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Chapter 1

Overview

In this final report, we summarize research performed under the Department of Defense Ad-

vanced Research Projects Agency (DARPA) Contract #F30602-97-2-0227. Broadly speak-

ing this research has focused on the development of architectures and reusable tools for

mixed-initiative scheduling in complex domains such as continuous transportation, logistics

and air operations planning and scheduling. Building from previous research at Carnegie

Mellon University in the areas of reactive, mixed-initiative scheduling and with collabora-

tive support from Maya Design Group in the area of advanced data visualization and user

interface development, our broad goal has been the development of core component capabil-

ities for

� plan/schedule visualization, comparison and assessment,

� generation of robust schedules that anticipate unpredictability in execution,

� timely and minimally disruptive replanning and rescheduling in response to unex-

pected execution circumstances, and

� mixed-initiative management of the ongoing planning, scheduling and execution pro-

cess.

Methodologically, our approach has been to use real applications to drive our research and

technology development, and a major portion of our effort to demonstrate and validate core

techniques has involved development of specific application systems. Following from our
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previous work in the DARPA/Rome Laboratory (ARPI) Planning Initiative, we have con-

tinued to draw on military transportation and logistics planning and scheduling problems

as a principal application focus. We have also built on previous work carried out within

DARPA’s “JFACC After Next” program, and utilized the domain of air campaign scheduling

as an additional application focus. Finally, in validating the performance of core algorithms

for building robust schedules we have also drawn on standard benchmark problems in the

domain of Resource-Constrained Project Scheduling.

Our research has produced the following technical accomplishments:

� The AMC Barrel Allocator - One major accomplishment has been the development

of the AMC Barrel Allocator, a system for day-to-day allocation of aircraft and air-

crews to airlift and tanker missions at the USAF Air Mobility Command (AMC).

Conceived initially as part of a Technology Integration Experiment (TIE) aimed at

demonstrating the potential of advanced automated scheduling tools to AMC opera-

tions, a decision was made in January 1999 to transition the system into operations

in the the Tanker/Airlift Control Center (TACC) at AMC, and the system has subse-

quently been transitioned into AMC’s operational Consolidated Air Mobility Plan-

ning System (CAMPS). Although it is still too early to have “return on investment”

data, estimates based on even a small reduction in either AMC’s current outsourcing

levels to the commercial airlines or AMC’s fuel usage indicate projected savings of

many millions of dolalrs.

The AMC Allocator supports solution of AMC’s short-term airlift/tanker allocation

problem. The system is designed to accept new mission requests generated by differ-

ent planning offices at AMC as input, and based on current availability of contracted

aircraft and aircrews, it is used to determine which missions can be supported and to

generate wing assignments. It utilizes incremental, constraint-based search techniques

to selectively re-optimize allocation decisions to accommodate new higher-priority

missions while minimizing disruption to previous assignments. As resource assign-

ments are made to a given mission, any necessary auxiliary tasks (e.g., positioning/de-

positioning flights, crew rest periods, etc.) are generated and inserted into the mission

plan. In the simplest case, all missions are planned and scheduled as round trips. Var-

ious missions will be sequenced when necessary to satisfy overall resource capacity

constraints (and in some cases rejected as unsupportable). It is also possible to direct

the system to consider mission “merging” possibilities (e.g., “recycling” the aircraft

2



to support a second mission instead of returning directly back to home station), which

provides another means for optimizing resource usage. The AMC Allocator’s Mission

scheduling and resource allocation capabilities can be invoked in various automated or

semi-automated modes. In the latter case, the system generates different options that

might be taken to support a given mission, and various visual displays are provided

for evaluating and comparing generated alternatives. This mixed-initiative scheduling

model and the techniques used to realize it are described in Chapter 2.

� Configurable Scheduling Systems - Underlying the construction of the AMC Barrel

Allocator, our research has also made progress in the development of techniques and

tools for rapid configuration of planning and scheduling applications. These results

have been consolidated in OZONE, a tool-kit for constructing mixed-initiative plan-

ning and scheduling application systems that was initiated under prior research within

the ARPI Planning Initiative and has been under continued development for several

years [Smith et al., 1996]. One principal contribution of our research under the cur-

rent contract has been elaboration of the OZONE scheduling ontology. The OZONE

ontology provides a conceptual framework for mapping a high-level domain analysis

into an executable scheduling model. At its core, the OZONE scheduling framework

provides a class library of components for configuring mixed-initiative planning and

scheduling applications, and the OZONE ontology (or more precisely the abstract

domain model that the ontology defines) dictates how these components fit together.

Through specification of a concrete domain model in terms of the ontology for a given

application, corresponding capabilities in the class library are identified and instanti-

ated within the system’s basic search architecture. Thus it is possible to very quickly

arrive at an executable scheduling model. At this point effort can be focused directly

on developing whatever problem specific heuristics or constraint models are required

to achieve high performance in the target scheduling domain. The OZONE Ontology

is described more fully in Chapter 3.

A complementary research accomplishment in the area of configurable scheduling sys-

tems has been the development of an interactive tool for application model construc-

tion in OZONE. This tool provides a basis for using the ontology to navigate (and if

necessary extend) the underlying class library, and for subsequently compiling various

components into an application system. This work is summarized in Chapter 6 and

described more fully in [Becker, 1998].

3



� Interactive Visualization for Requirements Analysis - Another technical accomplish-

ment of our research has been the development of interactive visualizations of re-

source capacity constraints for use in analyzing requirements in large-scale planning

and scheduling domains. In domains as diverse as strategic deployment planning and

manufacturing production management, detailed planning and scheduling is generally

preceded by higher-level analysis of requirements in relation to available (or appor-

tioned) resource capacity. The goal of this analysis is early detection of resource ca-

pacity shortfalls (as well as excesses), and subsequent adjustment of the constraints

associated with infeaasible requirements (if possible) to bring them more into line

with capacity. In support of this goal, we have defined novel 2D and 3D visualizations

that generalize simple Gantt chart and closure graph representations of resource us-

age over time to provide a high-level basis for identification of capacity shortfalls and

overflows in advance of actual scheduling. Once requirements have been adjusted to

match available resources, these same visualizations also appear useful as a tool for in-

teractive plan and schedule generation. In Chapter 4, we describe these visualizations

and their use in the context of strategic deployment, specifically supporting analysis of

a set of movement requirements from the standpoint of throughput capacity at various

ports.

� Incremental Scheduling for Effects-Based Operations - A second major application

that has been built using the OZONE framework is ACS, an Air Campaign Scheduling

system. ACS utilizes the same incremental scheduling technology that underlies the

AMC Allocator and provides analogous capabilities for incrementally generating and

maintaining air campaign schedules. Another accomplishment of our research has

been to demonstrate the relevance of the ACS technology to the concept of “Effects-

Based Operations”. A Technology Integration Experiment (TIE) aimed at coupling

an effects-driven planning process (embodied in a Baysian reasoning tool developed

at the Air Force Research Laboratory (AFRL) called CAT - Causal Analysis Tool)

with a dynamic scheduling capability (embodied by ACS) was successfully carried

out to produce a “jump start” demonstration for AFRL’s Effects-Based Operations

Advance Technology Demonstration Program. As one measure of success, the initial

integration was accomplished within a three month period following an unsuccessful,

one-year attempt by AFRL to integrate with another scheduling technology. This TIE

is summarized in Chapter 5.
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� Generating Robust Schedules - A final area of accomplishment of this research ef-

fort has been the development of core algorithms for generating temporally flexible

schedules. A temporally flexible schedule is produced by adopting a disjunctive graph

formulation of the scheduling problem, wherein resource conflicts are resolved by

posting ordering constraints between competing activities (thus sequentualizing usage

of shared resources). A principal property of a schedule that is constructed in this way

is that activity start and end times are not fixed to specific time points, but instead de-

lineate a range (or interval) of feasible solutions. As such, these schedules provide a

measure of robustness in an unpredictable execution environment.

Our research has produced a family of algorithms for generating temporally flex-

ible schedules, and has demonstrated their effectiveness across a range of bench-

mark problems. One thread of work has produced scalable algorithms for solving

Multi-Capacitated Job Shop Scheduling Problems (MCJSSP) [Cesta et al., 1998a,

Cesta et al., 1998b, Cesta et al., 1999a, Cesta et al., 2000]. Another thread has ex-

tended this class of techniques to more general Resource-Constrained Project Schedul-

ing Problems with Maximum Time Lags (RCPSP/Max)[Cesta et al., 1999b, Cesta et

al., 2002]. For both problem classes, our techniques have been shown to outperform

the current best known approximate solution techniques. These results are summarized

in Chapter 6.
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Chapter 2

The AMC Allocator: Continuous

Management of Airlift and Tanker

Resources

Summary: Efficient allocation of aircraft and aircrews to transportation missions is an important priority at the

USAF Air Mobility Command (AMC), where airlift demand must increasingly be met with less capacity and

at lower cost. In addition to presenting a formidable optimization problem, the AMC resource management

problem is complicated by the fact that it is situated in a continuously executing environment. Mission requests

are received (and must be acted upon) incrementally, and, once allocation decisions have been communicated

to the executing agents, subsequent opportunities for optimizing resource usage must be balanced against the

cost of solution change. In this paper, we describe the technical approach taken to this problem in the AMC

Barrel Allocator, a scheduling tool developed to address this problem and provide support for day-to-day allo-

cation and management of AMC resources. The system utilizes incremental and configurable constraint-based

search procedures to provide a range of automated and semi-automated scheduling capabilities. Most basi-

cally, the system provides an efficient solution to the fleet scheduling problem. More importantly to continuous

operations, it also provides techniques for selectively re-optimizing to accommodate higher priority missions

while minimizing disruption to most previously scheduled missions, and for selectively “merging” previously

planned missions to minimize non-productive flying time. In situations where all mission requirements cannot

be met, the system can generate and compare alternative constraint relaxation options. The Barrel Allocator

technology is currently transitioning into operational use within AMC’s Tanker/Airlift Control Center (TACC).

A version of the Barrel Allocator supporting airlift allocation was first incorporated as an experimental module

of the AMC’s Consolidated Air Mobility Planning System (CAMPS) in September 2000. In June 2003, a new

tanker allocation module was delivered for initial operational release to users as part of CAMPS Release 5.4.1

1This chapter has been accepted for publication and will appear as: Stephen F. Smith, Marcel A. Becker,

and Laurence A. Kramer, “Continuous Mangement of Airlift and Tanker Resources: A Constraint-Based Ap-
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2.1 Introduction

Efficient utilization of transportation resources is central to the effectiveness of operations at

the USAF Air Mobility Command (AMC). In normal day-to-day operations, airlift demand

must increasingly be met with less capacity and at lower cost. In crisis situations, rapid,

large-scale deployment is crucial to overall military success. The allocation of aircraft and

aircrews to airlift and tanker missions is a challenging problem. Several thousand missions

are typically flown worldwide on a weekly basis, involving several hundreds of aircraft and

comparable numbers of air crews. Individual missions impose a myriad of temporal con-

straints on their execution, and these constraints must be reconciled with resource availabil-

ity and usage constraints (e.g., crew duty day restrictions and scheduled return dates, aircraft

speed, range, and capacity) to find feasible assignments. Generally there are many more

mission requests than can be accommodated by available assets in any given time frame,

and hence an ability to optimize resource usage contributes directly to reduced reliance on

higher-cost, commercial transportation assets.

Like many practical planning and scheduling problems, resource management at AMC

is further complicated by the fact that it is situated in a continuous planning and execution

environment. New mission requests of varying priority enter the system every day, and the

current schedule is constantly evolving. Since taskings are incrementally communicated to

the executing air wings, new requirements must be integrated into the current schedule with-

out wholesale disruption to previous assignments. Likewise, the dynamics of execution reg-

ularly force changes to planned activities. Aircraft break down, airports become unavailable

due to weather, missions become delayed due to diplomatic clearance problems, etc., and all

such events can warrant reassessment of previous allocation decisions. In such execution-

driven rescheduling contexts, it is similarly important to remain sensitive to solution stability

concerns.

A third distinguishing aspect of the AMC allocation problem is the need for flexible ac-

commodation of and integration with human decision-making. Given the scale and com-

plexity of the AMC environment, there will always be user knowledge that is outside of

system models and hence it must always be possible for the user to over-ride, constrain, bias,

or otherwise direct system problem solving processes. While problem scale necessitates

proach”, Journal of Computer and Mathematical Modeling - Special Issue on Defense Transportation: Algo-

rithms, Models and Applications for the 21st Century, 39(6-8), 2004.
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automation, effective problem solving also requires flexible user intervention.

These problem requirements are at direct odds with the design of most current transporta-

tion planning and scheduling tools. Current tools tend to be organized as black-box, batch-

oriented solution generators which, when invoked, re-solve the problem from scratch. This

presents three fundamental problems. First, there is no memory of solutions from one run

to the next, and small changes in inputs can lead to large changes in outputs. Hence, they

are difficult to control and use in circumstances where localized change is necessary or ad-

vantageous. Second, the computational cost of batch-oriented solution procedures makes

it difficult for planning to keep pace with execution in dynamic (or higher tempo) circum-

stances, forcing the traditional disconnect between these two processes. Finally, in user-

driven (and mixed-initiative) problem solving contexts, the “specify and solve” pattern of

user-interaction promoted by batch-oriented solvers is inherently inefficient.

In this paper, we describe an alternative approach implemented in the AMC Allocator, a

tool for day-to-day allocation of aircraft and aircrews to airlift and tanker missions. In con-

trast to the above mentioned tools, the AMC Allocator is designed specifically for continuous

operations, and provides a range of automated and semi-automated capabilities for allocat-

ing resources to missions against the backdrop of a pre-existing airlift schedule. Underlying

the AMC Allocator is a novel constraint-based search approach to transportation schedul-

ing. This approach is incremental by nature, and this characteristic is key to the Allocator’s

effectiveness as a continuous planning tool. The incrementality of the approach provides

a direct basis for localizing and controlling solution change. It also enables real-time re-

sponse to user rescheduling directives. The AMC Allocator has been positively evaluated by

AMC personnel and is currently transitioning into operational use within the Tanker Airlift

Control Center (TACC) at AMC. It was first embedded as an experimental component of

AMC’s Consolidated Air Mobility Planning System (CAMPS) in 2000, and an enhanced

tanker allocation module is scheduled for operational release in May 2003.

The remainder of the paper is organized as follows. In section 2.2 we summarize the allo-

cation problem faced by AMC. In section 2.3 we contrast identified problem requirements

with traditional solution approaches, and consider the advantages of incremental, constraint-

based search models as a basis for a more suitable approach. The solution framework de-

veloped within the AMC Allocator is then described in Section 2.4. We first review basic

representational assumptions and solution generation procedures, along with the functional

capabilities they give rise to. We then discuss some layered solution optimization capabili-
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ties. In Section 2.5, we summarize the history of the AMC Allocator Project and indicate the

current status of the work. Finally, in Section 2.6, we indicate the current directions of our

research and development efforts.

2.2 The AMC Barrel Master Allocation Problem

The overall mission planning, scheduling and execution process in the TACC at AMC is de-

picted in Figure 2.1. Customer requirements flow into several distinct planning offices which

respond by generating missions. A mission typically involves the movement of cargo and/or

personnel, and each planning office generates air missions of a specific type. The channel

planning office, for example, is responsible for planning channel missions, which correspond

closely to the types of routes flown by commercial airlines; these missions are established

and revised periodically, and then flown repeatedly at regular (e.g., daily or weekly) inter-

vals. Special Assignment Airlift Missions (SAAMs) planned by the SAAM planning of-

fice, alternatively, correspond more to chartered air flights. In this case, custom itineraries

are generated to satisfy the customer’s movement requirements, and the customer’s require-

ments constitute the sole focus of the mission. The missions associated with Presidential

travel are SAAM missions. Other offices are concerned with generating missions that ad-

dress other types of requirements, such as contingency operations, exercises, and training.

Different types of missions create different types of resource requirements, but all planned

missions specify an itinerary, a priority, a particular type of aircraft (technically referred to

as the Model Development Series or MDS type) to be used, a preferred USAF unit (or wing)

assignment and a time period, represented as a pair of dates, in which the mission should be

executed.

All generated missions flow into the “Barrel Master” office (or Barrel for short) for allo-

cation of necessary resources. The Barrel is the office within the TACC that has total visibil-

ity of AMC assets. Based on mission specific constraints and current resource availability,

the Barrel determines which missions will be supportable and for those that are, which air

wing(s) will be tasked to fly them. Within the Barrel Master office, the resource allocation

and management problem is distributed among multiple Barrel Masters. Each Barrel man-

ages the aircraft and crews of a particular set of air wings, determined by aircraft type and

geographic location. An air wing consists of a set of aircraft (and corresponding crews) of

the same type stationed at a particular USAF base. For example, McGuire Air Force base
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Figure 2.1: The AMC planning and execution environment

has a wing of C141s and a wing of KC135s. Currently, the “West Strat” Barrel is responsible

for all west coast C141, C5 and C17 wings, the “East Strat” Barrel is responsible for all east

coast C141, C5 and C17 wings, the “Tanker Barrel” is responsible for all tanker wings (i.e.,

KC135s and KC10s) and so on.

At present, all Barrels track available aircraft and aircrew capacity at various wings, and

taskings of missions to specific wings are made on this notional basis. The individual air

wing has responsibility for determining the actual aircraft tail and air crew(s) that will fly a

given assigned mission.2 The resource assignment for any planned mission is managed by

the Barrel until the 24 hours before execution point, at which time the mission is “pushed”

to the execution office (XOC) for plan review and execution management. As problems

arise during the execution of missions, this information flows back to the Barrel, and may

necessitate either reassignment of specific assets or revision to previously planned missions.

In allocating resources to a given mission, the Barrel must confirm that all constraints

associated with its planned itinerary can be satisfied. A mission’s itinerary is the sequence of

stops or airports the aircraft should visit during the execution of the mission. We refer to the

2Plans call for this assumption to change and for the Barrel to begin to track and allocate actual tails, as

AMC’s “state of the world” initiative increases the visibility of execution data to planning processes.
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flight between two successive stops as a mission leg (or leg for short). Each leg has an origin

airport, the Point of Embarkation (POE), and a destination airport, the Point of Debarkation

(POD). Each leg is followed (or preceded) by a certain ground time. During the period the

aircraft is on the ground, a number of activities, or ground events, can occur: for example,

loading and offloading of cargo, refueling, crew rest, crew change. The time period specified

in the mission request should be at least as large as the time required by the aircraft to fly

between all intermediate stops in the itinerary plus the required ground time at each airport.

To feasibly support the mission, a sufficient number of aircraft and aircrews of the specified

MDS type must be available during this entire period. The earliest date the mission can start

is called the Available to Load Date (ALD) and the latest date the mission should finish is

called the Latest Arrival Date (LAD). The length of this interval should be at least as large

as the total duration of the mission.

Aircraft availability and aircrew availability are defined for each wing on a daily basis.

Each wing has a total number of aircraft of a particular type and a corresponding total number

of aircrews. Considering that some planes are undergoing maintenance and the wing also has

some need for training and local missions, the wing will make a subset of its total aircraft and

crews available for tasking to AMC missions. Each day, each wing will provide a certain

number of contract aircraft and crews that can be allocated by the Barrel. The remaining

wing assets, designated as fenced aircraft and aircrews, are reserved for local wing use and

are beyond the jurisdiction of the Barrel.

The allocation problem just outlined is similar to the classically defined Fleet Assignment

Problem: Given a schedule of flights defining the departure and arrival times for each flight

leg, the Fleet Assignment Problem is the problem of deciding which flight equipment, or

fleet, should be assigned to each flight segment [Clarke et al., 1996, Rushmeier and Kno-

togiorgis, 1997]. For commercial airlines, the standard objective is to maximize revenues

minus operating costs. The Barrel Master, alternatively, generally tries to maximize the total

sum of priorities: s/he will try to assign the maximum number of high priority missions, and

will generally only consider assigning lower priority missions after all higher priority ones

have been assigned.

Most traditional solutions to the fleet assignment problem assign fleets to individual flight

segments. The Barrel Master, alternatively, is concerned with assigning fleets to a sequence

of segments or strings. A string is a sequence of connected flight segments that begins and

ends at possibly different maintenance stations [Barnhart et al., 1998]. By default, an AMC
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mission itinerary is planned as a string that starts and ends at the same location (i.e., a round

trip). Strings that start and end at the same station are usually referred as aircraft rotations. If

possible, the Barrel would consider, and sometimes even prefer, using the same rotation for

more than one mission. The difficulty in combining missions is in identifying and sorting out

the opportunities for potential combinations among thousands of missions in the database.

The Barrel Master responsible for refueling assets, the Tanker Barrel, has a somewhat dif-

ferent allocation problem. In this case, the starting point is an air refueling event, which

identifies one or more receiver missions, a cumulative fuel requirement, a refueling location

(or track), and a rendezvous time. Considering the availability of tanker assets at various

wings within range of the target refueling constraint, together with the fuel carrying capac-

ities and burn rates of available aircraft types, one or more tanker missions are generated,

sourced to a specific wing (or wings), and linked to the originating air refueling event.

In current practice, the allocation process carried out within the Barrel Master office is a

mostly manual process. In her/his daily activities, each Barrel Master utlizies an electronic

commitment matrix, which tracks available aircraft and aircrew capacity of different wings

over time and records those missions already allocated. As new missions are received from

various planning offices, the Barrel consults this matrix and tries to allocate resources which

satisfy mission requirements. If all requirements can be satisfied, the wing assignment is

made and this commitment is communicated back to the mission planner. In those cases

where there are insufficient resources available to support a particular set of missions, the

Barrel will consider more disruptive allocation alternatives. For example, s/he may consider

using resources already allocated to lower priority missions, s/he may consider using re-

sources provided by a wing other than the planner’s preference, s/he may consider delaying

the mission, and so on. Once one or more acceptable options are found, the Barrel commu-

nicates these possibilities back to the relevant planner and a solution that would best satisfy

all sides is negotiated. A mission may also be determined to be unsupportable, in which

case this information is communicated back to the planner. In general, resource assignment

is performed one mission at a time with little automation. Capabilities for generating more

sophisticated allocation alternatives (e.g., involving mission combination) are quite limited,

and generally such optimizations are not considered. In crisis situations where time pressure

is greater, the lack of automated decision aids has increasing ramifications; high priority

missions get accomplished, but at the expense of inordinate numbers of routine missions and

at very high cost.
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2.3 Incremental Constraint-based Search Models

The continuous, dynamic nature of the Barrel Master’s allocation problem restricts the appro-

priateness of various automated planning and scheduling techniques. For example, classical

fleet assignment solution procedures present several practical difficulties. First, they operate

as black-box solution generators, and, as such, provide no ability to control solution change

over time. Second, by virtue of their “re-solve from scratch” design, it can be difficult for

these techniques to keep pace with execution events as tempo increases. In commercial air-

line settings, these shortcomings are not that important, since the set of routes to be flown

tends to be rather stable (e.g., changing only month to month), and scheduling is more of

a periodic activity aimed at establishing assignments for the next period. However, in the

AMC environment, short notice (SAAM) missions mix with longer term (Channel) mission

sets to create dynamically changing demand patterns over time. This requires more atten-

tion to advance commitment, and since new orders must be “re-cut” each time a mission

is retasked there is pragmatic utility to minimizing disruption to scheduled missions when

responding to new mission requests. Moreover, the higher time pressure associated with cri-

sis situations puts increased emphasis on computationally efficient scheduling and allocation

processes. In these contexts, automated techniques that integrate flexibly and gracefully with

user decision processes is an important additional necessity.

Constraint-based search models provide a general approach to scheduling that is well

matched to the requirements of the Barrel Allocator’s allocation problem. Constraint-based

scheduling models combine principles of constraint programming and heuristic search in the

formulation and solution of scheduling problems (e.g.,[Smith et al., 1996, Cheng and Smith,

1997, Baptiste et al., 2001]). Figure 2.2 shows the basic framework, which consists of three

main components. In the center is an active data base, which contains a representation of the

current solution. As scheduling decisions are posted to or retracted from this data base, a set

of constraint propagation routines are triggered. Propagation computes the consequences of

any change for related scheduling decisions, possibly winnowing (or enlarging) the set of

feasible values for other decision variables or detecting a constraint conflict (which signi-

fies an infeasible state). The other two principal components of a constraint-based schedul-

ing model are commitment and retraction strategies/heuristics, which respectively guide the

search process in moving forward (e.g., allocating resources or assigning start and end times

to an as yet unassigned mission) or moving backward (e.g., unassigning a previously as-

signed mission) in the underlying search space. By configuring commitment and retraction
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Figure 2.2: Constraint-Based Scheduling Models

heuristics with different search control mechanisms and search space assumptions, it is pos-

sible to define a range of both constructive (i.e., global search) and repair-based (i.e., local

search) scheduling methods.

Constraint-based scheduling models are attractive in the current context for several basic

reasons:

� Incrementality - By definition, constraint-based scheduling models are incremental

decision-making procedures. As such, they provide a direct basis for managing solu-

tion change over time, and for minimizing undue disruption to the current schedule as

new demands (missions) are accommodated.

� Generality - Constraint-based models have been shown to operate efficiently under

quite general representational assumptions. Simple Temporal Problem (STP) con-

straint networks [Dechter et al., 1991], for example, allow expression of a diverse

range of relative and metric temporal constraints, while providing efficient incremen-

tal propagation algorithms. Similarly rich representations of resource constraints are

also possible.

� Configurability - Constraint-based search procedures are also quite compositional by

nature and these models tend to be easily reconfigured to accommodate new con-

straints and objectives [Smith et al., 1996]. In the case of the AMC Allocator described

below, this property is used to provide selective constraint relaxation capabilities in sit-

uations where all constraints cannot be simultaneously satisfied.
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2.4 The AMC Allocator

As just suggested, an incremental, constraint-based scheduling model provides the core ba-

sis for the functionality provided by the AMC Allocator, a software tool designed to address

the AMC Barrel Master allocation problem. Most basically, this model is used to define an

efficient solution to a dynamic, string-based variant of the fleet assignment problem. More

importantly from the standpoint of continuous operations, it is also used to define techniques

for selectively re-optimizing to accommodate higher priority missions while minimizing dis-

ruption to most previously scheduled missions, and for selectively “merging” previously

planned missions to minimize non-productive flying time. Finally, it is used to generate and

compare alternative constraint relaxation options.

The AMC Allocator has been developed using the Ozone scheduling framework [Smith et

al., 1996, Becker, 1998], a shell for constructing constraint-based scheduling applications.

Ozone consists of three major components: (1) a library of modeling primitives for con-

structing scheduling domain models, (2) an underlying constraint-based search architecture

(an elaborated version of the basic model in Figure 2.2), and (3) a library of scheduling and

rescheduling methods (encoding various commitment and retraction strategies/heuristics).

Through instantiation of an abstract domain model with modeling primitives that match the

characteristics of a given application domain, and selection of one or more basic scheduling

methods, it is possible to quickly obtain an executable model, and allow development effort

to quickly focus on the customizations of the model and the scheduling methods necessary

to obtain high performance. The Ozone application framework consolidates the results of

application building experiences in a wide range of complex scheduling domains.

The AMC Allocator itself currently provides two core sets of functionality to the AMC

Barrel Master: resource allocation and mission combination. Separate modules are provided

for airlift allocation and tanker allocation respectively, owing to differences in the nature

of these two allocation problems as currently structured within the Barrel Master office. In

all cases, functionality may be utilized in a more or less automated fashion, ranging from a

fully manual mode where the system does little more than decision bookkeeping, to a semi-

automatic mode, where the system generates alternative options and previews their impact,

to a completely automatic mode, where the system determines the best decisions based on

user-specified preferences. The system may also be invoked in an extended optimize mode,

in which case the underlying incremental search process that is performed is broadened.
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All of these capabilities are provided within a graphical, spreadsheet-like user interface,

designed to emphasize the real-time responsiveness of the system’s scheduling and allocation

procedures.

In the following subsections, we describe the representations and search procedures un-

derlying the AMC Allocator in more detail. The configurability of these search procedures

is considered in further depth in [Becker and Smith, 2000]. Other mixed-initiative aspects of

the approach are emphasized in [Kramer and Smith, 2002].

2.4.1 Representational Assumptions

Within the AMC Allocator, missions are represented as hierarchical task (or activity) net-

works. A mission expands into a network of more detailed flight segments and ground

activities. Flight segments correspond to individual legs of the mission’s itinerary; ground

activities model such activities as crew rest periods and aircraft preparation tasks. Each con-

stituent activity has a start time and an end time, and is linked via precedence constraints to

other mission activities. The duration of an activity is a function of its type. For example,

the duration of a flight activity depends on resource speed and the distance traveled from its

origin to its destination.3 For many ground events, durations are specified as fixed constants.

The duration of an aggregate activity (e.g., a mission) is the duration of its sub-network.

A mission specifies requirements for resource capacity for its entire duration. In the case

of airlift missions, some number of aircraft and aircrews of a particular type are specified. In

the case of air refueling (or tanker) missions, there is often flexibility with respect to type of

refueling aircraft, and the required numbers of aircraft and aircrews are derived from fuel of-

fload requirements and fuel carrying capacity limits. A mission also has associated temporal

restrictions on when it can execute. In the case of an airlift mission, execution is constrained

by its “Available to Load date” (ALD) and its “Latest Arrival Date” (LAD). Tanker mis-

sions, alternatively, must synchronize to arrive at the refueling point at the designated “Air

Refueling Control Time” (ARCT).

Aircraft and aircrews are modeled at an aggregate wing level. A wing designates a co-

located set of aircraft and aircrews of a particular type. It specifies a particular geographic

location, a pool (or fleet) of aircraft and a pool of aircrews. A given pool of aircraft or air-

crews has a total capacity, with each unit of capacity representing one aircraft or aircrew.

3Currently, distances are computed based on great circle route.
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The total capacity of a resource pool is partitioned into two subsets: contract capacity, rep-

resenting the capacity that has been budgeted to AMC and is available for allocation, and

fenced capacity, representing the aircraft that have been held back for the wing’s local use.

The contract and fenced capacity of a wing can vary over time, and resource availability will

become further restricted as capacity is assigned to specific missions over time. The avail-

able capacity of a resource pool is thus represented as a sequence of capacity intervals, each

recording the total, contract, fenced and available capacity over the interval spanned by its

start and end time. As missions are assigned to wings (or de-assigned) during the allocation

process, the affected portion (along the time line) of their available capacity representations

is updated to reflect the reserving (or freeing up) of required aircraft and aircrew capacity.

Thus resource capacity is represented and allocated over continuous time, at some level of

temporal granularity.

The output of the AMC Allocator (i.e., the current schedule) is a set of assignments of the

form (Mission, Wing, start-time, end-time), indicating that Wing will perform Mission over

the interval from start-time to end-time. To be feasible, such an assignment must satisfy the

following constraints:

� Wing capacity constraints - The cumulative resource requirements of all missions

assigned to Wing over the interval from start-time to end-time must not exceed the

number of contract aircraft or aircrews available at Wing for any �� start-time � � �

end-time.

� Resource ground time constraints - The assigned interval from start-time to end-time

must account for aircraft onload, offload and minimum time-on-ground requirements.

Each of these constraints is specified as a function of aircraft type.

� Flight duration constraints - The assigned interval from start-time to end-time must

account for cumulative flight time requirements, including necessary positioning and

depositioning flight segments.

� Aircraft range constraints - Any given flight segment inserted intoMission’s itinerary

as a consequence of assigning Wing must cover a distance less than the flying range of

the assigned aircraft type. In general, the creation of positioning flights, depositioning

flights and/or bridging legs (from offload of one mission to onload of the next) may be

implied by a given wing assignment.
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� Crew duty day constraints - Depending on positioning/depositioning considerations

and the crew type required by Mission - basic or augmented - it may be necessary to

insert crew rest periods at appropriate intermediate points of the mission to enforce

crew duty day restrictions. The assigned interval from start-time to end-time must

account for this additional constraint as well.

� Mission timing constraints - Finally, start-time and end-time must be consistent with

all timing constraints on the execution of Mission. In the case of an airlift mission, the

start of the first cargo carrying flight segment must be � Mission’s ALD, and the end

of the last cargo carrying leg must be � Mission’s LAD. For tanker missions, the end

time of the positioning flight must �Mission’s ARCT.

Given the oversubscribed nature of the Barrel Master allocation problem, it is not always

possible to satisfy mission time constraints with existing available lift capacity, and those

missions that cannot be feasibly scheduled at any point are designated as unassignable. In

such situations, the user may choose to analyze and compare options that involve relaxation

of various constraints. Currently, the following relaxed formulations may be solved to gen-

erate such options:

� Priority-based pre-emption - Every mission has a pre-defined priority that estab-

lishes its intrinsic importance. Under a priority-based pre-emption formulation, an

unassignable mission may obtain its required resource capacity by pre-empting (or

bumping) one or more previously assigned, lower-priority missions. If this occurs, the

set of pre-empted missions is then rescheduled in succession and may, in turn, find

alternative resource assignments at the expense of still lower priority missions. At

quiescence, any remaining unassigned missions become unsupportable and are added

to the current set of unassignable missions. When operating under this formulation,

additional constraints can be added by the user to exert greater control of the extent

of solution change. A mission locking mechanism allows any specific mission assign-

ment to be designated as unalterable. A freeze interval, specifying a period of time in

advance of execution within which pre-emption is not allowed, can also be imposed.

� Resource Over-allocation - Under this formulation, the aircraft and aircrew contract

capacity constraints are considered relaxable. Since the numbers of contract aircraft

and aircrews are typically smaller than the total number of assets possessed by the
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wing, the user may choose to go over the published contract levels of a given wing.

This happens with a fair amount of frequency. It generally reflects private knowledge

that the Barrel Master may have about wing assets or agreement on the part of the wing

to use fenced aircraft.

� Mission Delay - Under this formulation, the mission’s LAD constraint (in the case of

airlift) or ARCT constraint (in the case of refueling) is considered relaxable. The user

may consider the option of delaying the current mission until necessary resources are

available. If delay seems like a potentially viable alternative then this information can

be suggested to the mission planner.

� Alternative MDS - Under this formulation, the requirement that the mission use the

airframe (or MDS) type designed by the mission planner is relaxed, and alternative

aircraft types can be considered as a means of accommodating the mission. Due to

differences in carrying capacities of different aircraft, the numbers of aircraft and crews

required to support a mission may vary across aircraft type as well. As with mission

delay, potentially viable options can be communicated back to the mission planner as

suggestions.

� Composite mission constraint relaxations - Formulations that permit simultaneous

relaxation along multiple dimensions (e.g., Mission Delay and Priority-based Pre-

Emption, Mission Delay and Over-Allocation) are also possible.

� Mission Combination - By default, missions are flown as round trips from a partic-

ular home base. If the origin and/or destination do not coincide with this base, then

positioning and/or de-positioning flight segments are added into the mission itinerary.

In mission combination mode, the requirement that each mission be flown as a round

trip is relaxed, and opportunities to exploit non-productive flying time by “recycling”

an aircraft directly from the destination (offload) of one mission to the origin (onload)

of the next are sought. Mission combination can provide a direct option for supporting

an otherwise unassignable mission. It can also provide a basis for compressing the re-

source requirements of a set of previously assigned missions and reclaiming resource

capacity for other use.

Below, we outline solution procedures for these various problem formulations.
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2.4.2 Allocation of Airlift Assets

The central function supported by the Allocator is that of assigning planned missions to

wings over time. In typical mode of operation, there is an existing set of assignments (i.e.,

the current schedule) in place, and the problem is one of determining assignments for sets of

newly planned missions in the presence of this backdrop. Figure 2.3 graphically depicts the

basic search procedure used to make the wing/time assignment for a single mission.

The search procedure proceeds in 3 basic steps:

1. a set of candidate resources (wings) is generated,

2. for each candidate wing, a set of possible allocation intervals is generated, and

3. each �wing, allocation interval� pair is evaluated and the highest ranked candidate is

selected.

As implied by Figure 2.3, a full instantiation of the AssignMission search procedure

is obtained by specifying three components: a search operator for generating candidate re-

sources (referred to generically as �	
���������), a search operator for generating candidate

allocation intervals (generically called�	
��	��
���), and an evaluation metric (���

��	�����)

for ranking alternatives. By parameterizing the procedure to operate with different sets of

operators and evaluation criteria, resource assignments can be generated and evaluated under

a range of different constraint relaxation assumptions.

In the most basic case, AssignMission is configured to search only for feasible assign-

ments, i.e., �wing, allocation interval� pairs that are consistent with the time

and resource requirements specified by the mission and are also compatible with the assign-

ments of previously scheduled missions. This feasible configuration of AssignMission is

obtained by incorporation of the triple��	
������	����� ,�	
����������	� ,���
���� ������ ����.

Here, �	
������	����� generates candidate wings consistent with aircraft type requested by

the mission. Likewise, �	
����������	� scans a candidate wing’s aircraft and aircrew capacity

profiles for allocation intervals (1) with sufficient amounts of available capacity to support

mission requirements, (2) with a duration greater than or equal to the time required to accom-

plish the mission (a function of mission itinerary, aircraft speed, wing’s home base location,

crew rest requirements, and other constraints on duration identified in Section 2.4.1), and
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Figure 2.3: Basic search procedure for resource allocation. This example assumes that mis-

sion �� requires ���� aircraft with earliest pickup at �� and latest delivery by ��), and that

����s can be provided by either the 305th Air Mobility Wing (AMW), the 437th AMW, the

60th Air Wing (AW) or the 62nd AW.

(3) with start and end times that satisfies the mission’s earliest on-load time and latest off-

load time constraints. Candidates are differentiated on the basis of total flying time and the

candidate assignment that minimizes this metric is selected.

By selectively substituting different search operators and/or evaluation criteria,AssignMission

can alternatively be used to find assignments under various relaxed problem assumptions

identified in Section 2.4.1. For some types of constraints, relaxation simply implies the con-

sideration of a different discrete set of options. For example, substitution of�	
��	����	�
����

for �	
������	����� results in generation of assignments that consider types of aircraft other

than the type requested by the mission planner. For other classes of constraints, however,

relaxation is more continuous in nature, and in substituting a search operator that assumes

constraints can be relaxed, the search must also be biased to promote their satisfaction to the

extent possible.
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By varying the operator used to generate allocation intervals and the evaluation metric

used to prioritize candidate solutions, a number of useful AssignMission configurations

are defined:

� Delay - Incorporation of the triple��	
������	����� , �	
�������	� , ���
�������������

yields an assignment procedure which assumes that mission deadlines can be relaxed

if necessary. �	
�������	� uses the same mechanism used by �	
����������	� but con-

siders a larger portion of the candidate wing’s aircraft and crew capacity profiles, and

���
������������ ensures that the mission deadline will be relaxed to the minimum

extent possible

In this configuration and others, advantage can be taken of the relationship between

search operator and evaluation criterion to effectively constrain the number of can-

didate solutions generated. For example, by scanning forward in time through the

capacity profiles of required resources, the first interval with available capacity found

will be the one that minimizes delay for that resource. If this approach is taken only

one interval need be generated for each candidate resource. In other configurations

(e.g., the pre-emption case below), where there is no such dominance condition for

constrained solution generation, more ad-hoc heuristic cutoffs can be used.

� Over-allocation - The triple ��	
������	����� , �	
�
����	�, ���
����
�������� de-

fines an assignment procedure where capacity constraints are relaxable. �	
�
����	�
scans the capacity profile of a candidate wing, but generates allocation intervals that

extend above the wing’s “contracted” level (i.e., dipping into its locally reserved or

“fenced” pool of aircraft capacity). ���
����
������� promotes selection of the gen-

erated allocation interval that minimizes the level of over-allocation.

In this case, maximal intervals at different levels of over-allocation can be efficiently

generated via linear scans of the capacity profiles of the two required resources, and

subsequently pruned to minimize the temporal extent of over-allocation.

� Priority-based Pre-emption - A configuration which assumes that some number of

previously made assignments can be relaxed (or disrupted) is defined by the triple

��	
������	����� , �	
������	�, ���
���������	����. This configuration implements

a form of pre-emption, based on mission priority. In scanning a candidate wing’s

capacity profile, �	
������	� considers capacity currently allocated to lower priority
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missions as available for assignment, and generates allocation intervals based on this

assumption. ���
���������	��� promotes allocation intervals that disrupt the fewest

missions and those with the lowest priority. This minimizes the cascading effect (since

any mission that is pre-empted by a higher priority mission is recursively re-scheduled

using the same procedure).

Given the combinatorial number of allocation intervals that can be generated via a

complete capacity profile scanning procedure (���� � where � is the capacity of the

resource and � is the duration of capacity profile fragments), our current implemen-

tation utilizes a linear, heuristic sampling strategy compatible with ���
���������	���.

Briefly, allocation intervals are generated by single forward scan through the required

resources’ capacity profiles over the time interval where capacity is required. At each

time point encountered during the scan, the set of pre-emptable missions is computed.

If non-empty, the current allocation interval is extended by (1) computing the subset

of pre-emptable missions of lowest priority and (2) selecting the mission in this subset

that maximally extends the current interval. If there are no pre-emptable missions, the

current allocation interval is ended (and retained if of sufficient duration), and the scan

continues at the start point of the next pre-emptable mission.4

� Composite Relaxations - Components of the above base configurations can also be

composed to define configurations of AssignMission where multiple constraints

are simultaneously relaxed.

AssignMission (in any of the configurations described above) can be applied to any

selected set of missions via the AssignMissions procedure given in Figure 2.4. Within

this Constraint Satisfaction Problem Solving (CSP) style search procedure, the sort-order

parameter determines the overall variable-ordering strategy (i.e., the order in which missions

are selected for assignment). In the current implementation, mission priority (first) and latest

delivery date (second) are used as a heuristic basis for prioirtizing unassigned missions. Input

missions are sorted on this basis (within SelectMission) and AssignMission is then

sequentially applied to each to allocate required resources (using whichever of the above

configurations has been designated).

4An alternative heuristic strategy, which attempts to find pre-emptable missions that best match target “re-

source area” requirements, is described in [Zhou and Smith, 2002]. Though somewhat more costly computa-

tionally, this approach has been found to be considerably less disruptive than the above strategy, and we plan

to incorporate it as an option in a future Allocator release.
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———————————————————————————————————–

AssignMissions(�
�����
	�������
�� ��
���������
� sort-order)

While �
�����
	�������
� �� � Do

� � SelectMission(�
�����
	�������
�� sort-order)

�
�����
	�������
�� �
�����
	�������
�� ���

If AssignMission(�� ��
���������
)

Then ������� � assigned

Else ������� � unassignable

EndWhile

End

———————————————————————————————————–

Figure 2.4: Overall Mission Scheduling Procedure

In cases where a given mission has no feasible assignments (i.e., AssignMission(M,

feasible) is applied and returns no solution), an exploration of possible relaxation op-

tions can be conducted through repeated application of AssignMission in different con-

figurations. In the current implementation, this procedure is used in what-if mode to generate

alternative options, and the user performs the evaluation and selection. Figure 2.5 shows a

sample output as displayed within the Allocator’s “Compare Options” interface.

2.4.3 Allocation of Air Refeuling Missions

The process of allocating wings to refueling or ”tanker” missions is similar to that used

for assignment of airlift missions, but requires an important extension. Tanker missions are

generated and sourced to satisfy an air refueling (AR) request, which minimally calls for a

specified amount of fuel to be delivered to a particular rendezvous point at a particular time.

The number of tanker missions required to satisfy a given AR request will be a function of

the fuel required and the fuel capacity of aircraft allocated, and hence may not be specified in

advance. The AR request may also specify a particular aircraft type and possibly a preferred

wing assignment, which is referred to as a specific tanker request.

Given these distinctions, the tanker allocation process must incorporate an additional mis-

sion planning function. The extended AssignRequest procedure is given in Figure 2.6,
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Figure 2.5: Generating Options for an Unassignable Mission
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————————————————————————————————————

AssignRequest(��� ��
���������
)

While �	����	���	
�� � � Do

� � GenerateNewTankerMission(��)

If AssignMission(�� ��
���������
)

Then �	����	���	
�� � �	����	���	
��� ��	
���������

Else �������� � unassignable ; Return

EndWhile

�������� � assigned

End

———————————————————————————————————–

Figure 2.6: Air Refueling AssignRequest Procedure

In this procedure a mission generation and assignment loop is iterated until either the fuel

requirement has been satisfied or it is determined that the AR request is unsupportable. As

indicated, the full range of AssignMission configurations available for airlift allocation are

equally applicable in the air refueling allocation context.

2.4.4 Mission Combination

A second core function provided by the Barrel Allocator is mission combination. This ca-

pability is defined by coupling the basic AssignMission procedure with a procedure for

generating possible mission pairings.

More specifically, the process of merging a given mission � with another existing mission

proceeds in three basic steps:

1. Generate a set of possible composite missions - In this step, all possible composite

missions involving � are generated. For any pair of missions (��,��), there are two

potential pairings: one in which mission �� flies after the end of mission��’s last leg;

and one in which mission �� flies after mission ��. A possible combination is one

which (1) satisfies the conjunction of constraints established by spatial and temporal

restrictions, and (2) establishes user-imposed limits on acceptable candidates. The user

may specify three additional constraints on acceptance:
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� a minimal percentage reduction in total duration of the combined mission,

� a maximum layover time between missions, and

� a maximum distance between the destination of the first mission and the origin

of the second.

The output of this step can be seen as the set of all notional composite missions �

resulting from concatenation of possible combination pairs (��,��).

2. Generate set of feasible composite missions - In this step AssignMission is applied

to each candidate� identified in step 1 to determine the set of composite missions that

are resource feasible (i.e., there is available resource capacity to support the compos-

ite mission over its entire duration). Although currently only feasible allocations are

considered, any of the relaxed AssignMission configurations could also be used.

3. Selection of best candidate - Once all feasible combinations have been determined, the

candidate providing the largest overall reduction in airplane flying time is selected.

Figure 2.7 summarizes the mission combination procedure. Note that although

CombineMission performs only pairwise merging of missions, the combination of larger

numbers of missions can be accomplished by recursively applying the algorithm to compos-

ite missions.

2.4.5 Incremental Optimization

The above described procedures are designed to flexibly support a continuous, interactive

resource management process. New missions are integrated incrementally as problem con-

straints permit, and in circumstances where missions cannot be feasibly accommodated, a

range of constraint relaxation and solution change options can be explored to find acceptable

compromises and increase the number of supportable missions. In operation, the system

provides an efficient, mixed-initiative decision-making environment – a 2 week interval of

missions extracted from the current AMC data base (approximately 1000 missions, 5000

flights) is scheduled from scratch in less than 5 seconds on a Pentium 4 1GHz machine.

More typical incremental planning and scheduling actions are executed in real-time.
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———————————————————————————————————

CombineMission(���� !����	���� �����
�	��	��	������
)

"����#
	��$#�
����
�� �

For each mission pair ������� � ��� 	�� � �� 
 ��� �� ��� Do

� � GenerateCompositeMission(�����) ; � = ��+����+��

If ConstraintsSatisfied(���� !����	���� �����
�	��	��	������
)

Then "����#
	��$#�
����
�� "����#
	��$#�
����
�� ���

EndFor

��
�����	�� �

For each � � "����#
	��$#�
����
� Do

If AssignMission(�,feasible) Then ��
�����	�� ��
�����	�� ���

EndFor

SelectCandidate(��
�����	�����
�� �������)

End

———————————————————————————————————-

Figure 2.7: Mission Combination Procedure
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This efficiency is gained principally through reliance on search heuristics, and within the

core Allocator procedures, automated solution generation is strongly biased by mission pri-

ority. This coincides well with AMC business practice, but can also sometimes result in

missed opportunities to support additional lower priority missions.

To compensate for such circumstances, we have been exploring the development and use

of incremental optimization procedures, which can be applied at extended computational

cost when decision time constraints permit. One simple example provided within the current

Allocator release is a “resource usage compression” capability, which applies the basic mis-

sion combination procedure discussed above to the entire set of missions allocated to a wing

(or set of wings) over some interval, to identify opportunities for more efficient recycling of

assets and to reclaim resource capacity for additional tasking.

Another incremental optimization procedure we have recently developed attempts to incor-

porate additional missions by temporarily de-emphasizing mission priority as a pre-emption

criterion and exploring other feasible �resource, allocation interval� assignments for se-

lected higher priority missions [Kramer and Smith, 2003]. One consequence of the priority-

based allocation bias of the core AssignMissions procedure is that some (higher prior-

ity) missions with greater scheduling flexibility may be assigned before other (lower priority)

missions with less scheduling flexibility; and this possibility can lead to sub-optimal greedy

commitments that leave lower priority missions unassignable. The MissionSwap proce-

dure (see Figure 2.8) is designed to provide a framework for locally rearranging assignments

to take better advantage of the collective scheduling flexibility associated with a given set of

competing missions. It proceeds by retracting some number of currently assigned missions,

which frees up capacity sufficient to enable insertion of the (previously unassignable) input

mission. MissionSwap is then recursively called for each retracted missions that cannot

be immediately assigned elsewhere (by a subsequent call to AssignMission), with the

additional constraint that once a mission has been reassigned via a swap move, it is “pro-

tected” from further retraction.5 In our current implementation, the results of MissionSwap

are incorporated conditionally; If the procedure bottoms out with feasible reassignments for

all retracted missions, then the results are accepted as a new improved solution. Alterna-

tively, if all retracted missions cannot be feasibly reassigned, then the solution is restored to

5It should also be noted that since this and other incremental optimization procedures utilize the same

underlying search infra-structure, additional constraints can always be introduced to prohibit the system from

changing specific allocation decisions if greater control over solution change is required.
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—————————————————————————————————-

MissionSwap(��"���	��	�������
�)

��
�
����	�� ComputeCapacityConflicts (� )

�	�����	�� RetractMissions (��
�
����	�� " ���	��	�������
�)

if �	�����	� � � then Return(�) ; no possibility to assign �

"���	��	�������
�� "���	��	�������
� � ���

AssignMission(�, feasible)

AssignMissions(�	�����	�, feasible, least-flexible-first)

For each (� � �	�����	� 
 ������� � unassignable) do

"���	��	�������
�� MissionSwap(�� " ���	��	�)

if "���	��	�������
� � � then Return(�) ; unable to reassign �

EndFor

Return("���	��	�������
�) ; success

End

—————————————————————————————————–

Figure 2.8: Mission Swap Procedure

its prior state and the original input mission is returned to “unassignable” status”.

Central to the effectiveness of this swapping procedure is the heuristic employed to select

which mission or missions to retract in a given conflict situation. Conceptually, one would

like to retract the mission (or missions) that possess the greatest potential for reassignment.

One simple estimate of this potential is the scheduling flexibility provided by a mission’s

feasible execution window. More precisely, we define the flexibility of a given mission $ as

�
	 � �

�
����alloc-dur���

�
��� � 	����
 ����

where �� is the set of alternative resources (i.e., wings) that could support $, alloc-dur���
is the duration that resource � would require to perform $, 	��� is the earliest start time of

$, and 
��� is the latest finish time of $. This measure of scheduling flexibility gives rise

to the following retraction heuristic:

�� �
	 � � � � � �
	 � � �
	 !�% �� �

where � is a set of conflicting missions in the ��
�
����	�� for some unassignable task �.

This �� �
	 heuristic drives the RetractMissions step of MissionSwap.
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Preliminary experimental analysis of the performance of theMissionSwap procedure on

representative AMC mission data at different levels of resource contention has indicated an

ability to substantially improve the airlift schedules initially produced by AssignMissions

in certain circumstances. As well, the �� �
	 heuristic has been shown to consistently

outperform several, more complex “contention-based” retraction heuristics at a fraction of

the computational cost. The reader is referred to [Kramer and Smith, 2003] for a complete

description of this incremental optimization procedure and for full details of these initial per-

formance results. Our current work is investigating the performance/cost tradeoffs associ-

ated with variants of MissionSwap that carry out additional search when initial retraction

choices don’t pan out. We anticipate full incorporation of this capability in a future Allocator

release.

A final longer-term approach to incremental optimization that we have been exploring

involves the use of randomization to boost the performance of search heuristics [Cesta et

al., 2002, Cicirello and Smith, 2002]. This work assumes an iterative sampling approach,

where solutions (schedules) are generated repeatedly through non-deterministic application

of base search heuristics. The key idea is to bias the degree of randomness to the level of

discrimination provided by the heuristic in different decision contexts; when the heuristic

clearly favors one choice over others, choose more deterministically, and vice versa when

the heuristic is less informing choose more randomly. These techniques have yielded strong

performance on classical scheduling problems but have not yet been extended to deal with

the full range of constraints in the Barrel Master allocation problem.

2.5 Project History and Status

The AMC Allocator was developed initially under sponsorship of the Joint Department of

Defense Advanced Research Projects Agency/USAF Research Laboratory (DARPA/AFRL)

Planning Initiative Program. Following early success within this core technology devel-

opment program in the area of constraint-based planning and scheduling, we were put in

contact with AMC in hopes of identifying potential avenues for future technology transition.

The AMC Barrel Master allocation problem was selected as an initial application focus,

and several successively more sophisticated Allocator prototypes were developed over the

following two years. Following positive evaluation by AMC personnel in 1999, a decision

was made to transition the Allocator technology into operations within the TACC. In April
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2000, project sponsorship shifted from DARPA/AFRL to AMC, with research and devel-

opment work continuing under subcontract to Northrop Grumman Information Technology

(NGIT), the prime contractor of AMC’s operational Consolidated Mobility Planning System

(CAMPS). This collaboration with NGIT is ongoing.

A version of the Allocator supporting airlift allocation was first incorporated as a module

of the AMC’s Consolidated Air Mobility Planning System (CAMPS) for user testing and

experimental evaluation in September 2000. In this preliminary insertion, where the goal

was to gain experience and build user acceptance, provisions were made to shadow the op-

erational CAMPS business process rather than directly manipulate the data in the CAMPS

data base. In retrospect, this decision turned out to be ill-advised, since users essentially had

to do “double work” to make use of the new technology. Nonetheless, considerable insight

was gained regarding how to better insert the Allocator technology into current CAMPS

business processes. Following this feedback, and a programmatic decision to refocus on the

Tanker Barrel’s problem and processes, an enhanced AR (Air Refueling) Allocator module

as been developed and integrated into CAMPS. In May 2003, this version of the Allocator is

scheduled for initial operational release as part of CAMPS Release 5.4. At this point, Tanker

Barrels will commence training for actual operational use.

2.6 Summary and Current Directions

In this paper we have described the incremental, constraint-based scheduling model that un-

derlies the design of the AMC Allocator. The model is particularly well suited to the contin-

uous nature of the AMC Barrel Master allocation problem, where newly planned missions

must be integrated into an evolving global schedule on an ongoing basis. In this environ-

ment, it is important to manage solution change, as it can be unproductive and costly to

continually redirect various executing agents. The incremental scheduling and allocation

procedures provided by the Allocator directly address this issue. When possible, they allow

new missions to be incorporated without change to previous allocation decisions. In situa-

tions where non-disruptive allocation is not possible, the procedures support generation of

multiple change options and promote selective, controlled manipulation of previous alloca-

tion decisions. These capabilities are provided in a real-time, interactive decision-support

framework.

Our current research aims at broadening the scope and applicability of the Allocator func-
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tionality. One major thrust aims at integration with “state of the world” information updates.

Although current application of the technology within the Barrel Master office aims primar-

ily at supporting the AMC mission planning process in advance of execution, the incremen-

tal scheduling and allocation capabilities provided by the Allocator are equally applicable

in the context of execution management, where unexpected events (e.g., aircraft failures,

base closures) often necessitate reassessment of current plans. Furthermore, there is in-

creasing momentum within AMC and the TACC toward tighter integration and information

flow between planning and execution offices, which can be expected to provide the basis for

more execution-driven planning and allocation processes. Our work here is focusing on (1)

techniques for reconciling actual execution status with expectations contained in the current

schedule and recognizing the need for change, (2) tools for visualizing current replanning

problems and opportunities, and (3) strategies and heuristics for responding to unexpected

execution events.

A second thrust of our current research is on expanding the core search procedures to

incorporate a larger and more diverse set of mission planning and scheduling constraints. In

some cases, these model extensions correspond directly to the additional types of constraints

that come into play in closing the loop with execution. Others relate to a desire to explore the

applicability our current incremental constraint-based search approach to upstream mission

planning problems.
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Chapter 3

An Ontology for Constructing

Scheduling Systems

Summary: In this chapter, we consider the use of ontologies as a basis for structuring and simplifying the

process of constructing domain-specific problem-solving tools. We focus specifically on the task of scheduling.

Though there is commonality in scheduling system requirements and design at several levels across application

domains, different scheduling environments invariably present different challenges (e.g., different dominating

constraints, different objectives, different domain structure, different sources of uncertainty, etc.), and hence

we can expect high-performance application systems to require customized solutions. Unfortunately, the time

and cost associated with such domain-specific system development at present is typically quite large.

Our work toward overcoming this application construction bottleneck has led to the development of OZONE,

a toolkit for configuring constraint-based scheduling systems. A central component of OZONE is its scheduling

ontology, which defines a reusable and extensible base of concepts for describing and representing scheduling

problems, domains and constraints. The OZONE ontology provides a framework for analyzing the informa-

tion requirements of a given target domain, and a structural foundation for constructing an appropriate domain

model. Through direct association of software component capabilities with concepts in the ontology, the ontol-

ogy promotes rapid configuration of executable systems and allows concentration of modeling effort on those

idiosyncratic aspects of the target domain. The OZONE ontology and toolkit represent a synthesis of exten-

sive prior work in developing constraint-based scheduling models for a range of applications in manufacturing,

space and transportation logistics.

We first motivate the use of ontologies as model building tools, establishing linkages to recent concepts in

software engineering and proposing an extended view of ontologies that includes capability descriptions. We

then describe our perspective on the structure of planning and scheduling domain models and summarize major

components of current OZONE scheduling ontology.1

1An earlier version of this chapter appeared as Smith, Stephen F. and Becker, Marcel A., “An ontology for
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3.1 Ontologies and Model Building

In recent years, the field of software engineering has placed increasing emphasis on soft-

ware reusability as a key to reducing the time and cost of application system construction

and maintenance. Techniques for development and (re)use of software components have

received wide attention and use [Biggerstaff and Perlis, 1989, Krueger, 1992], and tools

that support system development from reusable building blocks are maturing [Cotter, 1996,

Smith, 1990, Batory and O’Malley, 1992]. Despite this activity, however, the systematic

development of applications from components remains an open issue. One obstacle stems

from the lack of communication and coordination between component developers (who must

design for reuse) and component users (who design with reuse) [Becker and Dı́az-Herrera,

1994]; overly complex components are difficult to reuse while overly simple components

do not provide sufficient building blocks. Two current areas of software engineering re-

search aimed specifically at promoting reusability are (1) domain analysis [Hess et al., 1990,

Arango and Prieto-Dı́az, 1991] and (2) software architectures [Garlan and Shaw, 1994,

Clements, 1996]. Methodologies for domain analysis center around formulation of a do-

main model, which is intended to precisely delineate the scope of an application domain, the

objects in this domain, desired system functionalities and features, and the dimensions along

which these functionalities vary. Research in software architecture has focused on categoriz-

ing reusable architectural styles [Garlan et al., 1994], on architectural description languages

[Shaw and Garlan, 1994], and on architectural patterns [Gamma et al., 1994] that support

composition of components. What is missing are mechanisms to support the transition from

(abstract) domain models to specific architectural designs and system implementations.

Within the artificial intelligence community, issues of knowledge acquisition and knowl-

edge sharing have raised similar software reuse challenges, and have pushed research in

related directions. Knowledge engineering, for example, has evolved from a process con-

cerned principally with knowledge extraction, where each application is considered uniquely,

to a model construction process, where applications are categorized according to type of task

and applicable methods [Wielinga et al., 1992, Steels, 1990]. Similarly, trends toward defini-

tion of generic tasks and task-specific problem solving architectures (e.g., [Chandrasekaran,

1986]) are motivated by many of the same reasons that underlie software architecture re-

search. One important area of recent research in knowledge-based systems has been the

Constructing Scheduling Systems”, Proceedings AAAI Spring Symposium on Ontological Engineering, Palo

Alto, CA, 1997.
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development and use of ontologies [Gruber, 1993, Uschold, 1996, Swartout et al., 1996].

This work has concentrated primarily on issues of reusable or sharable knowledge bases, fo-

cusing on formalizing particular bodies of knowledge, on languages for encoding ontologies,

and on methodologies for ontology construction. The broader relevance of ontologies to de-

sign and specification of task-specific problem solvers has also been recognized [Wielinga

et al., 1992, Wielinga and Schreiber, 1993], but has received less attention.

The work reported in this paper takes a similar, extended view of the role of ontologies.

We advocate the use of ontologies as a means of bridging the gap between domain analy-

sis and application system construction. Our basic approach is to consider an ontology as

a framework for specifying models in a particular problem domain, i.e., a meta-model that

provides a vocabulary for formulating application models in this problem domain, as well

as a set of constraints on what can be expressed. The scope of the ontology is restricted

to a particular problem domain, which permits much stronger assumptions to be made with

regard to system architecture and sub-structure. On this basis, concepts in the ontology can

be explicitly linked to software component capability descriptions, enabling the ontology to

serve both as an mechanism for indexing and retrieving relevant software components and

as a specification of overall configuration requirements. More generally, the association of

component capabilities with concept definitions in the ontology promotes direct configura-

tion of executable systems from specification of an abstract domain model.

This approach to application system construction underlies the design of OZONE, an

object-oriented toolkit for configuring constraint-based scheduling systems [Smith et al.,

1996, Becker, 1998]. In the sections below, we describe the ontology that OZONE provides

for formulating scheduling domain models.

3.2 The Structure of Domain Models in OZONE

As discussed above, the OZONE scheduling ontology can be characterized as a meta-model

of the domain of scheduling. It provides a language for describing those aspects of the

scheduling domain that are relevant to construction of an application system, and a set of

constraints on how concepts in the language fit together to form consistent domain models.

Consistency, in this context, relates to the information and knowledge required to insure

executability of the model. Generally speaking, the ontology serves to map user-interpretable

descriptions of an application domain to application system functionality.
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This linkage is established within the OZONE ontology through the inclusion of capabil-

ities as an integral part of concept definition. Capabilities provide an operational semantics

to the concepts defined in the the ontology, in a form that reflects a specific bias with respect

to application system design. In particular, the ontology presumes an underlying constraint-

based solution framework and scheduling system architecture [Smith, 1994, Smith et al.,

1996]; this commitment follows directly from the strong match of constraint-based tech-

niques to the decision-support requirements of practical scheduling environments. Capa-

bilities, then, encapsulate reusable components for configuring and customizing constraint-

based solution methods. For example, the concept of a “resource” contributes capabilities for

querying and managing its available capacity over time, and different resource types (e.g.,

reusable, consumable) provide specific “implementations”. Given a solution method that

incorporates these capabilities, the ontology provides a direct basis for its customization to

match the resources in any target domain.

In the remainder of this section, we summarize the basic components of the OZONE

scheduling ontology. By convention, we use capitalization to distinguish specific concepts

that are included. We start with an overview of the principal concepts involved and their

inter-relationships, and then consider each individually in more detail.

3.2.1 Basic components of scheduling models and their relationships

Like several contemporary process modeling and ontology development efforts [Uschold et

al., 1996, Gruninger and Fox, 1994, Le Pape, 1994, Lee et al., 1996, Tate, 1996, Smith,

1989] the OZONE scheduling ontology adopts an activity-centered modeling viewpoint.

Scheduling is defined as a process of feasibly synchronizing the use of RESOURCES by

ACTIVITIES to satisfy DEMANDS over time, and application problems are described in

terms of this abstract domain model. Figure 3.1 illustrates the base concepts involved and

their structural relationships. A DEMAND is an input request for one or more PRODUCTS,

which designate the GOODS or SERVICES required. Satisfaction of DEMANDS centers

around the execution of ACTIVITIES. An ACTIVITY is a process that uses RESOURCES

to produce goods or provide services. The use of RESOURCES and the execution of AC-

TIVITIES is restricted by a set of CONSTRAINTS.

These five base concepts of the ontology -DEMAND, ACTIVITY, RESOURCE, PROD-

UCT, and CONSTRAINT - together with the inter-relationships depicted in Figure 3.1, de-
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Figure 3.1: Abstract Domain Model

fine an abstract model of a scheduling domain, and a framework for analyzing and describing

particular application environments. Associated with each concept definition are terminolo-

gies for describing basic properties and capabilities. Properties define attributes or parame-

ters of relevance to specifying an executable scheduling model. The abstract model and its

properties are extensible through concept specializations to define more specific models for

various subdomains. Figure 3.2 indicates model specializations for two such subdomains:

manufacturing production scheduling and transportation scheduling. Capabilities designated

in the abstract model, alternatively, establish protocols for operationalizing concept defini-

tions in terms of the component functionality required to compose overall solution methods.

Specializations of concepts in the abstract model, then, provide a library of implementations

that reflect important ontological distinctions. In this respect, the abstract model underlying

the OZONE ontology can be viewed as a template for specifying executable domain models.

3.2.2 Associated Capabilities

The capabilities defined in the abstract domain model relate generally to aspects of solution

and constraint management, and, as indicated earlier, are rooted in an underlying constraint-

based problem solving model. In OZONE, plans and schedules are represented as networks

of ACTIVITIES, with an ACTIVITY containing various decision variables (e.g., start time,

end time, assigned resources). To construct a schedule that satisfies a given input DEMAND,

it is necessary to first instantiate a set of ACTIVITIES that will produce (provide) the desig-

nated PRODUCT. This instantiation process is accomplished by Instantiate-Product-Plan, a

joint capability of DEMAND and PRODUCT that integrates prototype plan information de-

fined by the PRODUCT with the specific parameters of the triggering DEMAND. One con-

sequence of Instantiate-Product-Plan, for example, is the imposition of constraints on the
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Figure 3.2: Layered models of scheduling subdomains

start and end times of instantiated activities following from the READY and DUE DATES

specified in the DEMAND.

To schedule an ACTIVITY, it is necessary to choose specific RESOURCES, which in-

volves determining intervals where resources have capacity available to support execution

of the ACTIVITY, and subsequently allocating capacity of chosen RESOURCES to en-

sure that they will not be used by other ACTIVITIES. The semantics of allocating (and

de-allocating) resource capacity varies according to the type of RESOURCE involved, and

hence a RESOURCE provides primitive Allocate-Capacity and Deallocate-Capacity capa-

bilities. To this end, a RESOURCE maintains a representation of its available capacity over

time. A third RESOURCE capability, Find-Available-Time, uses this representation to pro-

vide a mechanism for identifying intervals of time where the RESOURCE currently has

available capacity.
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A Find-Schedulable-Time capability is associated with an ACTIVITY, which intersects the

availability intervals found by a given set of required RESOURCES. This capability, and a

companion Find-Alternative-Resources capability, provide generic primitives for elaborating

a space of alternative decisions. Another pair of ACTIVITY capabilities, Reserve-Resources

and Free-Resources, provide complementary primitives for committing to and retracting spe-

cific scheduling decisions. Both Reserve-Resources and Free-Resources rely, in turn, on the

Propagate-Constraints capabilities associated with temporal and value CONSTRAINTS to

incrementally update the possible values for various decision variables.

3.3 The OZONE Scheduling Ontology

In the following subsections, we consider the five basic components of the OZONE schedul-

ing ontology in more detail. In doing so, we assume the existence of basic temporal concepts

such as TIME-INTERVALS and TIME-POINTS (c.f. [Allen, 1984]).

3.3.1 DEMANDS

Concept Definition.

A DEMAND is a request for goods and services, or more generically PRODUCTS, that

the system being modeled can provide. DEMANDS specify the input goals that drive the

system, along with any CONSTRAINTS that must be taken into account when achieving

them. The set of outstanding DEMANDS at any point determine the current scheduling

problem to be solved.

Properties.

A DEMAND has several defining properties:

� PRODUCT - The PRODUCT is the object of the DEMAND. It specifies the type of

good or service that is requested.

� RELEASE-DATE - The earliest time an ACTIVITY for achieving the DEMAND can

start.
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� DUE-DATE - The latest time an ACTIVITY for achieving the DEMAND should end.

� TEMPORAL-RELATIONS - These are synchronization constraints with respect to

achievement of other system DEMANDS

� PRIORITY - The relative importance of the DEMAND, providing a basis for estab-

lishing a partial ordering over the entire set of demands.

� ACTIVITIES - The set of activities that fulfill the DEMAND. As indicated earlier,

these are determined by Instantiate-Product-Plan, a joint capability of DEMAND and

PRODUCT concept definitions.

For most types of DEMANDS, there will be additional parameters which further specify

the requested PRODUCT. DEMAND parameters will vary for different types of goods or

services, but typical parameters include:

� QUANTITY - A parameter relating to the size of the DEMAND (e.g., the number of

goods requested, the amount of material to be processed)

� MATERIAL - A parameter relating to the type of material that must be processed

� ORIGIN, DESTINATION - If the DEMAND is a request for material to be moved,

then ORIGIN and DESTINATION locations are necessary parameters

3.3.2 PRODUCTS

Concept Definition.

A PRODUCT is a good or service provided by some system of interest. A PART-TYPE

is a typical PRODUCT of a manufacturing system; a transportation system alternatively

provides TRANSPORT-SERVICES. A PRODUCT is realized through execution of some

set of activities. A DEMAND for a PRODUCT is considered satisfied when all of these

activities have completed.
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Properties.

From the standpoint of managing system activities in response to external DEMANDS, prop-

erties of interest in defining a PRODUCT relate to the mapping from DEMANDS to ACTIV-

ITIES. Specifically, a PRODUCT definition includes the following:

� ACTIVITIES - the set of processing steps required to produce or provide the PROD-

UCT (i.e., a plan for realizing this PRODUCT)

� RESOURCES - the set of resources that can be utilized to execute various ACTIVI-

TIES of the PRODUCT plan.

A PRODUCT specification, together with the constraints and parameters of a request-

ing DEMAND, enables instantiation of a set of ACTIVITIES for fulfilling the DEMAND

(Instantiate-Product-Plan). From a scheduling perspective, these ACTIVITIES contain the

decision variables (start times, end times, assigned resources) of the problem to be solved;

and the instantiation process restricts the domains of these decision variables according to

the constraints specified in the DEMAND.

3.3.3 RESOURCES

Concept Definition.

Central to the definition of our scheduling ontology is the concept of a RESOURCE. A RE-

SOURCE is an entity that supports or enables the execution of ACTIVITIES. RESOURCES

are generally in finite supply and their availability constrains when and how ACTIVITIES

execute. Making efficient use of RESOURCES in support of multiple, competing ACTIVI-

TIES is the crux of the scheduling problem, and, from the standpoint of constructing schedul-

ing models, the distinguishing characteristics of RESOURCES relate to constraints on their

availability.

The availability of a RESOURCE can be defined generally in terms of some dynami-

cally changing aspect of state. Most typically, a RESOURCE is modeled as providing some

amount of CAPACITY, a numeric quantity which varies over time as a function of allocat-

ing the RESOURCE to various ACTIVITIES and its associated allocation semantics. This

is the approach taken in [Fadel et al., 1994, Uschold et al., 1996]. However, there are also
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RESOURCES whose availability is more a function of qualitative state: ACTIVITIES re-

quire the RESOURCE to be in a particular state or subset of possible states (e.g., to be idle

as opposed to busy) rather than requiring that the RESOURCE have a sufficient amount of

CAPACITY. Hence we distinguish two broad classes of resources from the standpoint of

availability:

� CAPACITATED-RESOURCES - RESOURCES whose availability is characterized

in terms of the amount of CAPACITY that is available. In this case, concept special-

izations provide capabilities for maintaining a representation of available capacity over

time (Increase-Capacity, Decrease-Capacity), for allocating and deallocating capacity

to activities (Allocate-Capacity, DeAllocate-Capacity), and for finding periods where

capacity is available (Find-Available-Time).

� DISCRETE-STATE-RESOURCES - RESOURCES whose availability is a function

of some discrete set of possible state values. Here definitions provide analogous capa-

bilities for querying, updating and protecting state values over time.

In the case of CAPACITATED-RESOURCES, constraints on availability (i.e. usage of

capacity) depend on several different properties of the resource. One determining character-

istic is whether RESOURCE CAPACITY is used or consumed by an ACTIVITY when it is

allocated:

� A REUSABLE-RESOURCE, is a RESOURCE whose capacity becomes available

for reuse after an ACTIVITY to which it has been allocated finishes. We say that the

ACTIVITY uses the RESOURCE[Uschold et al., 1996]

� A CONSUMABLE-RESOURCE, is one whose CAPACITY, once allocated to an

ACTIVITY does not become available again. We say that the ACTIVITY consumes

the RESOURCE.

Though we could further distinguish a third class,RENEWABLE-RESOURCES, to refer to

RESOURCES that have their CAPACITY increased by ACTIVITIES [Fadel et al., 1994],

we instead consider production of RESOURCE CAPACITY to be a separable issue. In our

model, ACTIVITIES utilize RESOURCES to produce PRODUCTS. In a resource produc-

ing ACTIVITY, the RESOURCE CAPACITY generated is the PRODUCT (or output) of the

43



ACTIVITY; it is not assuming the role of a RESOURCE in this context. Moreover, RE-

NEWABILITY is a property that is equally relevant to REUSABLE-RESOURCES as well

as CONSUMABLES. Any RESOURCE can be designated as RENEWABLE by additionally

defining it to be a PRODUCT.

A second aspect of RESOURCES that impacts usage (or consumption) of CAPACITY by

ACTIVITIES is physical structure. In this respect, RESOURCES can be classified as:

� ATOMIC-RESOURCE - This is a RESOURCE that is not divisible and can only be

configured to support one process at a time. We can distinguish two subtypes:

– A UNIT-CAPACITY-RESOURCE can only be used by one ACTIVITY dur-

ing any given TIME-INTERVAL. In this case we could equivalently model the

RESOURCE as a discrete state variable with two values : busy and idle.

– A BATCH-CAPACITY-RESOURCE can support multiple ACTIVITIES if there

is sufficient capacity, and if they they require the same resource configuration and

are temporally synchronized to occur over the same TIME-INTERVAL. BATCHING-

COMPATIBILITY constraints specify the commonality in resource configura-

tion that is required of multiple ACTIVITIES for simultaneous use of a BATCH-

CAPACITY-RESOURCE. These constraints are defined with respect to different

types of ACTIVITIES that the RESOURCE can support. For example, for two

TRANSPORT-ACTIVITIES to be supported by the same vehicle at the same

time, both have to require transport between the same locations.

� An AGGREGATE-RESOURCE represents a pool of resources, which may be com-

posed of smaller AGGREGATE-RESOURCES or ATOMIC-RESOURCES. The CA-

PACITY of an AGGREGATE-RESOURCE reflects the collective CAPACITY of its

constituent SUB-RESOURCES. This CAPACITY can be independently allocated to

multiple activities over any given TIME-INTERVAL, subject only to any constraints

induced from the structure of the aggregated SUB-RESOURCES. Based on the na-

ture of SUB-RESOURCE structure, we can define several types of AGGREGATE-

RESOURCE:

– HOMOGENEOUS-RESOURCE-POOL - An AGGREGATE-RESOURCE com-

posed of 
 SUB-RESOURCES of the same type. HOMOGENEOUS-RESOURCE-

POOLS can be further differentiated as:
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� SIMPLE-CAPACITY-POOL - A HOMOGENEOUS-RESOURCE-POOL

which is composed of 
 UNIT-CAPACITY-RESOURCES and can thus si-

multaneously support 
 independent activities. This corresponds to the def-

inition of CAPACITATED-RESOURCE given in [Fadel et al., 1994].

� STRUCTURED-CAPACITY-POOL - A HOMOGENEOUS-RESOURCE-

POOL composed of 
 BATCH-CAPACITY-RESOURCES or 
 AGGRE-

GATE-RESOURCES of capacity �, having total CAPACITY 
 � �. This

type of resource can simultaneously support 
 independent activities only

if the capacity required by any one activity � �. Any extra capacity over a

given TIME-INTERVAL can potentially be used to support additional activ-

ities, but only if COMPATIBILITY constraints are satisfied.

– HETEROGENEOUS-RESOURCE-POOL - An AGGREGATE-RESOURCE

that is composed of RESOURCES of different types and CAPACITIES.

Regardless of the level of detail at which RESOURCE allocation decisions are to be

considered in a given domain (e.g., at the level of ATOMIC-RESOURCES or higher),

AGGREGATE-RESOURCES capture the hierarchical structure of domain resources

in most environments. One consequence is that the unavailability of an AGGREGATE-

RESOURCE over a given TIME-INTERVAL always implies the unavailability of its

constituent SUB-RESOURCES over the same TIME-INTERVAL.

Properties.

The properties of a RESOURCE of primary interest here are those which affect its avail-

ability and utilization. Lets first consider availability. In the case of a CAPACITATED-

RESOURCE, availability is a function of its CAPACITY. CAPACITY is a QUANTITY (or

set of QUANTITIES) of some unit measure (e.g., volume, weight, number of activities) that

is available for allocation to ACTIVITIES over time. The allocation of a CAPACITATED-

RESOURCE to an ACTIVITY implies use or consumption of some amount of CAPACITY,

and the number of ACTIVITIES that can be simultaneously supported is limited by the total

CAPACITY of the RESOURCE. We can distinguish between different types of CAPACITY

models, which impose different CAPACITY CONSTRAINTS:

� A UNIFORM-CAPACITY model represents CAPACITY as a scalar QUANTITY.

The CAPACITY-CONSTRAINT of a RESOURCE with UNIFORM-CAPACITY re-
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quires that, at any point in time, the sum of the CAPACITY used/consumed by all

supported ACTIVITIES � the CAPACITY of the RESOURCE.

� A HETEROGENEOUS-CAPACITY model represents CAPACITY as a vector of

two or more UNIFORM-CAPACITIES, reflecting partitioned sub-CAPACITIES. For

example, a ship might have separate cargo holds. The CAPACITY-CONSTRAINT of

a RESOURCE with HETEROGENEOUS-CAPACITY is the conjunction of the CA-

PACITY-CONSTRAINTS associated with constituent UNIFORM-CAPACITIES.

� AMULTI-DIMENSIONAL-CAPACITY model defines CAPACITY in terms of two

or more QUANTITIES, with each contributing a separate CAPACITY-CONSTRAINT

that must be satisfied. For example, the capacity of an aircraft might be defined in

terms of both maximum weight and volume. In the case of MULTI-DIMENSIONAL-

CAPACITY, the CAPACITY-CONSTRAINT requires that for each different unit mea-

sure, the sum of the CAPACITY utilized by all supported ACTIVITIES� the CAPAC-

ITY of the RESOURCE.

In the case of a DISCRETE-STATE-RESOURCE, “availability” corresponds to being in a

state that matches the condition of the ACTIVITY that requires the resource. A DISCRETE-

STATE-RESOURCE has a set of possible STATE-VALUES. If the RESOURCE is control-

lable, individual STATE-VALUES can be additionally defined as PRODUCTS; this allows

linkage to ACTIVITIES for bringing about their specific values. Allocation of a DISCRETE-

STATE-RESOURCE to an ACTIVITY implies commitment to (or protection of) a specific

STATE-VALUE over some TIME-INTERVAL, and multiple ACTIVITIES can be simulta-

neously supported, as long as compatible STATE-VALUES are required.

In many cases, usage of a RESOURCE also depends on other physical properties. Gen-

erally, the physical properties of interest will be a function of the domain, but some fairly

generic examples include its SPEED, which constrains how long ACTIVITIES take to per-

form, and its RANGE, which affects whether it can be used for a particular ACTIVITY

or not. Another general physical property of a REUSABLE-RESOURCE is its SETUP-

DURATION, which specifies how long it takes to configure the RESOURCE for use by a

particular ACTIVITY. We can distinguish different types of SETUP-DURATION models:

� A CONSTANT-SETUP-TIME model implies that the RESOURCE requires a fixed

amount of time to be configured for use by an ACTIVITY, regardless of its prior state.
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. STATE-DEPENDENT-SETUP-TIME - Model implies that the amount of time 

required to    configure the RESOURCE for use by an ACTIVITY is variable and depends 
on the specific prior configuration of the RESOURCE. A special form of STATE-
DEPENDENT-SETUP-TIME is SEQUENCE-DEPENDENT-SETUP-TIME, where 
setup time is assumed to be a function of the last ACTIVITY that was processed using the 
RESOURCE.  

Other USAGE-RESTRICTIONS can also limit the availability of RESOURCES:  

.UNAVAILABILITY-INTERVALS-A TIME-INTERVAL where a RESOURCE cannot 

be allocated is one simple type of USAGE-RESTRICTION. UNAVAILABILITY-

INTERVALS can reflect RESOURCE-BREAKDOWNS, periods where DOWN-

SHIFTS or RESOURCE-MAINTENANCE have been planned, or other unmodeled 

circumstances.  

.CUMULATIVE-USAGE-CONSTRAINTS-There may also be restrictions on the total 

amount of RESOURCE use permitted over a given TIME-INTERVAL.  

 
3.3.4   ACTIVITIES 

Concept Definition. 

An ACTIVITY represents a process that can be executed over a certain time interval. 
An ACTIVITY requires RESOURCES to execute and its execution both depends on 
and affects the current state of these RESOURCES. An ACTIVITY can also have 
other EFFECTS (e.g., PRODUCTS are produced, other enabling RESOURCE states 
are established), and it is these EFFECTS that lead ultimately to satisfied DEMANDS. 
An ACTIVITY may be decomposable into a set of more-detailed SUB-ACTIVITIES, 
enabling processes to be described at multiple levels of abstraction.  

Properties. 

From the standpoint of the problem solver, an ACTIVITY designates a set of decision vari-

ables. The action of scheduling an ACTIVITY involves determining values for these variables. 

The basic decision variables associated with an ACTIVITY are:  
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� START-TIME, END-TIME, which delineate the interval during which the ACTIV-

ITY will occur, and

� ASSIGNED-RESOURCES, which indicates the set of RESOURCES allocated to the

ACTIVITY

An ACTIVITY has a number of properties that constrain the values that can be assigned

to these decision variables:

� DURATION - the time required for the ACTIVITY to execute.

� RESOURCE-REQUIREMENTS - the set of RESOURCE usage/consumption con-

straints that must be satisfied for the ACTIVITY to execute.

� RELATIONS - the set of TEMPORAL-RELATIONS between this ACTIVITY and

others.

� DEMAND - the DEMAND that the ACTIVITY was instantiated to satisfy. The DE-

MAND imposes EARLIEST-START-TIME and LATEST-FINISH-TIME constraints,

and associates PRIORITY information.

� PARAMETERS - depending on the type of ACTIVITY, there may be one or more

PARAMETERS relating to the ACTIVITY’s associated DEMAND. For example, if

the associated DEMAND is for a QUANTITY of some PRODUCT, then the ACTIV-

ITY might also have a QUANTITY, in this case indicating the portion of the total

QUANTITY that it produces.

� STATUS - an ACTIVITY may be in one of several states: UNSCHEDULED, SCHED-

ULED, IN-PROCESS, or COMPLETED.

Following a constraint-based problem solving orientation, an ACTIVITY provides capa-

bilities for incrementally allocating resources and making variable assignments (Reserve-

Resources), for retracting previous assignments (Free-Resources), and for propagating the

consequences of these decisions to related ACTIVITIES (Propagate-Constraints). An AC-

TIVITY thus maintains EARLIEST and LATEST bounds on its START-TIME and END-

TIME, as well as a set of currently feasible RESOURCE-ALTERNATIVES. An ACTIV-

ITY also defines primitives for exploring alternative sets of resource assignments (Find-

Alternative-Resources) and alternative intervals where resources are simultaneously avail-

able (Find-Schedulable-Time).
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3.3.5 CONSTRAINTS

Concept Definition.

Generally speaking, a CONSTRAINT restricts the set of values that can be assigned to a

variable. In the scheduling domain, CONSTRAINTS restrict the assignment of START and

END-TIMES and the allocation of RESOURCES to ACTIVITIES. From this perspective,

we can identify several basic types:

� VALUE-COMPATIBILITY-CONSTRAINTS restrict the values of non-temporal

decision variables, and specify conditions under which a value assignment to a given

variable is compatible with those of other variables or properties in the model. In

the case of basic scheduling models, these CONSTRAINTS relate specifically to RE-

SOURCE assignment decisions and are referred to as RESOURCE-COMPATIBILI-

TY-CONSTRAINTS. They designate the conditions under which a given RESOURCE

(or type of RESOURCE) can be feasibly used to perform a given ACTIVITY. They

may represent physical capabilities and limitations of RESOURCES, or external (e.g.,

user-imposed) restrictions.

We can distinguish two varieties of VALUE (or RESOURCE) COMPATIBILITY-

CONSTRAINTS:

– A STATIC-COMPATIBILITY specifies a resource usage condition that de-

pends on some other static property of the ACTIVITY that requires the RE-

SOURCE (e.g., parameters of its associated DEMAND, PRODUCT character-

istics, other properties of the ACTIVITY itself). For example, an aircraft has a

maximum range and may also be capable of carrying only certain types of cargo.

Depending on the type of cargo to be moved and the distance of the cargo’s desti-

nation (both parameters of the input DEMAND), this aircraft may or may not be

a compatible (feasible) RESOURCE assignment. From a problem solving per-

spective, STATIC-COMPATIBILITY-CONSTRAINTS can be applied when an

ACTIVITY is first instantiated to prune the space of alternatives in advance of

scheduling.

– A DYNAMIC-COMPATIBILITY specifies a compatibility condition or depen-

dency between two RESOURCE assignments (or more generally between two
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decision variables). It may involve separate RESOURCE assignments for a sin-

gle ACTIVITY (e.g., the chosen air crew must be qualified to fly the chosen

aircraft) or may constrain the RESOURCE assignments of two distinct activities

(e.g., the chosen aircraft for both legs of the flight must be the same). One spe-

cific type of DYNAMIC-COMPATIBILITY mentioned earlier is aBATCHING-

COMPATIBILITY, which dictates the circumstances under which two ACTIV-

ITIES can simultaneously use capacity of a BATCH-CAPACITY-RESOURCE.

DYNAMIC-COMPATIBILITY-CONSTRAINTS must be reapplied each time a

decision is made.

� TEMPORAL-CONSTRAINTS restrict the values of temporal decision variables,

i.e., ACTIVITY START-TIMES and END-TIMES. There are two basic types:

– AN ABSOLUTE-TIME-CONSTRAINT
places an absolute lower or upper bound on the value of a TIME-POINT. Ex-

amples of ABSOLUTE-TIME-CONSTRAINTS previously mentioned include

The RELEASE-DATE-CONSTRAINT and the DUE-DATE-CONSTRAINT im-

posed by a DEMAND.

– ARELATIVE-TIME-CONSTRAINT, alternatively, restricts the separation be-

tween two TIME-POINTS. According to whether or not the constrained TIME-

POINTS belong to the same interval or not, we define two subtypes:

� INTERVAL-RELATIONS - An INTERVAL-RELATION synchronizes the

occurrence of two TIME-INTERVALS (e.g., two ACTIVITIES). It speci-

fies an ordering with respect to the respective START-TIMES and/or END-

TIMES of the two related intervals, and the relation may be quantified by a

metric LOWER-BOUND and UPPER-BOUND on the temporal separation

between ordered TIME-POINTS. An unquantified INTERVAL-RELATION

is interpreted as having LOWER-BOUND, UPPER-BOUND values of ���.

The set of INTERVAL-RELATIONS includes:

� BEFORE - For two intervals &� and &�, &� BEFORE &��
#� �#	 implies

that �' �&�� � �' �&�� 
 
#
�
�' �&�� � �' �&�� 
 �#.

� SAME-START - For two intervals &� and &�, &� SAME-START &��
#� �#	

implies that �' �&�� � �' �&�� 
 
#
�
�' �&�� � �' �&�� 
 �#.
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� SAME-END - For two intervals &� and &�, &� SAME-END &��
#� �#	

implies that �' �&�� � �' �&�� 
 
#
�
�' �&�� � �' �&�� 
 �#.

� CONTAINS - For two intervals &� and &�, &� CONTAINS &��
#�� �#�� 
#�� �#�	

implies that�' �&�� � �' �&��

#�
�
�' �&�� � �' �&��
�#�

�
�' �&�� �

�' �&�� 
 
#�
�
�' �&�� � �' �&�� 
 �#�.

� DURATION-CONSTRAINTS - A DURATION-CONSTRAINT imposes

a LOWER-BOUND or UPPER-BOUND (or both) on the separation be-

tween the START and END points of a given TIME-INTERVAL. For inter-

val &� and �
#� �#	, 
# � �' �&����' �&�� � �#. An ACTIVITY-DURATION

and a RESOURCE’S SETUP-DURATION are two previously mentioned

types of DURATION-CONSTRAINTS.

� RESOURCE-AVAILABILITY-CONSTRAINTS define third class of physical CON-

STRAINT which impacts the assignments of both RESOURCES and START/END-

TIMES to ACTIVITIES. The various types of CAPACITY-CONSTRAINTS and USA-

GE-RESTRICTIONS discussed earlier fall into this category.

� INSTANTIATION-CONSTRAINTS represent a final class of CONSTRAINT which

restricts the creation of decision variables. In the case of basic scheduling models,

decision variables are properties of ACTIVITIES and we refer to this category of

constraints more specifically as ACTIVITY-INSTANTIATION-CONSTRAINTS.

ACTIVITY-INSTANTIATION-CONSTRAINTS include restrictions on how DEMANDS

can be mapped to sets of ACTIVITIES. For example, in distributing the cargo that

must be moved to satisfy a transport DEMAND across several movement ACTIVI-

TIES (e.g., due to vehicle CAPACITY limitations), there may be physical constraints

on how the cargo can be disaggregated.

Properties.

A CONSTRAINT may be considered to be HARD or SOFT. The problem solver is never

allowed to violate HARD-CONSTRAINTS. SOFT-CONSTRAINTS, alternatively, are con-

sidered to be RELAXABLE if need be. For example, DUE-DATE-CONSTRAINTS are

treated as RELAXABLE-CONSTRAINTS in many scheduling contexts. The designation

of RELAXABLE-CONSTRAINTS is typically accompanied by a specification of OBJEC-

TIVES or PREFERENCES. When due dates can be relaxed, for example, minimizing tar-
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diness is a common OBJECTIVE. OBJECTIVES and PREFERENCES prioritize the space

of possible RELAXATIONS of a CONSTRAINT and provide a basis for measuring solution

quality.

3.4 Concluding Remarks

The OZONE scheduling ontology is the result of considerable prior experience in build-

ing planning and scheduling systems, in application domains ranging from manufacturing

production scheduling [Smith, 1994] to space mission planning [Muscettola et al., 1992] to

transportation logistics [Smith and Lassila, 1994]. The class library design and implemen-

tation have followed from retrospective analysis of these scheduling domains and systems

(e.g., [Becker and Dı́az-Herrera, 1994]), together with application of object-oriented analysis

and design principles [Smith and Lassila, 1994]. As evidence of the efficacy of the model-

building approach, OZONE was recently applied to develop a quite substantial prototype

for reactive, aero-medical evacuation replanning in just two person-months time [Lassila

et al., 1996]. Though bearing similarity in many respects to various strategic deployment

scheduling problems previously addressed with OZONE, the medical evacuation domain

also required some fundamentally different capabilities (e.g., integration of itinerary routing

and resource allocation decision-making). The use of the ontology and associated constraint

management capabilities enabled application development to be quickly localized to those

aspects of the domain that required component specialization or extension.

The scheduling ontology presented above is mainly concerned with modeling the entities

and constraints of a particular domain. It does not address issues relating to the develop-

ment of problem solving methods and heuristics that best match domain requirements and

characteristics. Though not discussed in this paper, the OZONE toolkit does also provide a

companion, agenda-based framework for configuring and integrating problem-solving meth-

ods to meet domain-specific requirements. One goal of our current research is to extend our

ontological approach to domain modeling to cover this aspect of application construction as

well.
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Chapter 4

Interactive Visualizations for

Requirements Analysis

Summary: In most practical domains, scheduling is not a one-shot generative task of producing time and re-

source assignments for pre-specified sets of requirements and capabilities, but an iterative process of getting the

constraints right. Initial solutions are developed (at some level of detail) to understand the feasibility of various

requirements and the sufficiency of assumed resources. This requirements analysis leads to reassessment of

what requirements can be reasonably met and what resources need to be made available. Changes are made to

the constraints governing requirements and resource availability, and eventually a final schedule is elaborated.

At early stages of this user-driven process, seeing a fully instantiated schedule is less important than simply

knowing whether a feasible schedule exists and, if not, the approximate magnitude of the shortfalls for different

resources and periods of time. To this end, solutions to relaxed versions of complete scheduling problems can

provide helpful guidance.

In this paper, we describe a system that provides a direct manipulation visual interface for requirements

analysis and reconciliation. The interface incorporates a 3D visualization that identifies resource capacity

shortfalls in a tractable relaxed version of the problem, which are necessarily shortfalls in the original problem.

Our visualization can be contrasted with common 2D scheduling displays such as Gantt Charts and Closure

Graphs, which are designed for visualizing complete solutions to a given scheduling problem and hence offer

only indirect support for identifying inherently over-constrained regions of the solution space. Alternatively,

our visualization directly characterizes this underlying constraint space and provides a direct basis for re-

quirements analysis. An analyst iteratively adjusts problem constraints and visualizes the resulting (relaxed)

problem solution until various mismatches between resource requirements and resource availability are satis-

factorily reconciled. Once a reasonable compromise is found, the same interface can then be used to guide

more detailed scheduling.1

1This Chapter has been submitted for publication, and is currently available as: Mark Derthick and Stephen

F. Smith, “An Interactive 1D+2D+3D Visualization for Requirements Analysis”, ICLL Working Paper, The
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4.1 Introduction

Scheduling is traditionally identified as the task of assigning a pre-specified set of available

resources to activities over time to achieve some pre-specified set of demands. The goal is

generally a solution that both ensures a feasible behavior in the target domain (i.e., is exe-

cutable) and optimizes overall system performance. Feasibility can be a function of a large

and idiosyncratic set of constraints. Optimization can involve several potentially conflict-

ing objective criteria. Both aspects contribute to the overall complexity of the scheduling

problem.

Despite the ultimate objective of producing a feasible schedule that optimizes overall per-

formance, scheduling in most practical domains is concerned with solving a problem of

much larger scope, which additionally involves the specification, negotiation and refinement

of input requirements and system capabilities. This larger process is concerned with getting

the constraints right: determining the mix of requirements and resource capacity that leads

to the most effective overall system performance.

In performing this sort of requirements analysis, particularly at early stages of the planning

process, it may be uninformative, or even counterproductive, to generate and work with fully

elaborated schedules. There is a computational cost to finding complete schedules. Further,

the constraint violations found in one particular schedule do not necessarily lend insight

into the tradeoffs or implications of adjusting specifications. A higher-level analysis is more

appropriate.

One commonly employed approach to gaining insight into the structure of a problem is

to solve relaxed versions. In the simplest case, a relaxed problem formulation is one that

drops one or more constraints from the problem, and/or makes subproblem independence

assumptions that ignore specific constraint interactions. One useful property of a relaxed

model is that it is optimistic in its predictions. Any infeasibility (i.e., irresolvable constraint

conflict) that is detected in solving a relaxed problem is guaranteed to also be present in the

full problem. Relaxed scheduling problems can generally be solved more efficiently, and in

some cases, without appealing to approximate (heuristic) scheduling procedures. Hence, this

approach provides a natural basis for recognizing gross mismatches in system demands and

capabilities, and for making changes to problem constraints that reconcile these differences.

In this paper, we build on this notion to specify an interactive environment for requirements

Robotics Institute, Carnegie Mellon University, March 2003.

55



analysis. Central to our approach is a 3D visualization of the relationship between resource

demand and capacity over intervals of time, which generalizes from 2D visualizations that

are currently used for requirements analysis in large-scale military deployment planning con-

texts. The visualization is derived from a relaxed problem formulation that can be effi ciently

solved, allowing real-time animation of consequences as constraints on requirements and

resource availability are manipulated. A slight extension of the underlying model allows the

same visualization to serve as a basis for user-guided generation of detailed schedules that

respect pre-established requirements and resource availability constraints.

Our approach provides a basis for recognizing and reacting to periods of infeasibility early

in the overall analysis process, before significant time has been invested in generating de-

tailed solutions to versions of the full problem.

� It focuses on visually bounding the space of possible solutions rather than visualiz-

ing a particular generated solution, hence providing direct support for diagnosis and

reconciliation of infeasible requirements.

� It visualizes the relationships among inter-dependent sets of conflicting demands, which

guides analysts to address problems in a logical order. It shows temporally localized

groups of conflict sets, and the most constrained conflict sets in each group. It is also

easy to see whether encompassing temporal intervals have similar capacity problems,

or whether they instead contain excess capacity that might be exploited. This informa-

tion sheds light on the prospective viability of different strategies for adjusting problem

constraints, such as reallocating demands to different resources or loosening their due

dates.

The remainder of the paper describes:

� limitations of current tools and approaches to requirements analysis.

� our interface and its use for requirements analysis in the context of a particular resource

capacity and demand model from the domain of transportation scheduling.

� extension of the underlying idea to other models of demand, and the complementary

use of the approach for user-guided scheduling, as opposed to requirements analysis.

Using the same interface for both types of tasks is advantageous because the boundary

between the two is fuzzy, and analysis alternates between them.
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Figure 4.1: A Gantt chart showing the resource usage profile for two demands, D1 and D2,

that require resource R1. D1 requires R1 from time 0 to time 3 and D2 requires R1 from

time 2 to time 4.The dotted orange line shows the resource capacity. Note that the scheduler

has relaxed the resource quantity constraint, rather than the more usual choice to relax the

Latest Finish.

� the rather sparse prior work on visualizations to support user-guided scheduling and

other aspects of planning and scheduling.

4.2 Visualization and Requirements Analysis

Fundamental to the task of requirements analysis is an ability to visualize demand for re-

sources over time in relation to available resource capacity. Current schedule visualization

tools provide this kind of support, but only in a rather limited way. The most widely used

display is the Gantt Chart, which is designed to show resource usage over time for a fully

fleshed out schedule. Figure 4.1 identifies a period of resource over-commitment (orange)

where two demands require use of a single resource. Gantt charts also make clear any re-

source capacity that remains unused (green).

In situations of resource conflict, a common scheduling strategy is to relax the temporal

restrictions of various demands and minimize lateness. In this case, an analyst may want
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to visualize the lateness. Closure Graphs are commonly used for this purpose in scheduling

domains that involve the transport of large amounts of cargo. A Closure Graph tracks the

cumulative amount of cargo that is scheduled to be delivered in relation to the required de-

livery dates. In Figure 2, the required and delivered curves increase in steps as each deadline

passes and as each demand is delivered. For instance, the red demand curve jumps from 0

to 761 tons at time 4, and then to 2258 tons at time 6. Therefore 761 tons were due at time

4, and 2258-761=1497 more tons were due at time 6. The black curve shows that by time

4 a total of 1680 tons will have been delivered (264 tons at time 2, 313 tons at time 3, and

1103 tons at time 4). The difference in height between the two curves at time 4 shows that

at least 1680-761=919 tons are being delivered ahead of schedule. On the other hand, if the

black scheduled curve is lower than red requirements curve at a given time, then less cargo

will have been delivered by that time than is required. The difference in height is a lower

bound on the number of tons of cargo required by that date that will be late. In Figure 4.2,

there will lateness by the 8 th-12th days and by the 18 th-19th days.

Closure Graphs are natural for finite tasks where it makes sense to talk about total cumu-

lative demand. For continuous scheduling tasks like job-shop, boundary conditions can be

imposed on the tasks to transform them into finite tasks. For instance, the demands could be

those that result from firm unfilled orders. The scheduler would simulate the transitioning

from this finite set of demands to future demands by reducing the available resources over

time, until none are available for the firm orders. Using this transformation, Closure Graphs

as well as the 3D techniques presented later can be utilized for both kinds of task.

In current practice, requirements analysis is typically performed through iterative gener-

ation and diagnosis of complete schedules. Given a generated schedule, displays such as

these are used to identify problems and deficiencies. Input requirements are then adjusted

in an attempt to improve the result, and the scheduler is rerun to see if the changes had the

desired effect. This process is inherently inefficient and scheduler specific. For any given

conflict, the analyst must determine whether the conflict is a fundamental inconsistency in

problem specifications or simply a consequence of flaws (or incompleteness) in the sched-

ulers decision process. In domains of any complexity, diagnosis requires the teasing apart of

many interacting constraints. The level at which analysis is performed is simply too detailed

to proceed effectively.

Considering basic schedule visualization tools from the standpoint of requirements analy-

sis, there is an analogous mismatch. These tools are designed principally as mechanisms for
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Figure 4.2: A Closure Graph showing lateness from day 8-10 and after 17. The red curve

shows cumulative cargo requirements; black shows cumulative scheduled deliveries.

displaying individual solutions (i.e., complete schedules), and are not necessarily well suited

to conveying fundamental constraint interactions and conflicts. For example, since temporal

constraints on demands specify intervals in which they must be satisfied, visualization of this

constraint space requires visualization of intervals (as opposed to points).

Attempts to generalize Gantt Charts so they can visualize this space will inevitably lose

information, because a Gantt chart, by definition, shows the instantaneous demand at every

time point. Consider the straw man generalization of the Gantt chart depicted in Figure

4.3, which incorporates temporal constraints instead of actual scheduled times. Rather than

showing a single demand curve, an upper and lower bound is computed. The demand profiles

are swept across the interval from earliest start time to latest finish time. The maximum

demand at any point is

���	�#��
���� �
�

������������(	��"#� ���$	�$%�� ��������	������)��
������� �� ����

where EST is the earliest start time, LFT is the latest finish time, duration is the width
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Figure 4.3: Generalized Gantt Chart showing some of the periods of excess capacity (green

shading), but no shortfalls. The red dashed line shows the minimum demand for the resource

over time for any schedule that respects the Earliest Start, Latest Finish, and demand quantity

constraints, but possibly relaxes the resource quantity constraint. The dark blue dashed line

shows the maximum demand for the resource across all these schedules.

of the demand, and Quantity is the height of the demand. The lower bound is computed

analogously as

!�*	�#��
���� �
�

�����������&+	��"#� ���$	�$%�� ���������	�����)��
������� �� ����

Requirements (demands) are necessarily infeasible if the minimum curve (red dashed line

in Figure 4.3) exceeds the capacity curve (orange dotted line) at any time point. There is

inevitable wasted capacity if the capacity curve exceeds the maximum (blue dashed line)

at any point. In Figure 4.3, the infeasibility of supporting both D1 and D2 within their

specified constraints goes undetected. Similarly, if only D1 were present as a requirement,

the visualization would not indicate any of the excess capacity. A person could reason that

any choice for scheduling a 3-day task in a 4-day interval leaves one day of unused capacity.

These dual shortcomings are eliminated by considering demand and capacity over inter-

vals. Since specifying an interval requires two numbers (a start time and an end time) and

specifying capacity or demand over intervals requires a third, 3D visualizations are a natural
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fit. A Closure Graph shows the cumulative demand forward in time from a given start point

(i.e., the start of the schedule) to any future time point, and characterizes the demand over

that corresponding interval. However, from the standpoint of requirements analysis, we are

also equally interested in visualizing the demand over any subinterval. Our 3D visualiza-

tion is a generalization of Closure Graphs that accomplishes this objective and shows the

cumulative demand over all subintervals of the scheduling horizon. To illustrate these prin-

ciples, we consider a simplified version of a deployment scheduling problem, which can be

seen abstractly as a single-stage, capacity constrained scheduling problem with no externally

imposed ordering constraints between demands.

4.3 Visual Interface

We have developed our interface in the context of our work in scheduling military airlift. In

this domain, two principal sets of resources are aircraft and [air]ports. Demands are repre-

sented as move requirements, which specify amount and type of cargo; embarkation (origin)

and debarkation (destination) ports; and several target dates. The examples in this paper

center on analysis of cargo processing capacity at debarkation ports. From this perspective,

the earliest start time (EST) is the earliest time that a move requirement can arrive at its

debarkation port, and the latest finish time (LFT) is the time when the cargo being moved

must be ready to be transported onward. We use the domain terms for these times, earliest

arrival date (EAD) and latest arrival date (LAD) respectively. EADs and LADs are repre-

sented as C-Dates, relative date offsets from the start of the operation. C1 is the first day

of the operation. In our example, the operation is a deployment from the US to Korea, and

there are two debarkation ports, Osan and Kimpo. The operation takes 20 days, so C20 is

the last day. EAD and LAD have a granularity of one day, which is somewhat confusing.

A move requirement whose EAD is the same as its LAD actually has a 24 hour window

for processing. Logically, the interval between tick marks on the x-axis would be labeled

with the C-Date, and the tick marks would represent midnight. However this was difficult in

Excel, so figures other than screenshots label the end of each C-Date. For clarity, the curves

in the figures have been extended to C25 so they turn horizontal.

Due to poorly integrated military planning tools, initial resource allocations are often

grossly out of proportion to demands, even ignoring constraints on port assignment and

EAD/LAD. Simply multiplying the capacity of all the ports by the length of the operation
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may yield a total inadequate to handle the amount of material that must be moved. Until

requirements are brought into balance at this gross level, there is little point in running a

detailed scheduler. This is the requirements analysis task that we wish to support.

We begin with the capacity-based version of a Closure Graph visualization (Figure 4.4).

For an individual port, or for a set of ports as here, the cumulative tonnage that is required to

have been processed by a given day is plotted against the cumulative capacity for the same

interval. We use a linear port model parameterized as the number of tons it can process in

a day. The heights of these two curves at C20 represent the two totals mentioned above

the total demand and capacity for the operation. However, even if the overall capacity is

adequate, the Closure Graph offers insight into whether the temporal constraints imposed by

the EADs and LADs preclude a feasible schedule. If at any point on the Closure Graph the

demand curve exceeds the capacity curve, there can be no feasible schedule. The difference

in height represents a lower bound on the amount that will inevitably be late at this point in

any possible schedule. The condition where demand outstrips supply is called a shortfall. By

looking at capacity instead of the amount transported in a particular schedule our findings

are more general and more easily interpretable. By looking at each constraint separately

we eliminated the need for the debugging process of identifying which constraint is the

bottleneck causing the shortfall.

A move requirement can be represented as a rectangle whose height represents the number

of tons to be moved2, and whose left and right edges show its EAD and LAD, as shown in

Figure 4.5(a). One rectangle shows that 1000 tons are due between C3-C4, and the other

shows that 2000 tons are due any time on day C7. Considering both move requirements,

3000 tons are due by day C7. This computation can be done graphically, as shown in Figure

4.5(b). The move requirements are sorted by LAD and placed such that the bottom of the

rectangle is aligned with the top of the previous one. Then the demand curve is formed by

the bottom and right edges of the rectangles. Figure 4.5(c) shows the result for all the move

requirements.

Visualizing the individual move requirements along with the cumulative quantities grounds

the logistical analysis in terms that have operational significance. A scheduler can discuss

with a commander particular sets of move requirements that are incompatible with the ca-

pacity constraints. For instance, if move requirements are color-coded by the type of unit

2This rectangle representation is different from that used in Figures 4.1 and 4.3, where the area represents

the demand quantity, e.g. in ton-days. Here the height represents the demand quantity, e.g. in tons.
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Figure 4.4: Capacity-based Closure Graph. The green line shows cumulative port capacity

for both ports over the 20-day transportation plan. As in Figure 2, the red curve shows

cumulative demand. Demand exceeds supply over [0, 8] and [0, 18].

that owns the equipment, the scheduler may be able to eyeball quick summaries like you

can't get both the engineering company and the Patriot battery to 90% by C8. Grounding the

visualization in the concrete and familiar demand representation for the type of scheduling

application (here move requirements) may also make the abstract interval-based constraint

representations more learnable.

By computing the demand curve from the right edges of the rectangles, were making the

optimistic assumption that we don't have to worry about a move requirement until the mo-

ment of its LAD. In reality, the processing of a move requirement will take some amount

of time; hence, processing must start some time before the LAD. Later we will general-

ize the visualization to take this into account, but for now we ignore all constraints on the

time course of the processing to obtain a simpler computation. This corresponds to solv-

ing a relaxed version of the problem, which instead computes a lower bound on demand.

This relaxed problem has previously been termed the “Fully Elastic Cumulative Schedul-

ing Problem”[Baptiste et al., 1999]. It has an efficient solution and thus is well suited for

interactive requirements analysis. We discuss alternatives in the section 4.6 below.
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Figure 4.5: Visual computation of demand curve (red) from sorted and stacked move re-

quirements (pink rectangles).

The demand curve loses some information, because it ignores the left edges. Thus, the

Closure Graph fails to show all inevitable shortfalls. In effect, it assumes all cargo is available

for processing on day C1, and it would show all inevitable shortfalls [in the relaxed model] if

that were true. As an example, lets look at how this visualization fails for the data in Figure

5. There are two fairly distinct groups of demand rectangles: Many requirements fall within

the interval from C1 to C10 (call it Phase 1), while many others are between C11 and C20

(Phase 2). The Closure Graph does a reasonable job at analyzing Phase 1. The only shortfall

during this interval is a tiny one ending at C7, and the two curves are indeed very close at C7.

On the other hand, the graph does a poor job at conveying the potential problems associated

with Phase 2.

Figure 4.6 shows a modified Closure Graph that considers Phase 2 as a separate scheduling

problem. It is obtained by ignoring all of the requirements except those entirely within

Phase 2, and allocating all of the port capacity during this period to these demands. A small

shortfall can be seen at C17 that was missed in the two previous figures. The problem is that

little cargo is available for processing on C10, so the port is only partially utilized. If some

of the cargo that becomes available on C11 could be made available earlier, it could avoid

the lateness problem seen at C17.

Figure 4.7 shows an interactive visualization that allows analysts to see a Capacity-based

Closure Graph for any interval. In order to specify subintervals, analysts can drag curtains
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Figure 4.6: Subset of move requirements with ��� � ���.

from the left and right to block out the unwanted days. In the figure, the analyst drags the left

curtain to C1 (a) and then to C5 (b). When viewing the interval C2-C20 (a), the appearance is

almost identical to the Capacity-based Closure Graph of Figure 5, though revealing a larger

shortfall at C7. In (c) the analyst drags the left curtain to C11 and the right curtain to C17

and is now looking at the interval C12-C17. At this point, the same interval as displayed in

Figure 6 has been isolated. As the curtains are moved, only those move requirements that

fall entirely within the current interval are displayed in color. The rest are grayed out. This

performs the same filtering that was done in Figure 6. Leaving grayed-out rectangles in place

rather than removing them and compressing the stack (as in Figure 6) allows the analyst to

estimate the effect of moving the curtains. For instance, it is clear that moving the left curtain

to C10 is a good place to separate Phase 2 from Phase 1, because only one move requirement

(which spans almost the whole plan) crosses this boundary.

The cumulative demand and capacity totals over the isolated interval are shown separately

as a red bar and a green line to the left of the Closure Graph. For example, in Figure 4.7(c),

these are the heights of the red and green curves at C17. The text label shows that the precise

amount of the shortfall over the interval C12-C17 is 109 tons.

By dragging the left and right curtains to inspect all possible subintervals from C1 to

C20, the analyst can find all periods of inevitable shortfall in port capacity. However, this is

not a particularly convenient approach. The analyst is interested in adjusting constraints to

reconcile mismatches in demands and resource capacity. It is distracting and tedious to have

to attend to and manipulate this sort of display parameter to uncover problems. In fact, when

used to this end, the visualization is being treated as a three dimensional display: quantity
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Figure 4.7: Interactive visualization using a C-Date window to filter the move requirements

with a time window [C2-C20], [C6-C20], and [C12-C17] (a c) . To the left of the chart are

shown the total capacity (vertical red bar) and demand (horizontal green line) over the time

window. The bar and line are labeled on the right with their absolute y-coordinates and on

the left with their difference. For instance, (c) shows that the total demand over [C12-C17]

is 4877 tons, the total capacity is 4768 tons, and the difference is 109 tons.
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using y; interval end using x; and interval start using animation (time). It requires much less

attention to use a visualization where all three variables are encoded spatially.

Figure 4.8 shows such a visualization. Conceptually, the visualization is composed by

computing a cumulative demand bar, like the ones on the left in Figure 4.7, for every possi-

ble subinterval and arranging them as columns on a two dimensional grid by their start and

end dates. In practice, we found the visualization easier to use when a variable transfor-

mation was applied, so the x-axis shows interval midpoint, y shows quantity, and z shows

interval length (b). That way the analyst can think about x as later in the plan, and z as

less constrained, rather than the more abstract interval start and interval end. Since the time

quantum used by the move requirements is 1 day, the requirements form columns whose xz

planar dimensions are 1 day. They are diamond-shaped rather than axis-aligned due to the

transformation of variables. The two phases of the demands form two mountain ranges that

meet and combine additively for the longest intervals, which include both phases. In the fully

elastic model, the demand surface increases in discrete jumps at each demand EAD/LAD in-

terval. Using more realistic models it would be continuous. The two dark red curves drawn

by hand in (b) show how a slice through the capacity surface corresponds to a 2D Capacity-

based Closure Graph for a given start date. In terms of the original variables, the equation

relating START and END for a slice is just START = constant. In the transformed space this

equation becomes LENGTH = (MIDPOINT constant) * 2. Thus the slope of the slices in

the xz plane is 2. Vertical slices in the other diagonal (with slope = -2) represent intervals

with a common end point. All plan intervals lie within a triangular region defined by the line

with slope 2 representing ¡interval start¿ = C1 and the line with slope 2 representing ¡interval

end¿ = C20.

Using a linear model of port capacity, the capacity curve is a plane whose height is pro-

portional to interval length (a). The capacity curve can be thought of as a cloud layer. Any

bright red peaks that jut above the partially transparent green cloud layer are easy to spot

at a glance (c). Their xz coordinate indicates the shortfall interval. Their height above the

cloud layer indicates the shortfall magnitude. In this case, there are small (relative to the

bar heights) shortfalls over the intervals C1-C7 and C11-C17. These correspond to the two

intervals already found using the 2D interface (ending at C7 in Figure 4.7(a) and C17 in

Figure 4.7(c).

For n move requirements the minimum surface can be calculated in ��
�� time:

1. Find all distinct EADs and LADs, and sort them temporally. Each pair of successive
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Figure 4.8: The 3D visualization superimposes the green planar capacity surface (a) over the

red demand surface (b). Two demand curves, for intervals starting with C1 and C12, have

been drawn on top of the demand surface. These two slices show the same information as

in Figures 4.5 and 4.6 respectively. In (c) the demand surface breaks through the capacity

surface at two points. Wire-frames have been drawn to facilitate reading the coordinates.

These intervals have centers at C4 and C14. The lengths are both six. Hence, the intervals

are from C1-C7 and C11-C17. An animated computation of the surfaces is available at

http://www.cs.cmu.edu/ sage/animations/LTVembedded.ppt (best to save a file locally rather

than run inside a browser).
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dates forms a leaf interval.

2. Form the lattice of all ��
�� enclosing intervals

3. For each move requirement, add its quantity to the lattice node representing its EAD-

LAD interval.

4. Make a pass upward through the lattice accumulating quantities from enclosed inter-

vals. Each node computes its total demand as

)��� 	� � )���� 	� 
)��
 �� 	� 
)��� 	� ��)��
 �� 	� ��

where ��� 	� denotes the start and end points of its interval and )� is the sum from

step 3. The subtraction is required because the quantity for an interval is propagated

in a wedge upward through the lattice, so that it contributes to both the left and right

children of a properly contained interval.

4.4 Example Analysis

Lets assume that the small shortfalls over the entire set of ports are not significant enough to

warrant changing the requirements. The next step is to break out more constraints and look

at them in isolation. In Figure 4.9 the analyst has created two copies of the visualization tool

and focused one on each port. It is immediately clear from the height of the red peaks that

the port demands are unbalanced; Osan is over-committed while Kimpo is under-utilized.

Yellow ovals call attention to the three groups of intervals where the red demand surface

rises above the green capacity plane for Osan: one group from 4-8 days long in Phase 1, a

second group from 4-8 days long in Phase 2, and a group from 18-20 days long that spans

both phases. The shortfall over the entire 20-day plan interval suggests that there is little

point in relaxing temporal requirements for the Osan demands, because improvements in

some intervals would worsen others. The two Korean destination ports are relatively close;

hence, re-routing of move requirements appears to be a viable strategy for minimizing the

identified shortfalls. Since we already found small shortfalls in each phase considering all

the ports together, we know that re-routing cannot completely solve all capacity problems,

but it should significantly reduce them.
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Figure 4.9: The labeled yellow ovals superimposed on the screen shot show that Osan has

three significant groups of red shortfall peaks (top) while Kimpo has only one small shortfall

(bottom). The gap between the red and green surfaces at the apex of the triangle for Kimpo

shows that only about 3/4 of its capacity is used overall.
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4.4.1 Shortfall Analysis

A good heuristic is to fix shortfalls over the most constrained (shortest) intervals first. By

clicking on the C13-C17 shortfall in the Osan 3D visualization, that interval becomes se-

lected in all six visualizations (1D, 2D, and 3D for each port). The 1D bars and explicit

labels provide the easiest view for visually or symbolically computing whether the shortfall

at Osan (741 tons) can be entirely absorbed by the excess capacity at Kimpo (914 tons). Thus

for this interval, re-routing can eliminate the shortfall.

Analysts must then decide which move requirements can be re-routed without significantly

disrupting the operation. Their decision is based on domain knowledge not included in the

scheduling requirements: the type of cargo, the military units that own the cargo, their role

and mobility, and so on. For this task, the visualizations shown in this paper are inadequate.

We envision an integrated interface environment where analysts can drag and drop among

multiple coordinated visualization tools. This is discussed further in section 4.5 below.

Figure 4.10 shows the effect of re-routing 835 tons of the move requirements with EAD13

and LAD17 from Osan to Kimpo. The Osan shortfall is indeed eliminated for C13-C17, and

nearly so over all of Phase 2. The only remaining Phase 2 shortfalls are over the intervals

C10-C17 and C11-C17 at Osan, and C11-C18, C11-C17, C12-C17, and C12-C18 at Kimpo.

Only C11-C17 is an overall shortfall over both ports, so further re-routing could eliminate

all the other shortfall intervals.

Since only move requirements whose EAD/LAD fell in the interval C13-C17 were changed,

this update had no effect on the shortfalls during Phase 1. Of the three groups of shortfall

intervals at Osan in Figure 4.9, the 4-8 day Phase 1 group therefore remains unchanged in

Figure 4.10. The group for 18-20 day intervals shrinks considerably, because all these in-

tervals contain the C13-C17 interval. There is in fact much information contained in the

visualizations about the relationships among shortfall intervals. The spatial layout makes in-

terval containment apparent [Kulpa, 1997], so we could have predicted the qualitative effect

of reducing the Phase 2 shortfalls on those of the long intervals. If we had worked on the long

intervals first, we might have reduced the shortfalls in ways that dont help the two shorter

intervals; therefore, it is best to start with the short ones. Even as analysts work on the short

ones, though, the realization that there are overall shortfalls for intervals that contain these

subintervals influences their solution strategy. In this example, it suggested that changing

EADs and LADs to fix one interval might just make another one worse, and that re-routing
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Figure 4.10: After re-routing, Phase 2 shortfalls are largely eliminated.
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might be a better avenue to pursue.

We call this the Wack-a-Mole interface because of the resemblance to the amusement

parlor game, where wacking down in one place is followed by popping up in another place.

4.4.2 Excess Analysis

Above we insisted on finding a lower bound on demand in the relaxed model so that any

problems apparent in the interface necessarily doom any attempted scheduling algorithm to

failure. It is also useful to consider the upper bound on demand over each interval. When

restricting attention to a particular subinterval, the computation includes all move require-

ments with an overlapping EAD/LAD interval, rather than those that are fully contained in

it. The blue surface, curve, and bar in Figure 4.11 show the result. If the maximum demand

is lower than the capacity, it means there is excess capacity that can't be of use in any possible

schedule. The 3D representation shows a canyon centered on C10 for intervals from 0 to 9

days long where the blue demand surface disappears below the capacity plane. Considering

that there are shortfalls at this same port during intervals centered on C4 (see Figure 4.10), it

would certainly be helpful to delay due dates to take advantage of the excess capacity. Armed

with this knowledge, the analyst must decide which move requirements are good candidates

for delay, and then update their LAD until the shortfalls are minimized. Currently analysts

in this domain do not attempt to find excess capacity. If it can be effortlessly seen in visu-

alizations, there could be more effective collaboration among analysts working on different

operations that use some of the same resources.

The min and max demand necessarily converge over the entire plan interval, which by

definition contains all move requirements. The 2D curves can clearly be seen to converge at

C20. From a side view like Figures 4.9 and 4.10 the convergence would be clear in the 3D

view as well. In the top view of Figure 4.11 it can be deduced from the fact that the tip of

the triangle is red. Note that there are two other groups of red intervals, which shows that at

Osan the two phases of the plan are completely separated. The first reaches closure before

the second starts, so there is no uncertainty in the amount transported over either of these

intervals. The divergence of the curves/surfaces for shorter intervals is due to the uncertainty

in when each move requirement will be processed within its EAD/LAD interval.
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Figure 4.11: The blue surface (left) shows the maximum demand that any plan could possi-

bly require of a resource, for all intervals. The blue curve and the blue bar (right) show the

maximum demand over the single interval C7 C11. Comparing them with the green capacity

curve and bar shows that there are 870 tons of excess capacity over this interval. Therefore

delaying move requirements of Phase 1 or advancing those of Phase 2 are promising strate-

gies.
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4.5 Integration with Information Analysis

The interface shown in the figures is implemented in Inventor running on an SGI Reality

workstation. We are currently porting it to Java3D, which will allow drag and drop interac-

tion with a companion tool called Visage. Visage is an information-centric [Roth et al., 1997]

user interface environment for data exploration and for creating interfaces to data-intensive

applications. It is being developed by Carnegie Mellon University and Maya Design Group,

and runs on Windows and Unix/X workstations. Domain data objects are represented as first

class interface objects that can be manipulated using a common set of basic operations, such

as drill-down and roll-up, drag-and-drop, copy, Dynamic Query filtering, and dynamic scal-

ing. These operations are universally applicable across the environment, whether graphical

objects appear in a hierarchical table, a map, a slide show, a query, or other application user

interface. However, Visage is limited to 2D visualizations. Visage includes an API to access

ODBC databases, allowing easy coordination with other components of an exploratory data

analysis environment. For instance, graphical objects can be dragged across application UI

boundaries. Thus analysts will see no distinction between the Java3D component and the

rest of Visage.

With the powerful data exploration operations provided by Visage, the Java3D version will

allow the kind of integrated analysis suggested in the previous section. The example below

works in Visage now. The only missing link is the integration.

To examine the move requirements that contribute to the shortfall at Osan from C13-C17

in more detail, the analyst would drag the red column representing this interval in Figure 9

into a Visage. Figure 4.12 illustrates the use of Visages Outliner drill-down table for this

task. First the set of move requirements is partitioned by port of debarkation to isolate those

routed to Osan. Then those are partitioned by the type of cargo, in order to pick those that can

be most easily transported on the ground. Bulk is the default cargo type when there are no

special requirements for transport. In this case, there are twelve move requirements totaling

1200 tons that may be good candidates for re-routing. After editing the port of debarkation

in Visage, the Java interface would update, resulting in Figure 4.10.

In order to take advantage of the unused capacity revealed in Figure 4.11, a different

Visage interface might be used. In Figure 4.13, the analyst has dropped the set of C1-C6

move requirements on an interval chart showing their EAD/LAD interval. Color encodes

the mission the unit that owns the cargo. If some of the missions, perhaps support, are
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Figure 4.12: The top line of the table represents the set of move requirements that would be

dragged in from the Java interface. Successive drill-downs partition this set by port and then,

for the Osan move requirements, by the type of cargo.
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Figure 4.13: Visage visualization of all the move requirements that comprise the C1-C6

interval bar in Figure 11, showing their EAD/LAD interval and the mission of the unit that

owns the cargo. Either endpoint of any of the bars can be dragged to update the EAD or

LAD for that move requirement. Multiple move requirements can be edited simultaneously

using selection prior to dragging.

lower priority they would be candidates for delay. Here the EAD and LAD can be edited by

dragging the intervals (or interval edges) within the chart. After each mouse move, the Java

interface would update. This continuous feedback would make it easy to delay just the right

amount without having to do mental arithmetic.

4.6 Other Resource Models

Our logistics planning example has relied on a simple model of resources and resource us-

age. In this model, available capacity is expressed in terms of a quantity per time unit (e.g.,

tons per day), and demands are expressed as quantities that are required over specific time

intervals (e.g., EAD to LAD). Within the designated time interval that a given demand re-
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quires capacity, we assumed a fully-elastic processing model. Under this model, there are

no constraints on the time course of processing. The entire processing of a given demand

can occur at any instantaneous point within its required interval. Allowing for such impulse

functions produces the unrealistic discrete steps in the requirements surface.

There are other, stronger problem relaxations that also can be solved efficiently, most

notably the Partially Elastic Cumulative Scheduling Problem analyzed in [Baptiste et al.,

1999]. This relaxation could be directly substituted for the fully elastic problem model used

in the preceding sections. For ease of presentation, we chose not to.

Perhaps a more commonly used model of resource usage is one where both the amount of

capacity required by a demand and the duration for which the capacity is required are fixed.

Based on the shape of the demands in a Gantt Chart, we call these rectangular demand mod-

els,. Since resource usage can no longer include impulse functions, its cumulative (integral)

value must vary continuously with interval length and midpoint.

In the elastic case, demand is always zero for degenerate intervals so the relationship

between demand and capacity at the base of the triangle where , � � is not important. In

the rectangular case, we want to compare demand and capacity at each point in time as well

as over longer intervals. In the interface shown in Figures 4.8 - 4.10, both go to zero and

can't be visually compared. We would therefore plot the demand and capacity rates, dividing

the heights by the interval lengths. Then the capacity plane would be horizontal instead

of sloped. We tried this variation for the elastic case, but found it more helpful to see the

absolute amount of shortfalls.

With this modification, the , � � slice through the demand and capacity curves shows

the same instantaneous 2D demand curves that are used to determine resource contention

peaks in so-called “profile-based” scheduling algorithms (discussed below in the next sec-

tion). However, the extended computation of lower and upper bounds over all possible in-

tervals will show additional shortfalls in situations like Figure 4.10, and will also indicate

how resource contention intervals relate to one another over longer intervals. For each move

requirement and each interval, we can find the offset from its EAD that generates the maxi-

mum and minimum intersection of the actual demand profile with the interval. Adding these

bounds for all move requirements generates the heights of the surfaces for each interval. The

analysts experience of the interface remains the same. Note also that it is no longer guaran-

teed (by itself) to uncover all possible conflicts. Ensuring a feasible solution will typically

require additional scheduling decisions.
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4.7 User-Guided Scheduling

In practice, the line between requirements analysis and scheduling is not a crisp one. Thus

far we have been promoting the use of our interface as a means for reconciling conflicting

requirements before scheduling and expediting the process of obtaining an acceptable so-

lution. We do not expect that its use will eliminate the need for human intervention and

analysis during the scheduling process. There are two reasons. First, no formal scheduling

model ever captures all real world requirements. The analyst must enforce these unmod-

eled constraints. Second, even if a feasible schedule exists, finding one in most practical

domains is NP-hard and heuristic schedulers may not be able to find an acceptable one un-

aided. Perhaps a better way to see the switch from requirements analysis to scheduling is as

a step-wise transition to a richer (i.e., higher fidelity) model that incorporates a more precise

and more complete accounting of domain constraints. More generally, one could imagine a

hierarchy of progressively less relaxed models that eventually bottoms out at the schedulers

base model. When viewed this way, it seems natural to expect the same sort of interactive

support and constraint manipulation capabilities to be available during detailed scheduling.

To see how our interface might extend to support a more detailed scheduling process,

lets reconsider its use during the requirements analysis stage of problem solving. Early on,

resources and demands will tend to be so poorly matched that even simple relaxed models

that assume independent resources and ignore ordering dependencies will reveal shortfalls.

Analysts rely on the minimum demand surface in our 3D visualization to find these shortfalls.

Once these gross problems are resolved, analysts can begin to turn attention to the maximum

demand surface and use it to find and manipulate intervals where there is excess capacity. On

the one hand, they want the maximum surface to lie below the capacity surface to ensure there

is enough excess to handle interactions and remain robust to later changes in specifications.

On the other hand, they don't want it to fall too far below the capacity surface because that

represents excess and wasted capacity. Therefore, the goal is to make the maximum surface

approximate the capacity surface.

Profile-based scheduling algorithms [Beck, 1999, Cesta et al., 1998a] are based on this

idea of leveling peaks in the maximum demand curve (a 2D counterpart of the maximum

demand surface). For a given peak, a conflict set of demands contributing to the peak is

gathered. Ordering constraints are posted among these demands until the maximum curve

lies completely below the capacity curve. At this point, any schedule satisfying the resulting
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temporal constraint graph will be feasible. When all peaks have been leveled, a schedule can

be extracted in polynomial time.

Using our interface, we can support the same problem solving procedure applied to peaks

in 3D surfaces rather than 2D curves. In the simplest case, analysts can be directly in-

volved in the basic problem solving cycle and given responsibility to interactively drive the

peak-leveling process. The system would re-compute minimum and maximum demand sur-

faces at each step. If the minimum demand surface is ever found to exceed the capacity

surface, then an infeasible state has been reached, and analysts must decide whether to mod-

ify problem constraints (change requirements) or to retract previous decisions (backtrack).

Otherwise, analysts could use the maximum demand surface to first identify which peak to

level, and then to decide which pair of competing demands to sequence. Computationally,

this application of our 3D visualization implies a stronger form of constraint checking than is

typically exploited in the base conflict analysis associated with these scheduling algorithms.

In particular, the computation of conflicts over various intervals amounts to incorporating

additional summation constraints and edge-finding techniques [Carlier and Pinson, 1994,

Nuitjen, 1994], in essence enabling earlier (visual) detection of a larger set of potential short-

falls.

4.8 Related Work

There is a wealth of research in the area of constraint analysis and propagation that is aimed

principally at defining conditions for early detection of infeasible solutions and search space

pruning during automated schedule construction. Such techniques are all candidates for use

in supporting interactive requirements analysis. The key is finding a good visual interpreta-

tion. Showing analysts a visualization can provide insight into the structure of the problem

that goes beyond the litmus test that analytic methods provide.

Actual work in the area of visualizing planning and scheduling requirements and solution

spaces is rather sparse. The early concept of Electronic Leitstands [Kanet and Sridharan,

1990] was aimed at providing graphical support and controls for managing production sched-

ules in manufacturing contexts. However, in practice, this concept has translated mostly to

interactive Gantt chart displays and little attention has been given to the general task of re-

quirements analysis. In an experiment comparing interactive Gantt charts to static ones, no

benefit was found [Sharit, 1985] (cited by [Eindhoven, 1997]).
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AsbruView [Miksch et al., 1998] is a 3D visualization of skeletal plans that shows a

hierarchy of alternative subplans. It shows conditions, intentions, and effects of each subplan

and is intended to provide physicians with an overview of clinical protocols. These goals

are very different from ours. Our scheduling model ignores exactly the kind of complex

interactions that AsbruView shows. Instead, we focus on aggregate demand and capacity for

resources.

IDA is a visualization-based planning interface that is similar in spirit to our work [StA-

mant, 2001]. It generates abstractions, which are a form of relaxation, for analysts to con-

strain. For instance, the system aggregates the movement of multiple army units, allowing

the analyst to give high-level guidance such as ”overall there should be a retreat.” However, in

their planning domain individual goals are much more interdependent than in our scheduling

problem. Therefore, these abstractions cannot take advantage of the simple additive models

that we leverage for efficient constraint propagation and effective visualization. Indeed, St.

Amant characterizes the process of mixed initiative constraint addition and propagation as

exploratory data analysis, thus resembling the debugging stage of fully elaborated schedules

that follows the requirements analysis process.

IS-diagrams [Kulpa, 1997] are 2D spatial layouts of intervals, and are the first use of the

representation we use in the xz plane of our 3D interface. IS-diagrams are used to elucidate

the inferences of interval algebra, and are used with two other innovative spatial representa-

tions. For instance, one can quickly find when two people have 45 minutes free at lunchtime.

4.9 Summary

Requirements analysis, the task of reconciling the task requirements against the resources

available, requires a significant amount of human effort. Previous scheduling research is

almost exclusively devoted to finding an admissible schedule given fixed resources and re-

quirements. The tools used for detailed scheduling are also used for requirements analysis

because nothing else is available. Solving relaxed versions of the scheduling problem make

it easier to understand where bottlenecks are, because there is less interaction to untangle.

Maintaining conflicting constraints rather than instantiating a complete schedule also simpli-

fies debugging, because the tradeoffs are explicit. Our 3D visualization lays out all possible

conflict intervals so they can be seen at a glance.
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Previous visualizations of conflicts based on Gantt charts compare instantaneous usage

and resource capacity. Closure Graphs show resource usage only for intervals starting at

the beginning of the operation. Both of these 2D approaches fail to show complete conflict

sets. By visualizing demand and capacity for every interval, our 3D interface allows the

analyst to find conflicts earlier in the analysis process. In addition to showing all temporally

localized conflict sets, it is easy to see whether larger temporal intervals containing multiple

conflict sets are near or over capacity. This gives advance warning about the difficulty of

finding a consistent schedule because imposing constraints to solve one problem may make

it more difficult to solve others. As a generalization of 2D profiles, our interface is upward

compatible with existing constraint-posting scheduling algorithms.

Integrating the resource utilization interface with other Visage visualizations will further

broaden the class of tasks that can be performed in a unified interface environment. Using

multiple coordinated displays, analysts will be able to revise requirements in ways that mini-

mally affect operational outcomes, and reconcile situations of conflicting requirements more

efficiently.

Our interface unites the tasks of requirements analysis and user-guided scheduling. An-

alysts interleave performance of these tasks, and there is no crisp distinction between the

two. The fact that scheduling can be attacked with automated algorithms has resulted in the

artificial separation that has been reflected in previous interfaces. In our interface, analysts

guide the scheduling process by posting constraints that level peaks in the maximum demand

surface, just as in some previously developed scheduling algorithms. However, when peaks

in the minimum demand surface are found, it is not necessarily seen as a signal to backtrack.

The conflict can also be addressed by modifying requirements. In our domain, minimum

peaks commonly occur before any scheduling decisions have been made. In this case, re-

vising requirements is the only alternative. In fact, getting the constraints right generally

occupies more of analysts time than scheduling per se.
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Chapter 5

Incremental Resource Allocation and

Scheduling for Effects-Based Operations

Summary: In this chapter, we summarize a Technology Integration Experiment (TIE) carried out collabo-

ratively with AFRL Rome to produce a ”Jump-Start Demonstration” for AFRL’s ”Effects-based Operations

Advanced Technology Demonstration program. Broadly speaking, this TIE was aimed at demonstrating tech-

nology support for compressing the air operations planning cycle, through tight inter-leaving of effects-based

planning, targeting and resource allocation processes. Our starting point for participation in this effort was a

System called ACS (Air Campaign Scheduler), which was initially developed under DARPA’s “JFACC after

Next” program. ACS is a second application system built using the Ozone Scheduling Framework, and adapts

the techniques and components used in the AMC Allocator to the problem of allocating platforms and mu-

nitions to air strike missions over time. To accomplish the EBO “Jump Start” TIE, ACS was extended and

integrated with two companion technologies: (1) a planning tool called CAT (Causal Analysis Tool), devel-

oped at AFRL and designed to reason about the effects of various strike actions, and (2) a targeting tool called

JTT (Joint targeting Tool) used to support selection of appropriate weaponeering solutions. A small planning

scenario involving the generation of approximately 400 air strike missions was successfully demonstrated.
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5.1 Introduction

The concept of “Effects-Based Operations” (EBO) aims at shifting the driving focus of air

operations planning. Whereas air campaign planning has historically proceeded from a

target-centric perspective, EBO advocates more explicit reasoning about what effects can

best achieve overall air campaign goals, and then back from these determined desirable

effects to the selection of appropriate actions (targets). One implication of a shift to an

effects-based planning process is the need for a much tighter integration with the current ex-

ecution state. Since the effects of actions (intended or otherwise) and their relationship to air

campaign goals directly drive subsequent planning decisions, the effectiveness of planning

will depend heavily on the timely receipt and incorporation of new information about the

execution environment (e.g., the results of actions, counter-actions, etc.). Thus, a concept

frequently coupled to the notion of effects-based operations is that of a “Dynamic Air Exe-

cution Order” (DAEO). Whereas in current practice, an air execution order (i.e., the schedule

of missions to be flown) is generated and released in a “batch-oriented” manner (e.g., once

a day), the concept of a DAEO is more akin to a “living schedule” that is updated and ex-

panded continuously as missions execute, effects are observed and reactions by planners are

taken.

From a planning and scheduling perspective, support for effects-based operations requires

technologies that can operate in a flexible and incremental manner. New tasks/actions must

be continually integrated into the current plan/schedule without wholesale disruption to cur-

rently planned and scheduled air missions. Likewise, plans and schedules must be dynam-

ically revised, as the results of prior actions and changes in resource status become known.

The AFRL Effects-Based Operations Advanced Technology Demonstration (EBO ATD) was

established to explore this technology vision. As part of this effort, Carnegie Mellon Uni-

versity was tasked to support the development of a “jump-start” system and to integrate an

incremental resource allocation and scheduling tool.

In this chapter, we describe this Technology Integration Experiment (TIE). We first review

ACS, an incremental air campaign scheduling application built in OZONE that ws used as

the basis for this work. Then we introduce the other technology components involved in the

TIE and describe the operation of the integrated system. Finally, we summarize the results

that were obtained and identify some future research directions.
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5.2 Air Campaign Scheduler (ACS)

Our starting point for participation in the EBO TIE was a system called ACS (Air Campaign

Scheduler) [Myers et al., 2001a, Zhou and Smith, 2002]. The ACS scheduler adapts the

incremental constraint-based search techniques underlying the AMC Allocator application

to the air operations domain. ACS was developed originally under the DARPA JFACC After

Next Program.

The overall functional scope of ACS is depicted in Figure 5.1. It is provided with three

broad types of inputs:

1. - a set of Demands, relating to input tasks (targets or DMPIs - Desired Mean Point

of Impact) to be scheduled and their corresponding constraints. Most basically, an

input demand specifies a target (with an associated type or category code), a location,

a priority, and a desired probability of kill. It may also specify a time window, and

dependencies among other input tasks (e.g., parent objective, sequencing constraints

relative to other strikes).

2. a set of Capabilities, specifying (1) what types and amounts of resource capacity (as-

sets, munitions) are available for use, (2) where they are positioned in theater and over

what interval(s) they may be used, and (3) a table of weaponeering solutions, that maps

the effectiveness of different platform/munitions pairs to various target category codes,

3. World State information, indicating such exogenous factors about the execution envi-

ronment as threats and weather, as well as information relating to execution results.

The output from ACS provides inputs to feed generation of a Dynamic Air Execution

Order (a “continuous” form of a Master Air Attack Plan). ACS generates a set of assigned

strike missions designating, for each input target/DMPI demand:

� the set of sorties to be flown (possibly converging on the target from different bases),

� the numbers of aircraft and munitions to be expended from each base and,

� the precise time windows for various stages of the flight itinerary (including TOT

windows).
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Figure 5.1: ACS Functional Scope

ACS provides a range of air campaign scheduling capabilities. In generative mode, it can

be used to efficiently generate assignments of aircraft and munitions to a given set of input

target/DMPI demands. As suggested above, these assignments take into account such con-

siderations as target priorities, desired levels of destruction, time-on-target (TOT) windows,

temporal sequencing constraints, feasible weaponeering solutions, and aircraft/munitions po-

sitioning and availability constraints. ACS can also be used in incremental mode, both (1) to

accommodate and integrate new demands into a continuously evolving air campaign sched-

ule, and (2) to reactively reallocate in response to unexpected changes in the execution status

(e.g., loss of aircraft, insufficient destruction effect). Finally, ACS provides capabilities for

selective (user-driven) relaxation of constraints, providing a basis for exploring alternatives

(e.g., delaying missions, surging) in situations where all constraints cannot be satisfied. The

ACS user interface (See Figure 5.2) provides a range of displays for visualizing and incre-

mentally manipulating input constraints and allocation decisions.

The ACS scheduler has been evaluated on a range of data sets including Blue Flag data

obtained from the C2 Battle labs, CTEM test scenarios and programmatic data scenarios

generated within the JFACC and EBO programs. An assignment for a representative prob-

lem from the Cyberland scenario data of the JFACC program consisting of 2857 DMPIs

(involving approximately 4042 sorties) is solved from scratch on an 1.1 GHz Pentium IV in

under 30 seconds. Incremental revisions and additions to the schedule are performed in real

time. In extensive experimental studies, incremental solution change procedures developed
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in ACS have been also shown to achieve significantly greater stability in the plan over time

without significant adverse effect on solution quality metrics or computational expense, in

comparison to “re-solving from scratch” replanning strategies. These incremental reschedul-

ing strategies generally enable a better performance balance than minimally-disruptive (but

potentially poorer quality) revision techniques.[Myers et al., 2001a, Zhou and Smith, 2002].

ACS has also been integrated with SRI’s CPEF planning system to produce JPS (Joint Plan-

ner/Scheduler), a multi-agent system for incremental continuous management of air cam-

paign plans and schedules [Myers et al., 2001b].

Figure 5.2: ACS Graphical User Interface

5.3 The EBO Jump-Start System

To produce the EBO Jump-Start system, ACS was integrated with two complementary plan-

ning technologies:
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� Causal Analysis Tool (CAT) - CAT is a decision-theoretic planning and analysis tool

developed in-house by AFRL Rome. It utilizes Baysian integration of local probability

estimates of action effects to produce:

– prediction of plan outcomes

– dynamic monitoring of plan execution through evidence incorporation

– valuing of information to support monitoring

In the current context, CAT provides a representational infra-structure and inference

tools for interactive development of air campaign plans, and a suite of analysis tools

for assessing generated plans/schedules

� Joint Targeting Tool (JTT) - JTT is an operational system that provides interactive ca-

pabilities for selecting targets and determining potential weaponeering solutions. For

purposes of the jump-start demonstration, a JTT simulator was developed by AFRL

Rome and used as a placeholder for the operational system.

Figure 5.3 shows the flow of information between CAT, the JTT simulator and ACS.

A planning episode begins with the specification of a air campaign plan using CAT. Us-

ing causal projections of the probabilities associated with achieving various effects, overall

CINC objectives are interactively transformed into a hierarchical network of actions. Within

this plan network, high-level actions (e.g., deny access to location !��) are progressively re-

fined into directly taskable, leaf actions (e.g., destroy bridge -). The set of leaf level actions

are then communicated to JTT to develop specific target sets. Using JTT, each leaf level

action is expanded into one or more “strike actions”, where a given strike action designates a

specific target/DMPI (e.g., the bridge foundation) and a number of alternative weaponeering

solutions for carrying out the strike. This set of strike actions is communicated back to CAT

and added as a final ply of the campaign plan previously developed. The set of strike actions

is also communicated to ACS at this point, for resource sourcing and scheduling.

Within ACS, the strike actions (targets) generated in JTT are then transformed into air

strike missions, assigned to specific air units, and scheduled over time. As indicated above,

JTT provides a set of weaponeering solution alternatives and preferences to ACS for each

strike action. This provides one dimension of the search for a good air campaign schedule.

As each strike action is received from JTT, a query is made to CAT to retrieve any constraints

associated with this action. By virtue of a given strike action’s position in CAT’s hierarchical

88



plan network, it may inherit (1) start and end time constraints (e.g., the bridge must be

destroyed before 08:00), (2) causal dependencies (e.g., the bridge must be destroyed before

further actions to isolate enemy forces), and (3) percentage of effort levels (e.g., devote 10%

of effort to action of denying access to location !��). Given the actions and constraints

provided as inputs, ACS computes a time and resource feasible set of air strike missions that

accommodates the best possible mix of targets given available assets.

Once computed, the schedule is then communicated back to CAT for analysis of effective-

ness. For example, CAT’s underlying probabilistic model can be used to estimate the extent

to which the set of “supportable” strike missions can be expected to accomplish stated CINC

objectives. This analysis might motivate revisions to the campaign plan, and any such revi-

sions can then be selectively communicated back to ACS (through JTT), and rescheduling

actions can be taken to determine the impact on the current schedule.

ACSACS

JTT CAT

Targets,
Weaponeering options

Actions and Constraints:
Temporal bounds,

Precedence Constraints,
Pctg. of Effort

Campaign schedule

Aircraft bed-down/availability,
Threat lay down,

World state

Figure 5.3: Information flows between CAT, JTT and ACS in the EBO Jump Start System.

5.4 Results

The integrated CAT-JTT-ACS system was successfully configured and initially demonstrated

within 3 months time. The demonstration involved a planning scenario that required approx-
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imately 400 air strikes to be carried out over a one month time frame. In the six months fol-

lowing the initial demonstration, enhanced versions of the integrated system were produced

that incorporated capabilities for allocating resources to match specified percentage of effort

constraints, for responding to unexpected loss of assets (temporarily or permanently), and for

factoring a simple model of enemy threat into the allocation process. These achievements

are particularly noteworthy given that ACS’s entry into the “EBO Jump Start” demonstration

system followed an unsuccessful one-year effort to accomplish a similar functional capabil-

ity using an alternative air campaign scheduling technology. Our success provides further

evidence of the maturity, flexibility and configurability of ACS and the underlying Ozone

scheduling framework.

Current research with ACS is focused in two broad directions:

� Factoring in the Adversary - The current ACS model incorporates a very simple model

of threat and does not reason explicitly about adversarial actions in the allocation and

scheduling process. One direction of our future work is to develop and evaluate a

set of ACS extensions for incorporating greater knowledge of enemy threats into the

allocation model, to enable more informed assessment of predicted effects, more ef-

fective analysis of allocation alternatives, and more accurate accounting of available

resources.

� Coordination of supporting resources and derivative missions - ACS currently allo-

cates only those assets directly responsible for achieving the desired effects associated

with input demands (target strikers, CAP aircraft). A second thread of research aims

to extend this allocation model to include the full complex of support resources and

missions required (e.g., escorts, jammers, refuelers), and thus provide a framework for

integrated management of all campaign resources.
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Chapter 6

Other Research Publications

6.1 Configurable, Mixed-Initiative Planning and Schedul-

ing Systems

Marcel A. Becker,Reconfigurable Architectures forMixed-Initiative Planning and Schedul-

ing, Ph.D. Thesis, Graduate School of Industrial Administration and The Robotics In-

stitute, Carnegie Mellon University, July, 1998.

Abstract: This thesis addresses the problem of building software applications for plan-

ning and scheduling systems. Most planning and scheduling problems are NP-Complete

even for simplified formulations. The practical utilization of planning and scheduling sys-

tems as decision support tools requires not only dealing with the computational complexity in

a reasonable way, but also considering the uncertainties associated with executing plans and

schedules in a real environment. Given the complexity of the problem, implementing appli-

cations capable of generating high quality solutions for these problems is a time consuming

activity. Although each application domain has its own challenges and idiosyncrasies, cer-

tain level of similarities can be identified across related problems. The development time

would clearly be reduced if good implementations of these common functionalities could be

adapted to be used in new applications. Despite all the software reuse effort, few applications

explore these commonalities. most of the currently implemented systems and solutions are

too problem specific, or too complex to provide reuse opportunity.

Motivated by recent efforts from the software reuse and from the knowledge acquisition
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community, I designed and implemented a modeling framework based on an ontological

model - the ozone modeling framework. The ontology defines a domain specific terminology

that can be used as a language for describing planning and scheduling models. By associating

capabilities or functionalities to the concepts in the ontology, a functional model can be

obtained. If this functionality is supported by an actual implementation, executable models

can be easily generated. The development framework proposed is composed of this planning

and scheduling ontology, the implementation of the capabilities described by the ontology as

an object-oriented class library, and a software tool that implements the mechanisms needed

to generate executable software applications from model descriptions.

The applicability and validation of the solution approach is obtained by applying this

framework to build scheduling applications in three different domains: two problems in

the area of transportation and logistics - strategic deployment and aero-medical evacuation;

and one problem in the area of resource-constrained project scheduling.

Marcel A. Becker and Stephen F. Smith,”Mixed-Initiative Resource Management: The

AMC Barrel Allocator”, Proceedings 5th International Conference on AI Planning and

Scheduling (AIPS-2000), Breckenridge, CO, April, 2000.

Abstract: In this paper, we describe the Barrel Allocator, a scheduling tool developed

for day-to-day allocation and management of airlift and tanker resources at the USAF Air

Mobility Command (AMC). The system utilizes an incremental and configurable constraint-

based search framework to provide a range of automated and semi-automated scheduling

capabilities, including generating an initial solution to the fleet assignment problem, se-

lective re-optimization of resource allocations to incorporate new higher priority missions

while minimizing solution change, merging of previously planned missions to reduce non-

productive flying time, and generation and synchronization of tanker missions to satisfy air

refueling requirements. In situations where all mission requirements cannot be met, the sys-

tem can generate and compare alternative constraint relaxation options. The current version

of Barrel Allocator will go into operational use at AMC as a module of Release 2.0 of AMC’s

Consolidated Air Mobility Planning System (CAMPS) in early 2000.
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6.2 Temporally Flexible Scheduling Algorithms

Amedeo Cesta, Angelo Oddi and Stephen F. Smith, “Profile-Based Algorithms to Solve

Multi-Capacitated Metric Scheduling Problems”, Proceedings 4th International Con-

ference on Artificial Intelligence Planning and Scheduling, Pittsburgh, PA, June, 1998.

Abstract: Though CSP scheduling models have tended to assume fairly general represen-

tations of temporal constraints, most work has restricted attention to problems that require

allocation of simple, unit-capacity resources. This paper considers an extended class of

scheduling problems where resources have capacity to simultaneously support more than

one activity, and resource availability at any point in time is consequently a function of

whether sufficient unallocated capacity remains. We present a progression of algorithms

for solving such multiple-capacitated scheduling problems, and evaluate the performance of

each with respect to problem solving ability and quality of solutions generated. A previously

reported algorithm, named the Conflict Free Solution Algorithm (CFSA), is first evaluated

against a set of problems of increasing dimension and is shown to be of limited effective-

ness. Two variations of this algorithm are then introduced which incorporate measures of

temporal flexibility as an alternative heuristic basis for directing the search, and the vari-

ant making broadest use of these search heuristics is shown to yield significant performance

improvement. Observations about the tendency of the CFSA solution approach to produce

unnecessarily over-constrained solutions then lead to development of a second heuristic algo-

rithm, named Earliest Start Time Algorithm (ESTA). ESTA is shown to be the most effective

of the set, both in terms of its ability to efficiently solve problems of increasing scale and its

ability to produce schedules that minimize overall completion time while retaining solution

robustness.

Amedeo Cesta, Angelo Oddi and Stephen F. Smith, “SchedulingMulti-CapacitatedRe-

sources under Complex Temporal Constraints”, CMU Robotics Institute Technical Re-

port CMU-RI-TR-98-17, June 1998.

Abstract: Most CSP scheduling models make the restrictive assumption that a resource

can only support a single activity at a time (i.e., it is either available or in-use). However,

in many practical domains, resources in fact have the capability to simultaneously support

multiple activities, and hence availability at any point is a function of unallocated capacity.

In this paper, we develop and evaluate algorithms for solving multi-capacitated scheduling

problems. We first define a basic CSP model for this extended problem class, which provides
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a basic framework for formulating alternative solution procedures. Using this model, we then

develop variants of two different solution approaches that have been recently proposed in the

literature: (1) a profile-based procedure - which relies on local analysis of potential resource

conflicts to heuristically direct the problem solving process, and (2) a clique-based procedure

- which exploits a global analysis of resource conflicts at greater computational cost. In each

case, improvements are made to previously proposed techniques. Performance results are

given on a series of problems of increasing scale and constrainedness, indicating the relative

strengths of each procedure.

Amedeo Cesta, Angelo Oddi and Stephen F. Smith, ”An Iterative Sampling Procedure

for Resource Constrained Project Scheduling with Time Windows”, Proceedings 16th

International Joint Conference on Artificial Intelligence, July, 1999.

Abstract: In this paper, we extend and integrate previously reported techniques for re-

source constrained scheduling to develop a CSP procedure for solving RCPSP/max, the re-

source constrained project scheduling problem with time windows (generalized precedence

relations between start time of activities). RCPSP/max is a well-studied problem within the

Operations Research community and the presence of a large set of benchmark problems pro-

vides a good opportunity for comparative performance analysis. Our base CSP scheduling

model generalizes previous profile-based approaches to cumulative scheduling by focusing

on global analysis of minimal conflicting sets rather than pairwise conflict analysis. This gen-

eralization increases the tendency for more effective conflict resolution. Since RCPSP/max

is an optimization problem, other ideas from prior work are adapted to embed this base CSP

model within a multi-pass, iterative sampling procedure. The overall procedure, called ISES

(Iterative Sampling Earliest Solutions), is applied to the above mentioned set of benchmark

problems. ISES is shown to perform quite well in comparison to current state-of-the-art pro-

cedures for RCPSP/max, particularly as search space size becomes limiting for systematic

procedures.

Amedeo Cesta, Angelo Oddi and Stephen F. Smith, ”Greedy Algorithms for the Multi-

Capacitated Metric Scheduling Problem”, Proceedings 1999 European Conference on

Planning, September, 1999.

Abstract: This paper investigates the performance of a set of greedy algorithms for solv-

ing the Multi-Capacitated Metric Scheduling Problem (MCM-SP). All algorithms consid-

ered are variants of ESTA (Earliest Start Time Algorithm), previously proposed in [Cesta et

al., 1998a]. The paper starts with an analysis of ESTA’s performance on different classes of
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MCM-SP problems. ESTA is shown to be effective on several of these classes, but is also

seen to have difficulty solving problems with heavy resource contention. Several possibili-

ties for improving the basic algorithm are investigated. A first crucial modification consists

of substituting ESTA’s pairwise analysis of resource conflicts with a more aggregate and

thus more powerful Minimal Critical Set (���) computation. To cope with the combinato-

rial task of enumerating ���s, several approximate sampling procedures are then defined.

Some systematic sampling strategies, previously shown effective on a related but different

class of scheduling problem, are found to be less effective on MCM-SP. On the contrary,

a randomized ��� sampling technique is introduced, forming a variant of ESTA that is

shown to be quite powerful on highly constrained problems.

Amedeo Cesta, Angelo Oddi and Stephen F. Smith, ”Iterative Flattening: A Scalable

Method for Solving Multi-Capacity Scheduling Problems”, Proceedings 18th National

Conference on Artificial Intelligence, Austin, TX, July, 2000.

Abstract: One challenge for research in constraint-based scheduling has been to produce

scalable solution procedures under fairly general representational assumptions. Quite often,

the computational burden of techniques for reasoning about more complex types of temporal

and resource capacity constraints places fairly restrictive limits on the size of problems that

can be effectively addressed. In this paper, we focus on developing a scalable heuristic pro-

cedure to an extended, multi-capacity resource version of the job shop scheduling problem

(MCJSSP). Our starting point is a previously developed procedure for generating feasible

solutions to more complex, multi-capacity scheduling problems with maximum time lags.

Adapting this procedure to exploit the simpler temporal structure of MCJSSP, we are able to

produce a quite efficient solution generator. However, the procedure only indirectly attends

to MCJSSP’s objective criterion and produces sub-optimal solutions. To provide a scalable,

optimizing procedure, we propose a simple, local-search procedure called iterative flatten-

ing, which utilizes the core solution generator to perform an extended iterative improvement

search. Despite its simplicity, experimental analysis shows the iterative improvement search

to be quite effective. On a set of reference problems ranging in size from 100 to 900 activi-

ties, the iterative flattening procedure efficiently and consistently produces solutions within

10% of computed upper bounds. Overall, the concept of iterative flattening is quite general

and provides an interesting new basis for designing more sophisticated local search proce-

dures.
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Amedeo Cesta, Angelo Oddi and Stephen F. Smith, “A Constraint-based Method for

Project Scheduling with Time Windows”, Journal of Heuristics, 8:109-136, 2002

Abstract: This paper presents a heuristic algorithm for solving RCPSP/max, the resource

constrained project scheduling problem with generalized precedence relations. The algo-

rithm relies, at its core, on a constraint satisfaction problem solving (CSP) search procedure,

which generates a consistent set of activity start times by incrementally removing resource

conflicts from an otherwise temporally feasible solution. Key to the effectiveness of the CSP

search procedure is its heuristic strategy for conflict selection. A conflict sampling method

biased toward selection of minimal conflict sets that involve activities with higher-capacity

requests is coupled with a non-deterministic choice heuristic to guide the base conflict res-

olution process, and this CSP search is embedded within a larger iterative-sampling search

framework to broaden search space coverage and promote solution optimization. The effi-

cacy of the overall heuristic algorithm is demonstrated empirically on a large set of previ-

ously studied RCPSP/max benchmark problems.
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