested
bandwidth, the connection request is refused. A user can request zero bandwidth,
indicating that the connection will carry low-priority, loss-tolerant traffic; such
connection requests are never refused, but are accepted with the understanding that all

data carried on that connection is subject to loss during periods of network congestion.

Table 3-5: Bandwidth reservation parameters for an ATM connection request.

Parameter Meaning

Peak Bandwidth i Maximum burst rate at which a source produces data (kilobits/second)

Mean Bandwidth § Average bandwidth expected over the lifetime of the connection (kilobits/second)

Mean Burst Average size of packets sent during periods of peak bandwidth utilization
(kilobits)

While requesting zero bandwidth would guarantee a conneétion, I feel that some
bandwidth reservation should be made based on the expected PDU generation rates.
Since the ESPDU accounts for up to 98% of the traffic in a DIS exercise [21], I used
144 bytes (1152 bits) as the average packet size. To determine the rate of generation, I
used the results of research performed at the Naval Postgraduate School, which
postulates a maximum of 1000 entities per simulation host [15, 30]; therefore, I chose
500 entities to be a high-end average count per host. ESPDUs are required to be sent

ever 5 seconds at a minimum, so this results in at least 500 ESPDUs every 5 seconds, or
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an average of 100 ESPDUs/second. This gives a mean bandwidth value of 112.5

kilobits/second, with a mean burst value of 1.125 kilobits/second:

100 ESPDUs o 1152 bits y lkilobit 1125 kilobits
second 1ESPDU 1024 bits " second

Mean Bandwidth =

1152 bits y 1kilobit _ 195 kilobits
1ESPDU ~ 1024bits  second

Mean Burst =

Peak Bandwidth is set at zero. If a simulation desires to send more data than the

bandwidth reserved for it, it is accepted on a resource-available basis.

3.4.2 Maximum Transmission Unit (MTU)

The Maximum Transmission Unit (MTU) defines how large the block of
information to be sent can be when received at the AAL layer. Data that is larger than
this requires segmenting at a higher layer. The Fore Systems interfaces used in this
thesis have adjustable MTUs, up to the maximum AAL MTU of 65,535 bytes, but the
default is the Classical IP configuration of 9,180 bytes [11]. While it may prove

beneficial to adjust this size for DIS PDUs, for this research I chose not to.

3.5 Conclusion

In this chapter I have described the development of a dynamically-partitioned,
native-ATM based DIS exercise system. This system uses a hierarchy of simulation
managers to handle the battlespace partitioning as well as the requisite translations
between ATM’s point-to-point model and the broadcast paradigm currently expected
by DIS simulators. In the next chapter, I discuss implementation details concerning this

hierarchy, and describe some of the problems encountered during implementation.
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4. Design

4.1 Overview

All components are implemented in C on Silicon Graphics Workstations. My original
goal was to use C++, but incompatibilities in the API libraries provided by Fore Systems
required me to use C. I reused code to the maximum extent possible by using a shared
library (1ibDIS_ATM). While in some instances this may have resulted in code that was less
optimized, I feel that the high degree of modularity allows for easier maintenance and
extensions. In the sections to follow I will first discuss features that are common to all

components, and then I will discuss each component in detail.

In regard to this thesis, when I refer to a “program” I mean one of the three
components (Battlespace Manager, Daemon Manager, or Partition Manager). A “process” is
an individual UNIX process running under the umbrella of a program; for example, the

Battlespace Manager starts three processes at runtime.

Function prototypes are provided for reference in Appendix A, and Appendix B

contains the structure of the 10 new PDU types I created to support this structure.

4.2 Common Features

4.2.1 Shared Memory Arenas

Each program consists of three or more processes running in parallel, called a process
group. This is necessary to avoid any one section of the program from blocking out the rest;
for example, if a large number of PDUs are being read from the network, there would be no
servicing of PDUs waiting to be sent. However, each process needs to be able to access
common memory structures, and updates made to these structures by one process must be

visible to the others.

To implement this “shared-construct” scheme, I chose to use a shared memory arena,

which is initialized at startup. Arenas are defined as “a specially allocated area of shared




memory that resembles a memory-mapped file” [23]. Each arena is mapped to the same
location in the local address space of each process that shares the arena, and data structures
allocated out of this arena are visible to all processes that have joined the arena. Arena
information is stored in a file on disk, allowing processes that are created later to be able to
map previously-created data structures into their address space (and thus have local visibility

into them).

To create a shared-memory arena, each program calls the system command
usinit (“filename" ), where filename is the full path to a local file. The first process to call
usinit () will create the file, returning a pointer; subsequent processes calling usinit ()
will join the arena and map the arena into its local address space. The operating system keeps
track of which processes are active within an arena, and will close the arena file after all

processes have terminated.

Each process allocates data structures out of a shared-memory arena via calls to either
usmalloc () or uscalloc(), adjusted via usrealloc() or usrecalloc(), and

removed using usfree ().

Memory collision is prevented by the use of locks for all critical areas. When a process
wishes to enter a critical area, it attempts to set the lock for that area by calling
ussetlock (). If the lock is already set by another member of the process group, the
process blocks until the lock is free; otherwise, the lock is set and the process continues.
When out of the critical area the process calls usunsetlock () to free the lock. Multiple
processes attempting to set a lock queue in FIFO order [23]. Data structures and locks within

an arena are initialized in the InitMemory () library call (Appendix A).

4.2.1.1 Shared Data Structures

There are three data structures that are common to all programs: buffers,
ATMinfo, and £dlist. I describe the composition of each and their purpose in this

section.
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4.2.1.1.1 The buffers Data Structure

The buf fers data structure contains data buffers, semaphores, and control registers

used when sending or receiving PDUs. The elements of buffers are shown in Table 4-1.

Table 4-1: buffers data structure.

Element Type Use

mode int Indicates which program (BSM, DM, or PM) initialized this data
structure.

pids int[3] The process IDs of the three main processes (main, SendDaemon,
ListenDaemon).

num_bufs int How many data buffers are contained in this structure.

ctrl_semid i int The semaphores used with the main process and the SendDaemon.

control int * A pointer to an array of two integers which serve as control registers
for passing messages between the processes; one is allocated for the
main process, and one for the SendDaemon.

data data_t * A pointer to a block of num_bufs records, each of which is a structure
itself (see below).

lock ulock_t[2] { The process locks. Two locks are defined: one is set when modifying
the data buffers, the other when modifying the control registers.

The control registers are bit-masked flags that contain a code indicating the operation
to be performed (for example, send a specified buffer), the buffer number, and the fdlist
index. The processes communicate control information about a specific buffer using these

registers.

The variable num_bufs indicates how many send/receive data buffers are to be

allocated. The structure of each send/receive data buffer is shown in Table 4-2.

Table 4-2: Send/receive buffer data structure.

Element Type Use

size int The number of bytes received, or the number of bytes to send.
status int Control flag indicating whether a buffer is in use or free
data charfMAX_PDU] The data buffer. MAX_PDU is defined at 512 bytes.
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4.2.1.1.2 The ATMinfo Data Structure

ATMinfo contains the ATM NSAP address of the current host and the interface being

used by the program. Its composition is shown in Table 4-3.

Table 4-3: ATMinfo data structure.

Element Type Use

interface char * A string pointer to the interface being used (i.e. “/dev/fa0”)
address Atm_address The 8-byte ATM NSAP.

4.2.1.1.3 The £d1list Data Structure

The £dlist structure maintains information on all open file descriptors (fds). For the
Daemon Manager and the Partition Manager, the £dlist tracks the number of entities that
are addressed to a particular fd. The Partition Manager also uses the £dlist to track the

entities that are using that fd. Table 4-4 lists the elements of £dlist.

Table 4-4: fdlist data structure.

Element Type Use
fd int The file descriptor returned by the system.
using int The number of entities either transmitting on this fd (DM) or
receiving on this fd (PM). This field is unused by the BSM.
eids eid_t * A pointer to an array of entity IDs. Used by the PM only.
ATM Atm_endpoint The ATM address (NSAP and ASAP) to which this fd is
connected.

4.2.2 Process Flow

Each program utilizes the same basic process flow, as shown in Figure 4-1; a discussion

of each process in this flow follows.
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Figure 4-1: Common process flow.

4.2.2.1 Parse Command-line Options

Each program recognizes three command-line options:

-C

Specifies a configuration file different than the system default

(BSM .configure, DM.configure, or PM.configure, depending on the
program).

Display a usage message and exit.

Terminate a running program. This is necessary since in most cases the
processes will be run in the background, and in some cases will spawn
off multiple subprocesses during their existence. Terminating the main
program (via a Control-C if it is running in the foreground, or by
sending the process a SIGKILL signal) will not necessarily terminate all
running subprocesses, and will not clean up the semaphores. This option

provides a graceful way to clean up and terminate all processes.

Additional command-line options are ignored, except with PMs, which require

additional information to be specified on the command line. These options are covered in

the PM-specific section below.
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4.2.2.2 Set Signal Vectors

The UNIX operating system allows processes and users to interact via the software
signal system (for example, by executing the kill command on the command line, or the
kill () function within a program). A process responds to a signal based upon the signal
vector associated with that signal. By changing the value of that signal vector, the action
associated with that signal can be changed. Table 4-5 lists the signals that are intercepted,
along with the default actions associated with them. In each case, the vector is set to execute
the ShutDown () function, which will ensure all processes are terminated and all memory

structures and semaphores are removed.

Table 4-5: Signals vectors changed.

Signal Name Signal Number Default Signal Action Signal Event
SIGHUP 1 Exit Hangup
SIGINT 2 Exit Interrupt
SIGTERM 15 Exit Terminated

4.2.2.3 Parse Configuration File

Most program options are contained in a configuration file, which each program
attempts to parse at run-time. The configuration file is optional for the PM; if no file is
specified, or the program cannot open the file, the program gives a warning and continues.
Both the BSM and the DM require a configuration file. The default configuration files are
BSM.configure for the Battlespace Manager, DM.configure for the Daemon
Manager, and PM.configure for the Partition Manager, and are expected to be in the
same directory as the program executable (unless an alternate configuration file is specified

on the command line, in which case a full path is required).

The configuration file entries common to all programs are listed in Table 4-6, along
with the default parameters for those entries. If a specific entry is not contained in the

configuration file, the default value is used.
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Table 4-6: Common configuration file entries.

Option Action Default Value
BSM_SAP Assign the ASAP to connect with on the host running the 5001
BSM.
BUFFERS Specify the number of memory buffers to allocate for sending § 50 (BSM) or 100
and receiving PDUs (DM/PM)
INTERFACE  Specify the interface to use for sending and receiving PDUs /dev/fa0

Each program also has configuration options unique to it, which are listed in program-

specific sections below.

4.2.2.4 Initialize Shared Memory and Semaphores

The InitMemory () function handles the memory allocation and initialization for
the buffers data structure and returns a pointer. The first process calling
InitMemory () passes a CREATE flag, which initializes the arena file for the process
group and allocates memory for buf fers. After the data structure has been allocated and
initialized, the usputinfo () function stores the address of buffers into the arena file.
Subsequent processes pass the JOIN flag to InitMemory (), which registers the new
process as a member of the arena and returns the pointer to the previously-allocated
buffers via acall tousgetinfo (). In this manner, programs can dynamically join and

leave the arena without having a predetermined memory location for buffers.

4.2.2.5 Start SendDaemon

The SendDaemon runs as a separate process via the sproc () command, so that it may
run asynchronously as necessary to transmit PDUs. At startup, the SendDaemon enters an
infinite loop, blocking on the send semaphore until another processes signals it by setting the

semaphore to unblock the SendDaemon.

The SendDaemon determines which buffer to send, and where to send it to, by

examining the bit fields in its control register. Data is sent by calling atm_send() .
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Once the data has been sent, the send semaphore is reset and the SendDaemon will block
again unless another process is waiting to send. Figure 4-2 shows the SendDaemon’s process

flow. The SendDaemon will run until it is terminated by the Shutdown () procedure.

[«

Figure 4-2: SendDaemon process flow.

4.2.2.6 Start ListenDaemon

The ListenDaemon also runs as a separate process via the sproc () command, so that
it may run asynchronously to handle incoming connection requests. The ListenDaemon
assigns each connection request a new fd (via a call to GetFD()) and starts a
ReceiveDaemon to service that connection. The ListenDaemon then returns to listening for

incoming connection requests.

ATM requires applications to agree that connections will be simplex (one-way), duplex
(two-way), or multicast. Since each of the three programs expects to receive a different type
of connection request (see Figure 4-3), ListenDaemon examines the mode field of buffers
to determine what sort of connection request to expect. Figure 4-3 shows the ListenDaemon

process flow.




The ListenDaemon runs until it is terminated by the Shutdown () procedure.

ListenDaemon terminates all ReceiveDaemons prior to terminating.

DM_MODE

PM_MODE

BSM_MODE

Figure 4-3: ListenDaemon process flow.

4.2.2.6.1 ReceiveDaemons

Since ATM is a connection-oriented protocol, a separate fd is required for each
incoming connection. A separate ReceiveDaemon is started for each connection. The ATM
API passes PDUs to the ReceiveDaemon when all cells have been received from the network

by the ATM adaptation layer.

A special situation occurs when a PM closes a branch of its multicast tree. The PM
cannot close a branch remotely, so instead it sends an MCAST_CLOSE message to the branch
(see section 4.4 below). When the ReceiveDaemon receives an MCAST_CLOSE message, it
closes the fd it is listening on and terminates. Otherwise, it stores the data it has received in a
send/receive buffer and marks it for the appropriate recipient (BSM/DM/PM or the
simulation). In the case of control messages, the semaphore for the BSM/DM/PM process is

set to cause that process to unblock. Figure 4-4 illustrates the ReceiveDaemon process flow.
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ReceiveDaemons run until terminated by an MCAST_CLOSE message, until the remote

end of the connection is closed, or until terminated by ListenDaemon.

Figure 4-4: ReceiveDaemon process flow.

4.2.2.7 Process

Once all external processes are running, each program enters its main processing loop.

These process loops are described in the sections to follow.

4.3 Battlespace Manager

4.3.1 Overview

The Battlespace Manager (BM) maintains information about the state of the simulation
partition scheme at any given time. When a partition is to be divided, the BSM determines the
new criteria for each partition, initializes and starts the new PM (on a remote machine if

indicated), and updates the criteria structures on the respective PMs.

4.3.2 Configuration File

Additional configuration file entries for the BSM are listed in Table 4-7; all are

required.
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Table 4-7: BSM configuration file entries.

Option

Action

CRITERIA_TYPE

The type of criteria being used: Currently, geographic and entity_type are
allowed, and geographic is implemented.

PM_COMMAND

The command string to start a PM on a remote machine; it should be a complete
pathname.

PM_HOSTFILE

A file containing the list of hosts to run PMs on.

4.3.3 Process

The process flow specific to the BSM is shown in Figure 4-5.

Figure 4-5: Battlespace Manager process flow.
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The BSM enters its main processing loop by reading the PM_HOSTFILE and storing
the file entries into a PMhosts array. Each entry into this array is the name of a host where

one or more PMs may be run, as well as a priority associated with this host.

Next, the default PM is started on the host with the highest priority in the PMhosts
array. The criteria set for this PM is initialized to the default for the type of partitioning
being used; for geographic partitioning, the initial partition consists of all possible XYZ

coordinates. All PMs are started via the rexec () command.

Information concerning the default PM (and any other PMs started during the course
of the exercise) is stored in a dynamically-allocated array PMarray. For each active PM this
array stores its criteria set, its ATM address information (NSAP/ASAP), and its PMid. PMids

are sequential and assigned by the BSM when the PM is started.

The BSM then blocks on a semaphore, waiting for PDUs to be received from the

network.

4.3.4 BSM Handling of ESPDUs
ESPDUs are sent to the BSM in two circumstances:

1) By a DM, when the entity first enters an exercise (sends its first ESPDU);

2) By a PM, when the entity has transitioned beyond the scope of
responsibility of that PM (for example, when an entity has moved beyond
the geographic boundaries of that PM).

In either case, the BSM examines the PDU, and based on the criteria scheme being used,
determines which PM now has responsibility for that entity by comparing the relevant fields
in the ESPDU to the criteria set of each PM. Since the criteria sets of each PM are disjoint,
only one PM will match. The BSM encodes the address information for the new in an
ADDRESS_ASSIGN PDU and sends the PDU to the DM responsible for that entity, either
directly if the ESPDU came from the DM, or indirectly (via a PM) if the ESPDU was

forwarded from a PM.
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4.3.5 BSM Handling of Control PDUs

The BSM recognizes three types of control PDUs: PM_REGISTER, PM_IE, and

PM_SPLIT.

The PM_REGISTER PDU is sent by a PM that has just started and is ready to receive its
criteria set. Included in the PM_REGISTER PDU is the address information for that PM
(both NSAP and ASAP) and the PMid. The BSM extracts the address information from the
PDU and stores it in the PMarray for that PMid. The BSM generates a

CRITERIA_ASSIGN PDU containing that PM’s criteria set and sends this back to the PM.

The PM_IE PDU is sent by a PM and contains an entity’s interest expression (IE)—
what information that entity desires to receive—expanded if necessary by the PM (see the PM
section below). The BSM extracts the information concerning the entity from the PDU
(entity ID and ATM address information), then compares the IE to the criteria sets for each
PM. If a PM has data in which the entity is interested, then the BSM sends an MCAST_ADD
PDU to that PM containing the address information for the entity; if the entity is not
interested in that PM’s data, the BSM sends an MCAST_DELETE PDU to that PM. It is
important that one or the other is sent to each PM, since a PM may have been sending to that
entity previously; if the entity’s IE has changed such that it is no longer interested in that

PM’s information, the PM must initiate the closing of the connection.

A PM_SPLIT PDU indicates that a PM has reached its threshold for servicing PDUs and
that its criteria should be divided, with a new PM taking part of the load. If possible, the PM
will provide information to assist the BSM in determining an optimal split. For geographic
partitioning, the PM provides the XYZ coordinates of the average entity location, and the
BSM uses this to determine the boundaries of the two new partitions. The BSM starts a new
PM on the host in the PMhosts array with the highest priority, and gives each PM its revised

criteria set via a CRITERIA_ASSIGN PDU.
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4.3.6 BSM Handling of Other PDUs

Some PDUs sent by an entity do not fit into any PM’s scope of responsibility. For
example, in a geographic partitioning scheme, those PDUs which do not have a geographic
location (such as fire PDUs) cannot be assigned to any PM. To handle this, each DM
forwards all PDUs of this type to the BSM, which sends it to all active PMs for rebroadcast.
While this may seem inefficient and even contrary to the partitioning goals, evidence has
shown that these PDUs account for less than 5% of the overall network traffic during an
exercise. In my opinion, the network overhead and latency incurred is less than the
processing that would be required to determine which partition these PDUs should be sent to

(if an assignment is even possible).

4.4 Daemon Manager

4.4.1 Overview

The Daemon Manager (DM) acts as an interface between the simulation and the rest of
the network. It maintains partition membership information for each active entity within its

simulation and addresses PDUs from those entities to the appropriate PM.

4.4.2 Configuration File

The DM has one additional configuration file entry, which is required:

Table 4-8: DM configuration file entry.

Option Action

BSM_HOST The name of the host where the BSM is running.

4.4.3 Process

The process flow specific to the DM is shown in Figure 4-6.
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Figure 4-6: DM process flow.

As with the BSM, the DM operates within a loop, blocking on a semaphore until

unblocked to handle a PDU.

4.4.4 DM Handling of ESPDUs

The DM is responsible for directing outbound ESPDUs from the simulation to the
appropriate PM, or the BSM if no PM has yet been assigned for that entity. This relieves the
simulation of knowledge concerning the underlying network architecture. The DM maintains
a lookup table for the entity ID to PM address mapping. When an ESPDU is received from
the simulation, the DM checks this lookup table to see if this entity has been assigned to a
PM; if so, the SendDaemon is notified of the destination address to send the ESPDU to. If the
entity has no entry in the lookup table, or has not been assigned to a PM, the ESPDU is

directed to the BSM and the entity is added to the lookup table if necessary.

Handling of inbound ESPDUs (and other PDU types as well, except for the control
PDUs) is the responsibility of the simulation. The DM is not unblocked for non-control

PDUs received from the network.
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4.4.5 DM Handling of Control PDUs

The DM recognizes one type of control PDU, the ADDRESS_ASSIGN. The
ADDRESS_ASSIGN PDU is sent by the BSM to indicate which PM is responsible for a given
entity based on the criteria being used. Each DM examines the PDU to determine if it is
meant for one of the DM’s entities (by comparing the site and app fields in the PDU to the
DM'’s site and app). If the fields match, the DM extracts the address information from the
PDU and opens a connection to that address (if one does not already exist), and will
increment the count of entities using that connection, and will update the entity’s address
information in the lookup table to reflect the new address. All further ESPDUs from that
entity are directed to the indicated PM. If the entity was previously sending to a different PM,
the DM decrements the number of entities using the previous connection, and closes the

connection if no other entities are using it.

After updating its lookup table, the DM generates a DM_IE for this entity. This PDU
contains the interest expression for the entity whose address assignment was updated, and is
sent to the new PM. In this implementation, an entity’s interest expression consists of a radius
around the entity from which all PDUs should be received, and represents the range of the

entity’s most sensitive sensors (electronic, infrared, or visual).

4.4.6 DM Handling of Other PDUs

The DM reverts to a broadcast mode when dealing with PDUs that do not lend

themselves to PM assignment. All such PDUs are directed to the BSM.

4.5 Partition Manager

4.5.1 Overview

The Partition Manager (PM) acts as a rebroadcast agent for its partition, sending PDUs
to those simulations which have expressed an interest in the PM’s criteria set. It maintains
information on which entities are interested in its information, and opens and closes

connections as directed by the BSM.
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4.5.2 Command-line Options

Under normal circumstances, a PM will not be started in a standalone mode; usually the
BSM starts PMs as they are needed to handle partition divisions. When starting a PM, the
BSM passes two additional parameters with the PM_COMMAND: The identification number

of the new PM (PMid), and the name of the host running the BSM (BSM_host).

It is possible to start a PM manually, but the two parameters listed above must be

specified, or the PM will exit with a warning.

4.5.3 Configuration File

The PM has one additional configuration file entry, which is required:

Table 4-9: PM configuration file entry.

Option Action

SPLIT_COUNT The number of entities being serviced at which a split will be initiated.

4.5.4 Process

The process flow specific to the PM is shown in Figure 4-7.
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Figure 4-7: PM process flow.

The PM enters its main processing loop by registering with the BSM via a
PM_REGISTER PDU, which contains the PMid and address information to be used for DM

connections.

The PM then blocks on a semaphore, waiting for PDUs to be received from the

network.

4.5.5 PM Handling of ESPDUs

All ESPDUs received by a PM are immediately sent to the PM’s multicast group. In
addition, the ESPDU is compared against the PM’s criteria set to determine if the entity has
transitioned beyond the scope of the PM’s responsibility. If so, the ESPDU is also sent to the

BSM to be assigned to a new PM.
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4.5.6 PM Handling of Control PDUs

The PM recognizes six types of control PDUs: ADDRESS_ASSIGN,
CRITERIA_ASSIGN, DM_IE, MCAST_ADD, MCAST_DELETE, and PM_DELETE. The
ADDRESS_ASSIGN PDU is generated by the BSM and indicates which PM an entity’s PDUs
should be directed to, as discussed in the BSM section above. Since the BSM keeps no
information about the DMs in an exercise, it sends all ADDRESS_ASSIGN PDUs back to the
sender—in this case, the PM. The PM in turn sends the ADDRESS_ASSIGN PDU to its

multicast group.

CRITERIA_ASSIGN PDUs are sent by the BSM to give a PM its initial criteria set, or to
update a PM after a partition division. The criteria set contained in the CRITERIA_ASSIGN

PDU will replace the PM’s existing criteria set.

DM_IE PDUs contain the interest expression of an entity that is in the PM’s scope of
responsibility. In the case of geographic partitioning, the DM_IE contains a radius value;
since interest expressions are sent only when an entity joins a partition, it is necessary to
expand this radius value to encompass the entire geographic range of the partition. In this
manner, the entity can move anywhere within the bounds of the partition and still be assured
of receiving PDUs from all entities within its range of interest. The PM expands the entity’s
interest range as shown in Figure 4-8, then generates a PM_IE PDU containing the expanded

IE and sends that to the BSM.
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(a) (b) (c)

Figure 4-8: PM geographic IE expansion. (a) The entity’s IE is expressed as a radius centered on the entity. (b)
The PM expands this radius to encompass the entire geographic range of the partition, and (c) sends this range to
the BSM. The BSM sends an MCAST_ADD to all PMs whose partition is in the expanded area, and an
MCAST_CLOSE to all others.

MCAST_ADD and MCAST_DELETE PDUs are generated by the BSM, and indicate
that an entity has interest in a PM’s scope of responsibility (or does not, in the case of
MCAST DELETE). With MCAST_ADD, the PM opens a connection to the indicated
address (if it is not already sending to that address) and adds the entity ID to the list of those
entities using that connection (if it is not already on the list). For MCAST_DELETE, the PM
determines if it is sending to the indicated address, and if so, if the entity is on the list of those
using that connection. If the connection exists and the entity is on the list, the entity is
removed from the list. If no other entities at that address are using the connection, the PM
generates an MCAST_CLOSE message containing the address and sends it to the multicast
group, where the ReceiveDaemon at that address will intercept it and close the branch

connection.

The PM_DELETE message is sent by the BSM at exercise end. When a PM receives a
PM_DELETE message it will exit its processing loop and execute the Shutdown ()

procedure to terminate all processes.
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4.5.7 PM Handling of Other PDUs

As with the BSM and DM, no special handling is done with other PDUs received; they

are sent to the multicast group unmodified upon receipt.

4.6 Program Communication

In order to implement the partitioning scheme discussed here, a specialized
communication structure is required. Ten new PDU types are used. Appendix B has detailed

descriptions of each PDU.

4.7 Exercise Overview

In this section I illustrate some of the communication processes that take place to
register an entity and its interest expression, split an existing partition, and transition an entity

to a new PM.

Figure 4-9 illustrates the communication that takes place when an entity first enters an

exercise.

(a) The DM managing that entity sends its initial ESPDU to the BSM. The
DM will also send any further ESPDUs from that entity to the BSM until
the entity is assigned to a PM. This may result in multiple ESPDUs from
the entity are received at the BSM (with an address lookup for each
ESPDU), but it ensures that address information will not get lost due to
packet discards within the network.

(b) The BSM determines the controlling PM by comparing the entity’s
attributes to the criteria sets for each active PM. The BSM then sends the
ESPDU to the controlling PM for rebroadcast, and notifies the DM of the
PM’s address.

(c) The DM opens a connection to the PM (if a connection does not already
exist for another entity) and sends all future ESPDUs from that entity to

the PM.
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Figure 4-9: Entity Registration

Figure 4-10 shows the communication flow that occurs when a DM registers an entity’s

interest expression.

(a) The DM send a DM_IE expression for the entity to the PM. This DM_IE
is specific to the criteria type in use; for example, in a geographic
partitioning scheme this interest expression is a radius centered on the
entity.

(b) The PM changes the interest expression (if necessary) and forwards it to
the BSM. The BSM tests the entity’s interest expression against the
criteria set of each active PM.

(c) If the entity is interested in receiving PDUs from a PM, the BSM sends
that PM an MCAST_ADD PDU for the entity. The PM opens an Mcast
connection to the entity’s DM (if a connection does not already exist).

(d) The BSM sends an MCAST_DELETE PDU to those PMs that do not meet
the entity’s interest expression. If the PM is sending to that entity’s DM,

the entity ID is removed from the “using” list.
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(e) If The PM is sending to that entity’s DM and no other entities managed
by that DM have expressed an interest in the PM’s PDUs, the PM sends an
MCAST_CLOSE message to the DM to close the connection to that PM.

DM_IE

(a) (b) (©)

BSM PM BSM

*MCAST_DELETED>,

Mecast Connection MCAST_CLOSE

(d) (e)

Figure 4-10: Interest Expression and MCAST_ADD Process.

Figure 4-11 shows the communication flow that occurs when an entity is transitioned to

another PM.

(a) The PM examines each ESPDU to determine if that entity still meets the
PM’s criteria. If an entity does not meet the criteria, the PM flags the

entity in its fd1ist using field and sends a copy of the ESPDU to the
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BSM. If more PDUs from that entity are received by the PM they will not
be forwarded to the BSM. The PM also sends the ESPDU to its Mcast
group, regardless of whether it meets the criteria or not.

(b) The BSM determines which PM the entity should now be sending to as
shown in Figure 4-9, except that the ADDRESS_ASSIGN PDU is sent
back to the PM that forwarded the ESPDU. The PM in turn forwards the
ADDRESS_ASSIGN PDU to its Mcast group.

(c) The DM managing the entity receives the ADDRESS_ASSIGN PDU; all
other DMs ignore it. The DM removes the entity from the list of entities
sending to the previous PM, and closes the previous PM’s connection if
no other entities are using it. The DM then changes the entity’s address
to the newly-assigned PM and opens a connection to the PM (if one does
not already exist). Finally, a DM_IE PDU is sent to the new PM to
register that entity’s interests, which then proceeds as shown in Figure 4-

10.
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Figure 4-11: Entity Transition.

Figure 4-12 shows the communication flow that occurs when PM has exceeded its

threshold to be split.

(a) The PM sends a PM_SPLIT PDU to the BSM, to include information
concerning how the partition should be split. For geographic criteria, the
PM sends the XYZ coordinates of the highest entity activity.

(b) The BSM splits the partition of the old PM, initializes a new PM, then
gives each PM its new criteria set via a CRITERIA_ASSIGN PDU.
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Figure 4-12: PM Split.

4.8 Conclusion

This chapter presents the design details for the three programs I developed to
implement dynamic partitioning using ATM. The two main aspects of this design are the use
of native ATM as a transport protocol, and the adaptive partitioning that changes based on the

state of the exercise. The next chapter will discuss the results of my implementation.
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5. Results

5.1 Overview

Two goals were identified in Chapter One: An ATM-aware DIS exercise system
compatible with existing AFIT simulations, and a method of dynamic partitioning that
allowed adaptive relevance filtering. The ATM network installed at AFIT was originally
designed to have 9 systems; however, due to procurement delays, only six systems were
available for testing. This number was further reduced to four due to compatibility problems
between the Fore Systems libraries and installed hardware at AFIT. Hence, exhaustive testing

was not possible.

Nevertheless, the first goal has been achieved; the ATM exercise system was successfully
tested with AFIT’s DIS Manager and the Synthetic Battle Bridge (SBB). Comparisons with
the previous Ethernet communication method have shown that PDU transmissions over ATM
are much more reliable (no collisions) and immediate. Additionally, with Ethernet there was
the problem of receiving PDUs out of order, causing the DIS Manager to have to continually
compare PDU timestamps and discard the out-of-order PDU. While this was not a problem
with ESPDUs, other applications such the SBB’s shared viewpoint rely on a fairly constant
data stream, and rejected PDUs appear as “jumps” in the viewpoint. Because ATM is

connection-oriented, all PDUs transmitted are received in order.

For other testing, a minimal test setup was used consisting of two DM hosts, one BSM
host (also running a PM), and one host running a second PM. Three separate tests were run

and are described below:

1) Output from 84 entities (from AFIT’s Gaggle Generator) was simulated
on one DM host, with 7,952 simulation PDUs generated over
approximately 5 minutes. Partition splitting was not tested in this run.

2) Output from 25 entities (from ModSAF) was simulated on the two DM

hosts, with 16,143 simulation PDUs generated per system over 7 minutes.
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The PM’s SPLIT_COUNT variable was set to an arbitrary value of 40,
requiring the default PM to be split when the second simulation was
started.

3) Output from 70 entities (from AFIT’s Gaggle Generator) was simulated
on the two DM hosts, with 113,190 simulation PDUs generated per system
over approximately 5 minutes. SPLIT_COUNT was set at 80 to force an

almost immediate split when the second simulation began transmitting.

For all tests, geographic criteria was used, and each PM had a single criterion (a

geographic range) in its criteria set.

5.2 ATM Results

The vendor-supplied program atmstat was used to monitor all ATM statistics. For
transition and latency times, a timestamp from gettimeofday was included in the PDUs
when transmitted and then compared against the current system time when the PDU was
received back at the host. This timestamp includes seconds and microseconds from the
system clock, and was added to the value by the SendDaemon just before PDU transmission
and compared within the ReceiveDaemon immediately after the PDU was received from the

network.

The results from the three test runs are summarized in Table 5-1, and discussed in the
sections below. Regardless of the number of PDUs being transmitted or the rate of
transmittal, no cells were lost at either the AAL level (on the simulation host) or in the
switching fabric (at the ATM switch), indicating that network congestion was not a factor in

any of the times recorded.
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Table 5-1: ATM test results.

Program PDUs Sent Latency (ms) PM Start
Simulation Control PDUs ADDRESS  MCAST (sec)
Run 1 | BSM — 168 min 2.850 |min 19.311 |min 76.196
DM 7,952 84 avg 7.156 |avg 32.244 |avg 95.527 —_
PM —_ 84 max 9.618 max 57.167 |max 123.412
Run 2 |BSM — 72490 Jmin 2.702 min 19.194 |min 81.728
DM 16,143 36 avg 6.993 avg 47.215 |avg 124.520 11.03213
PM — 54418 [max 10.540 |max 121.042|max 142.821
Run 3 |BSM — 2044254 {min  3.035 min  20.003 |min 88.679
DM 113,190 102 avg 7.404 |avg 51.128 |avg 137.184 }§1.46220
PM — 154+50 Jmax 10.681 |max 125.693|max 166.104
5.2.1 Run 1

For the first run, my primary goal was to determine the latency between initial PDU
transmission and the completion of the address assignment and receipt of multicast PDUs, as
well as measuring the ratio of control PDUs to simulation PDUs. The entities in this
simulation were all aircraft, and were relatively static (straight and level) with little entity

interaction.

A total of 7,952 simulation PDUs and 84 control PDUs were sent by the DM; this is
consistent with expected results, since a DM_IE was generated for each entity. Similarly, the
PM sent 84 PM_IE PDUs, and the BSM generated 84 ADDRESS_ASSIGN PDUs, 84
MCAST_ADD PDUs, and 0 MCAST_CLOSE PDUs. Total PDU count for the exercise was
8,290, counting the PM_REGISTER and CRITERIA_ASSIGN PDUs at the start of the

exercise, for a total control PDU overhead of 4.07%.

The average time between an ESPDU being sent to the BSM and the receipt of an
ADDRESS_ASSIGN PDU for that entity was 32.244 milliseconds, with a maximum time of
57.167 milliseconds. The average time between a DM_IE PDU being received at the PM and
an MCAST_ADD being received for that entity was 97.527 milliseconds, with a maximum

time of 123.412 milliseconds.
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5.2.2 Run 2

The second test run was designed as a low-level simulation to demonstrate partition
splitting. The startup time for the new PM was measured, along with the transition times for
entities moving to the new PM. The entities represented in this test run were a mix of aircraft

and ground forces, with moderate entity interaction to include fire and detonation PDUs.

A total of 16,143 simulation PDUs and 36 DM_IE PDUs were sent by each DM; the
higher number of DM_IE PDUs was due to entities switching partitions, or being switched
when the second PM was initialized. The default PM sent 54 PM_IE PDUs, the second PM
sent 18. The BSM generated 72 ADDRESS_ASSIGN PDUs, 90 MCAST_ADD PDUs. and 0
MCAST_CLOSE PDUs. Total PDU count for the exercise was 32,583, counting the
PM_REGISTER and CRITERIA_ASSIGN PDUs at the start of each PM, for a total control
PDU overhead of 0.912%.

The average time between an ESPDU beiﬁg sent to the BSM and the receipt of an
ADDRESS_ASSIGN PDU for that entity was 47.215 milliseconds, with a maximum time of
121.042 milliseconds (when the second PM was being initialized). The average time between
a DM_IE PDU being received at the PM and an MCAST_ADD being received for that entity

was 124.520 milliseconds, with a maximum time of 142.821 milliseconds.

The second PM initialization required 1.03213 seconds, with most of this delay

encountered in the rexec call.

5.2.3 Run 3

Run 3 was designed to determine the stability of this architecture when presented with a
large number of PDUs in a relatively short time. All entities were aircraft, with the same level
of interaction as in the first run; however, to simulate a high PDU transmission rate, I removed
the timing constraints, forcing the simulation hosts to transmit the PDUs as fast as they could.
The PDUs transmitted were from a simulation that actually ran for over 30 minutes in real

time.
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A total of 113,190 simulation PDUs and 102 DM_IE PDUs were sent by each DM, the
higher number of DM_IE PDUs was due to entities switching partitions, or being switched
when the second PM was initialized. The default PM sent 154 PM_IE PDUs, the second PM
sent 50. The BSM generated 204 ADDRESS_ASSIGN PDUs, 254 MCAST_ADD PDUs, and
0 MCAST _CLOSE PDUs. Total PDU count for the exercise was 227,251, counting the
PM_REGISTER and CRITERIA_ASSIGN PDUs at the start of each PM, for a total control
PDU overhead of 0.383%.

The average time between an ESPDU being sent to the BSM and the receipt of an
ADDRESS_ASSIGN PDU for that entity was 51.128 milliseconds, with a maximum time of
125.693 milliseconds (when the second PM was being initialized). The average time between
a DM_IE PDU being received at the PM and an MCAST_ADD being received for that entity

was 137.184 milliseconds, with a maximum time of 166.104 milliseconds.

The second PM initialization required 1.46220 seconds, again with most of this delay

encountered in the rexec call.

5.2.4 Analysis of ATM results

The statistics I gathered concerning latency support the use of ATM for DIS exercises.
The maximum application-to-application PDU latency I observed was 10.681 milliseconds
(in run 3), well within the 100-millisecond window identified both by Calvin [4] and Pullen
[21] as a requirement for a DIS network architecture. I wanted to determine ATM’s minimal
latency, so I ran several tests in which only two ESPDUs were sent. The first ESPDU initiated
the ADDRESS_ASSIGN/MCAST_ADD cycle, and when all control PDUs had been sent, I
sent the second ESPDU to determine the no-load delay between transmission and receipt of
the PDU back at the system. The average value for these tests was measured at 2.35

milliseconds.

The overhead varied inversely with the number of PDUs in the exercise, from 4.07%
(8,290 PDUs) to 0.383% (227,251 PDUs). Since the number of control PDUs is highest at

simulation start (when all entities are registering with their controlling PMs) and drops as the




simulation progresses, it is reasonable to expect that the overhead factor will continue to drop
as the exercise continues. Partition splitting and entity transitions will continue to account for
some network traffic, but the test results indicated that in most cases each entity remained in a

single partition.

The MCAST_ADD latency represents the time between an entity requesting to receive a
PM’s rebroadcasts and the PM starting to send PDUs to that entity’s DM. During this time,
the entity is theoretically not receiving PDUs in which it is interested, so this delay is
obviously critical. In practice, though, the> system does not track which entity a PDU is
destined for, only which DM. As a result, in most cases the DM controlling that specific
entity is already receiving PDUs from the specified PM. During exercise startup, this delay
may represent an unacceptable “blindness” for an entity. However, since all other entities

will be experiencing similar delays, I do not consider this to be a factor.

The largest delays occurred during the period immediately following the second PM
initialization, when a large number of entities were being transitioned to the new PM. The
actual startup delay for the new PM is not relevant, though, since the existing PM continues to

rebroadcast PDUS, resulting in no loss of simulation data while the new PM initializes.

5.3 Dynamic Partitioning Results

Results obtained from the dynamic partitioning aspect of my research are harder to
quantify. The results shown above indicate that the dynamic partitioning mechanism works as
expected; PMs are started as necessary and open multicast connections to DMs that have
expressed interest in their PDUs; DMs address PDUs to the correct PMs; and entities are

transitioned to a new PM as necessary.

However, with geographic criteria as the partitioning scheme in my testing, no
advantage was shown in respect to reducing PDUs deliveréd to a specific host. The main
problem was a limited number of test systems combined with the current “overlap” factor
required by geographic partitioning. Because each entity’s IE was expanded to encompass

the boundaries of the partition, the simulation was still receiving data from the entire exercise,
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as shown in Figure 5-1. While this does not immediately disprove the basic premise of
dynamic partitioning, it does demonstrate that with geographic criteria no advantage will be
gained until the number and size of partitions reaches a point where an entity’s IE does not

overlap all partitions.

(a) (b) (c)

Figure 5-1: IE overlap. (a) At exercise start, an entity’s IE covers the entire partition. (b) After
splitting, the IE is expanded to “overlap” other adjacent partitions. (c) resulting in the
simulation still receiving all PDUs in the exercise.

Given the necessary expansion of interest expressions (as discussed in Chapter Four), it
appears that the dynamic partitioning scheme is ill-suited for geographic criteria. Other
criteria, such as those which use entity type or entity country, would yield better results under
this architecture, since no overlap would be introduced; the data would be perfectly
partitioned. An entity could express interest in receiving PDUs from all F-15s, for instance,
without receiving PDUs from F-16s, even if they were in the same flight; if the number of F-
15s in a simulation proved excessive for a PM to handle, further division could occur on such
factors as sending site, or even entity country (allowing separation of Israeli F-15s from
United States F-15s). It is important to note, however, that whatever partitioning scheme is
used, it must be complete (covering all possibilities within that scheme) and disjoint (since an
entity can belong to only one partition). For each criteria in a PM’s criteria set, there must

exist one or more other PMs that include the entities excluded by that criteria.

An additional factor that we discovered was entity “thrashing” between partitions. This
was caused mainly by the “hint” method used by the PMs in requesting a split; by sending

the average XYZ location of all entities in the exercise, the split was made at a point where
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some entities were geographically situated close to a partition boundary. As these entities
maneuvered, the partition in which they were located switched rapidly between PMs, with each
switch requiring the overhead concomitant with re-addressing, IE registration, and Multicast
add/delete messages. In the most extreme case, one entity in run #3 alternated between the
two PMs nine times in the space of two minutes. While no PDUs were lost due to transitions, it
still resulted in unanticipated overhead that could perhaps be avoided if a better division

method were used.

5.4 Conclusion

In this chapter I have shown that the PDU latency incurred in an ATM DIS exercise
system are well within acceptable levels, even accounting for the retransmissions necessary
with ATM. I have further shown that although a dynamic partitioning scheme is in theory
viable, the expected advantages will likely not be realized with geographic criteria until a

significant partitioning of the battlespace has occurred.
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6. Conclusions

6.1 Summary of Problem

The problem I set out to solve in this research was twofold: to develop a DIS exercise
system which takes advantage of ATM’s greater speed and bandwidth, and to determine if a
dynamic relevance filtering system would provide a reduction in excess PDUs delivered to a

specific host.

6.2 Contributions

My research has provided an exercise system that will allow AFIT to conduct DIS
exercises over the ATM network, using native ATM as the interface between the simulation

and the network. This system has been tested with the current DIS Manager software.

I have also shown that dynamic relevance filtering is feasible, and entity transitions
occur without data loss to the exercise as a whole. While dynamic relevance filtering does not
provide adequate PDU reduction when geographic partitioning is used, other criteria should
provide much better compartmentization of PDUs. For geographic, however, it appears that a

static partitioning scheme provides better improvements.

6.3 Future work

While my research was successful in meeting the stated research goals, it also presented
some options for enhancement of this system. The most important of these is addressing the
shortcomings of dynamic partitioning; other areas such as consolidation of the BSM/PM
system, signal-driven ReceiveDaemons, using AAL_NULL as the ATM adaptation layer, and

the establishment of permanent virtual circuits should also be explored.

6.3.1 Hybrid Partitioning

My testing demonstrated that when geographic criteria is used, the main disadvantage

with dynamic partitioning is limited PDU reduction at a given host until the granularity of
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partitions was such that an entity’s IE did not overlap all partitions. We have theorized a
possible method to resolve this. A static partitioning scheme, in which a predetermined grid
size is overlaid onto the virtual battlefield, could be calculated by the BSM at simulation start.
Each PM would be responsible for a region of grids. Initially, groups of grids would be
combined into a single multicast group; as the number of entities in the exercise increased,
additional multicast groups would be created, with each group encompassing fewer of these
predefined grids. In this manner, simulations would still be able to join or leave the exercise
on an ad hoc basis, with no a priori knowledge required beyond the name of the BSM host,
yet the granularity of the partitions would already be in place, possibly avoiding the pitfalls

encountered in the current scheme. Work on this method is now in progress.

6.3.2 Merged BSM and PM

For most of an exercise the BSM is idle, responding only when an entity needs to be
assigned to a new PM or a PM has exceeded its SPLIT_COUNT. It should be possible to
incorporate the functionality of the BSM into the PMs, with the PMs communicating between
themselves for entity transitions and IE parsing. Since this inter-PM communication would
require relatively low bandwidth, an optimal solution may be found in a hybrid IP/ATM
system. The PMs would communicate with each other via an IP multicast group (many-to-

many), while the actual simulation traffic would still be carried by native ATM transmissions.

6.3.3 Signal-Driven ReceiveDaemons

The current scheme uses a separate ReceiveDaemon process to service each incoming
connection. I attempted to used polled file descriptors, wherein a data stream would notify a
single process when it had data to be delivered, but this feature is apparently unsupported by
the Fore Systems interface. Later versions of the interface may allow this. There are also
methods to do signal-driven IO, in which the data streams would generate a SIGIO message
when data is ready. This presents the problem of not knowing which data stream is ready; all

incoming fds would need to be scanned.




6.3.4 AAL_NULL

By using AALS5 as the ATM adaptation layer, the effective payload in each cell
increases, but there is still overhead incurred at the convergence sublayer. Fore Systems
allows the use of a “null” adaptation layer (AAL_NULL) which adds no overhead at this
layer; the user is responsible for segmenting the data into 48-byte cell payloads. By using

AAL_NULL an advantage may be gained in throughput.

6.3.5 Permanent Virtual Circuits

The current ATM interface uses Switched Virtual Circuits (SVCs) for each connection,
with the ATM switch building and removing these circuits as necessary. This “on-the-fly”
setup and teardown incurs delay, which is advertised as being less than 11 milliseconds [13];
this delay is encountered each time a connection is established. If the topology of an exercise
is known beforehand, permanent virtual circuits (PVCs) may be allocated before the exercise,
reducing the connection setup time. While this will require additional pre-exercise
preparation, the PVCs, once established, would remain so until they were manually removed,
so they could be used for multiple exercises. Further, since the PM host machines are
specified at runtime, it may be possible to create the PVCs at runtime as well. Note that this
would not affect the dynamic partitioning scheme implemented here, since the ATM
connections treat PVCs and SVCs identically. An added advantage with this scheme is that a
single fd can be associated with multiple incoming and outgoing PVCs, perhaps providing a

better method for receiving than using a dedicated ReceiveDaemon for each connection.

6.3.6 Modified DIS PDUs

A final suggestion is to re-examine the DIS PDU structure in an attempt to align more
of the PDUs to fit the 48-byte ATM cells. For example, it was shown in Chapter Three that a
typical 144-byte ESPDU, when transmitted over an AALS connection, required 32.1%
overhead; if the size of the ESPDU could be reduced to 136 bytes, the overhead drops to
14.5%. Since the ESDPU can account for up'to 98% of the network traffic in a DIS exercise,

the reduction in overhead by modifying just this PDU would be significant.
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6.4 Conclusions and Recommendations

ATM promises tremendous bandwidth increases over current networking technologies.
Future enhancements planned for ATM (such as receiver-initiated joins and many-to-one
multicast groups) will improve the adaptability of ATM to DIS exercises and could possibly

do away with the rebroadcast agent hierarchy I implemented.

My research has indicated that ‘dynamic relevance filtering (at least in my
implementation of it) provides minimal gain when applied to geographic partitioning. Other
partitioning criteria hold greater promise with regard to dynamic partitioning, but the
question then becomes one of utility: in an actual DIS exercise, how many entities will be
interested in receiving PDUs from only a certain type of entity? A better approach would
most likely combine the advantages of dynamic relevance filtering with that of a static

overlay, as suggested in the “future work” section above.




Appendix A: Function Prototypes

This appendix contains the prototypes for all functions contained in the DIS ATM

library (1LibDIS_ATM. a), along with a brief description of what each function does.

int AddUsing(const int fdindex, const eid_t eid)

AddUsing adds the entity eid to the list of entities that are using the fd fdindex,
either for receiving (PM) or sending (DM). O is returned on success, or -1 if the add was
unsuccessful (unable to increase the size of the list, or the entity is already listed as using the

fd).

int BufDone(int bufnum, int mode, int PDUtype, int £dindex)

BufDone handles the marking, clearing, and addressing of buffers.
mode == FILL_MODE:

If PDUtype is CTRL_DATA (a control PDU) or PDU_DATA (a PDU from
the simulation — DM mode only), the buffer bufnum will be marked for the
BSM/DM/PM. In addition, the semaphore that the BSM/DM/PM is blocked on will be

set to wake the process. 0 is returned on success, or -1 if a semaphore error occurs.

If PDUtype is APP_DATA (a PDU from the network) the buffer will be
marked for the simulation and bufnum will be queued for the simulation. 0 is

returned (always successful).
mode == RECV_MODE:
The buffer bufnum is marked as available. 0 is returned (always successful).

void CloseFD(int fdindex, int really_ close)

CloseFD closes the file descriptor referenced by fdindex if really_close is
true. The function atm_close closes the actual connection, and the structure
fdlist[fdindex] is marked idle. If really_close is false, the structure
fdlist[fdindex] is marked idle, but no call to atm_close is made (used by the PM

to track multicast connections). O is returned (always successful).
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int ConnectFD(int fdindex, Atm dataflow df)

ConnectFD attempts to open a connection to the address stored in the
fdlist [fdindex] structure. The df field specifies whether the connection should be
simplex, duplex, or multicast. The atm_connect function is called to make the actual
connection. 0 is returned on success. -1 is returned on error (connection refused, or invalid

address).

void ControlPDU(const int bufnum, const int PDUtype,
void *PDUdata)

ControlPDU generates a control PDU in the buffer bufnum. PDUtype indicates
what type of PDU to be generated (for example, ADDRESS_ASSIGN). *PDUdata is a void
pointer that is typecasf to the appropriate data type, and contains the information necessary

(such as ATM address information) to generate the PDU.

int CriteriaMatch(int bufnum, PM_criteria_t PMcriteria)
CriteriaMatch is used by the BSM and PM. The ESPDU contained in buffer
bufnum is comapred against the criteria set PMcriteria. If the ESPDU meets the

requirements of the criteria set, 0 is returned, -1 otherwise.

int DeleteUsing(const int fdindex, const eid t eid)
DeleteUsing removes the entity eid to the list of entities that are using the fd
fdindex. 0 is returned on success, or -1 if the delete was unsuccessful (the entity is not

listed as using the fd).

int FindBuf (int mode)

FindBuf locates a free buffer (if mode is FILL_MODE), or returns the buffer
number containing the oldest PDU received from the network destined for the
simulation(mode is RECV_MODE). If mode is FILL_MODE, the buffer number to use is
returned. If mode is RECV_MODE, the buffer number containing the PDU is returned, or -1

if no PDUs are waiting.
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int GetFD(int qlen, Atm_sap sap, int real_£fd4)
GetFD allocates £d1list structures and connects to the ATM interface if requested.

An unused index in £dlist is located and stored in a local variable (index). If real_£d
is true, the function atm_open is called to connect to the interface in READ/WRITE mode,
and the file descriptor returned by the system is stored in in the £dlist [index] structure.
The function atm_bind is then called to bind to the interface. If glen is non-zero, a server
connection is requested (for ListenDaemon); otherwise, a normal connection is requested. If
sap is non-zero, GetFD attempts to use that value as the ASAP to use on the local interface;
otherwise, an ASAP is assigned by the system. index is returned on success, -1 on error (no

indexes available in £d1ist, failure to connect to the interface, or failure to bind to the fd).

If real £d is false, no connection is attempted (used by the PM to track multicast

addresses). index is returned on success, -1 if no £dlist index is available.

int InitATM(info_t *ATMinfo)
TInitATM initializes the ATM interface on the host and stores the device name and
local ATM address in ATMinfo. 0 is returned on success, -1 on error (invalid interface

specified, or unable to get local ATM address).

buffer t *InitMemory(int mode, char *arena_file)

InitMemory initializes the shared-memory data structures within buf fers (if
mode is CREATE) or returns the address of the existing buffers structure (if mode is
JOIN). *arena_file is the filename of the arena to create/join. The address of
buffers is returned on success, NULL on error (failure to allocate any of the data

structures or the arena).

void ListenDaemon()
ListenDaemon listens for incoming connection requests, allocates a new structure
within £dlist for the new connection, and assigns a ReceiveDaemon to handle the

connection.
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void ReceiveDaemon(int £dindex)
ReceiveDaemon receives data on an inbound connection and stores this information
into a buffer for use by the BSM/DM/PM or the simulation. ReceiveDaemon monitors the

connection pointed to by £dlist[fdindex].

void Shutdown(int signal)
Shutdown closes all connections, kills all running processes, closes all open files, and

deallocates all memory structures, then calls exit (signal) .

int SendBuf (int bufnum, int £fdindex, int mode)

sendBuf sends the data in bufnum out the fd in the £dlist [fdindex] structure,
if the fd is in a connected state by unblocking the SendDaemon. If the fd is not connected, no
data is sent (for example, if a PDU is received by PM when no multicast recipients have been
connected to). If mode is SEND_FREE, the buffer is then marked as idle. 0 is returned on
success, -1 on error (invalid fd connection, connection closed, or unable to unblock

SendDaemon).

void SendDaemon()
SendDaemon sends data out to the network. The buffer to send from and where to

send to is passed to SendDaemon via its control register in buf fers.
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Appendix B: Control PDUs

This appendix describes the control PDUs created to manage a DIS exercise using the

BSM/DM/PM structure. All PDUs are based on the V2.0.4 action request PDU.

ADDRESS ASSIGN
Protocol Version 8 0x04
Exercise ID 8 Set at runtime
PDU Type 8 0x10
Protocol Family 8 0x05
Time Stamp 32 Set at PDU send
Length 16 64 (bytes)
Padding . 16 unused
| Originating Entity 148 | e
Site 16 OxFFFE (don t care)
Application 16 0x0000 (BSM_APP)
Entity 16 OxFFFE (don t care)
rRegeiVinanﬁty o T =
Site 16 Recervmg 81te
Application 16 Receiving application
Entity 16 Receiving entity
Request ID 32 Set at PDU send
Action ID 32 0x0000F000
Fixed Datum Records 32 Number of fixed datum records (3)
Vanable Datum Records 32 Number of varlable datum records (O)
0 X el r §;;|: 2 -—_ St e e
Datum ID 32 ' '0x00 " ' o
Value
Fixed Datum #1_ |64 = | :
Datum ID 132 ' 0x01
Value
f Fixed Datum #2 i S |
Datum ID 32 0x02
Value 32 Last 4 NSAP bytes of the PM

USAGE: Generated by the BSM, directed to a DM, and will indicate the address of a
PM to which a specific entity's PDUs should be directed.
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PM REGISTER

PDU Header:
Protocol Version
Exercise ID
PDU Type
Protocol Family
Time Stamp
Length

Padding
riginating Entity
Site

0x04
Set at runtime
0x10

0x05

Set at PDU send
72 (bytes)
unused

OxFFFE (don t“care)‘:‘:

Application 0x0002 (PM_APP)

Entity OxFFFE (don’t care)

"Receiving Entity e
Site OXxFFFE (don’t care)

Application 0x0000 (BSM_APP)

Entity OxFFEE (don’t care)

Request 1D Set at PDU send

Action ID 0x0000F001

Fixed Datum Records

Number of fixed datum records (4)

Variable Datum Records

F Fixed Datum #0

Number of varrable datum records (O)

0x00

Datum ID
Value PMld of the PM
Fixed Datum #1 = = g
‘Datum ID 0x01
Value ASAP of the PM
Fixed Datom #2 :
Datum ID
Value
I_Fixéd Datum #3.. - . | o
Datum ID 0x03
Value Last 4 NSAP bytes of the PM

USAGE: Generated by the PM, directed to the BSM. The PM will send one of these

PDUs to the BSM after it has initialized itself and is ready to receive its criteria.
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CRITERIA ASSIGN

PDU Header s
Protocol Version 0x0
Exercise ID Set at runtime
PDU Type 0x10
Protocol Family 0x05
Time Stamp Set at PDU send
Length Variable
Padding unused
F‘ Originating Entity : e i :.f.é.fsz s i : S
Site 16 OxFFFE (don’t care)
Application 16 0x0000 (BSM_APP)
Entity OxFFFE (don’t care)

eceivingEntity =~ [48 - b . |
Site OxFFFE (don’t care)
Application 16 0x0002 (PM_APP)
Entity 16 O0xFFFE (don’t care)
Request ID 32 Set at PDU send
Action ID 32 0x0000F002
Fixed Datum Records 32 Number of fixed datum records (0)

32 Number of variable datum records (1)

Datum Length 32 Variable
Value \'AY " | Criteria set
Padding VA% Padding to a multiple of 64 bits

USAGE: Generated by the BSM, directed to the PM. Used to give the PM the criteria
set it will use to determine entity membership. The existing criteria set on the PM will be

replaced.




DM INTEREST EXPRESSION
PDU Heade 9 S
Protocol Version 8 0x04
Exercise 1D 8 Set at runtime
PDU Type 8 0x10
Protocol Family 8 0x05
Time Stamp 32 Set at PDU send
Length 16 Variable
Padding 16 unused
riginating Entity e eI '
Site 16 OXFFFE (don t care)
Application 16 0x0001 (DM_APP)
Entity 16 OxFFFE (don t care)
Site 16 OxFFFE (don t care)
Application 16 0x0002 (PM_APP)
Entity 16 O0xFFFE (don’t care)
Request ID 32 Set at PDU send
Action 1D 32 0x0000F003
Fixed Datum Records 32 Number of fixed datum records (3)
Variable Datum Records | 32 Number of varrable datum records [6))
Fixed Datum #0 = [64 | w T
Datum ID 32 OXOO
Value 32
Fixed Datum #1 |64 =
Datum ID 32 OxOl
Value 32 F1rst 4 NSAP bytes of the DM
[ Fixed Datum #2 |6 = R
Datum ID
Value
Variable Datum #0 .~ | V' sl
Datum ID 32 OxOO
Datum Length 32 Variable
Value : \'AY Interest Expression
Padding VA% Padding to a multiple of 64 bits

USAGE: Generated by the DM, directed to the PM. The variable datum will contain

the IE data (i.e. geographic range, or other interest registration).
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PM INTEREST EXPRESSION

Protocol Version 8 0x04

Exercise ID 8 Set at runtime

PDU Type 8 0x10

Protocol Family 8 0x05

Time Stamp 32 Set at PDU send

Length 16 Variable

Padding 16 unused

OriginatingEntity .~ 148 = 1 i

Site 16 OxFFFE (don t care)

Application 16 0x0002 (PM_APP)

Entity 16 OxFFFE (don t care)
'-l{eceivingEntity 5 l £l ;g::: it B S L bR

Site OxFFFE (don t care)

Application 0x0000 (BSM_APP)

Entity OxFFFE (don’t care)

Request ID Set at PDU send

Action ID 0x0000F004

Fixed Datum Records 32 Number of fixed datum records (3)

Variable Datum Records 32 Number of varlable datum records (1)

Fixed Datum 0: o Ty ;
Datum ID 32 OxOO
Value - 32 ASAP of the DM
[Fixed Datum #1. |64 | T
Datum ID 32 OxOl
Value

_ F1rst 4 NSAP bytes of the the DM

F ;xec_l_ ﬁ '
Datum 1
Value

| Variable Datum #0 ANV
Datum ID 32 OxOO
Datum Length 32 Variable
Value \'AY% Interest Expression
Padding \AY% Padding to a multiple of 64 bits

USAGE: Generated by the DM, modified by the PM, directed to the PM. The variable
datum will contain the IE data from the DM, as expanded by the PM.
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MCAST ADD

PDU-Header ; .
Protocol Version 8 0x04
Exercise ID 8 Set at runtime
PDU Type 8 0x10

Protocol Family 8 0x05

Time Stamp 32 Set at PDU send
Length 16 64 (bytes)
Padding 16 unused

Site 16 From the entity expressing interest
Application 16 From the entity expressing interest
Entity .
| ReceivingEntity ~
Site
Application 16 0x0002 (PM_APP)
Entity 16 O0xFFFE (don’t care)
Request ID 32 Set at PDU send
Action ID 32 0x0000F005
Fixed Datum Records 32 Number of fixed datum records (3)
Variable Datum Records | 32 Number of variable datum records (0)

_F‘—ixedDatum #0 ,: :'155: 64 ‘ s
Datum ID 32 0x00
Value 32 ASAP of the DM
Datum ID 32 0x01

Value 32 First 4 NSAP bytes of the DM

Datum ID 32 0x02
Value 32 Last 4 NSAP bytes of the DM

USAGE: Generated by the BSM, directed to a PM; indicates that the DM at the address
contained in the fixed datum records should be added to the PM’s multicast group on behalf

of the entity specified in the originating entity ID.




MCAST DELETE

‘PDU Heade

0x04

Protocol Version 8
Exercise ID 8 Set at runtime
PDU Type 8 0x10
Protocol Family 8 0x05
Time Stamp 32 Set at PDU send
Length 16 64 (bytes)
Padding 16 unused
[ Originating Enfity r 48k e :
Site 16 From the entlty expressmg 1nterest
Application 16 From the entity expressing interest
Entity 16 The entlty expressrng 1nterest
‘Receiving Entity = 48 o0 f . P

Site e OXFFFE (don t":care)

Application 16 0x0002 (PM_APP)
Entity 16 OxFFFE (don’t care)
Request ID 32 Set at PDU send
Action ID 32 0x0000F006
Fixed Datum Records 32 Number of fixed datum records (3)
Variable Datum Records | 32 Number of varrable datum records (0)
‘:Eleed Datllm 0 | :""”", £ 64 e iR I S i
Datum ID o 32 OxOO
Value 32 ASAP of the DM
(Fixed Datum #1. o4 . T T
Datum ID 32 0x01
Value 32 Frrst 4 NSAP bytes of the DM
Datum ID i R e 0 :3{02.. L« % 0 :
Value 32 Last 4 NSAP bytes of the DM

USAGE: Generated by the BSM, directed to a PM; indicates that the entity specified in
the originating entity ID should be removed from the list of interested entities at the address

contained in the fixed datum records.
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MCAST CLOSE

PDU Header

Protocol Version 8 0x04

Exercise ID 8 Set at runtime

PDU Type 8 0x10

Protocol Family 8 0x05

Time Stamp 32 Set at PDU send

Length 16 64 (bytes)

Padding 16 unused
| OriginatingEntity  ~ [48 | e

Site 16

Application 16 0x0002 (PM_ APP)

Entity |16 OxFFFE (d n 't care)
Wﬁg—Eiﬁty p ;,‘E X |_‘18 ,,,,, I_""_" . 7 ; :3;15::;.;?;; 7 — g —

Site 16 v 0xFFFE (don t care) "

Application 16 0x0001 (DM_APP)

Entity 16 OxFFFE (don’t care)

Request ID 32 Set at PDU send

Action 1D 32 0x0000F007

Fixed Datum Records 32 Number of fixed datum records (3)

Variable Datum Records | 32 Number of vanable datum records (0)
I leed Patum’ 0 i r€4 I Sl T e : =

Datum 1D 32 OxOO

Value _ 32 ASAP of the spec1f1ed DM
[FixedDatum #1 =~ |64 = |

Datum ID 32 OxOl

Value 32 F1rst 4 NSAP bytes of the spe01f1ed DM
[Fixed Datum #2 =~ [64 = | N R

Datum ID 32 Ox02

Value 32 Last 4 NSAP bytes of the specified DM

USAGE: Generated by the PM, directed to a DM; indicates that DM whose address
matches that contained in the fixed datum records should close the connection that this PDU

arrived on.




PM SPLIT
Protocol Version 0x04
Exercise ID Set at runtime
PDU Type 0x10
Protocol Family 0x05
Time Stamp Set at PDU send
Length Variable
Padding . unused
Originating Entity i 4’8 e z;;:‘ o L e
Site 16 OxFFFE (don’t care)
Application 16 0x0002 (PM_APP)
Entity _ OxFFFE (don’t care)
F Site O0xFFFE (don’t care)
Application 0x0000 (BSM_APP)
Entity OxFFFE (don’t care)
Request ID Set at PDU send
Action ID 0x0000F008
Fixed Datum Records 32 Number of fixed datum records (1)
Variable Datum Record 32 Number of
0x00
PMid of the PM requesting to be split
0x00
Datum Length 32 Variable
Value \'A Split suggestion
Padding \A% - | Padding to a multiple of 64 bits

USAGE: Generated by the PM, directed to the PM. The variable datum will contain a
suggestion of how the PM’s criteria set should be split, if possible (for example, the XYZ

coordinates of the highest activity in a geographic partitioning).




PM DELETE

PDU :Heade

Protocol Version 8 0x04

Exercise ID 8 Set at runtime

PDU Type 8 0x10

Protocol Family 8 0x05

Time Stamp 32 Set at PDU send

Length 16 40 (bytes)

Padding 16 | unused

“OriginatingEntity 148 | .

Site 16 OxFFFE (don’t care)

Application 16 0x0000 (BSM_APP)

Entity 16 OxFFFE (don’t care)

Site 16 OxFFFE (don’t care) "
Application 16 0x0002 (PM_APP)

Entity 16 OxFFFE (don’t care)

Request ID 32 Set at PDU send

Action ID 32 0x0000F009

Fixed Datum Records 32 Number of fixed datum records (0)
Variable Datum Records | 32 Number of variable datum records (0)

USAGE: Generated by the BSM, directed to the PM. Since each PM has a separate
connection with the BSM, no PMid is necessary. The PM receiving a PM DELETE PDU will

immediately terminate all processes.
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