——— e

i

)
AFRL-SR-AR-TR-04-
) REPORT DOCUMENTATION PAGE
sublic TG‘POI'tH?lg burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, D%g’
data nee¥fid, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of 7

this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 ___._.__ . .
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currenty
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - T0)
June 17, 2004 Final Report -STTR 8-15-03 to 5-14-04
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Distributed Streams-based Data-Mining for Application Intrusion Detection F49620-03-C-0057
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Yurica, Kevin
Pande, Rahul 5e. TASK NUMBER
Motwani, Rajeev §f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
RealTime Methods, Inc. Stanford University
3490 Freedom Circle Computer Science Dept.
Santa Clara, CA 95054 Gates Computer Science Bldg.
Stanford, CA 94305

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Dr. Robert Herklotz AFOSR / NM
AFOSR /NM
4015 Wilson Bivd. Rm. 713 11. SPONSOR/MONITOR’S REPORT
Arlington, VA 22203-1954 NUMBER(S)
12. DISTRIBUTION / AVAILABILITY STATEMENT
g o= Q} s_‘-—"_a." gﬂ ; . ’:5 "’:ﬂ,"\{} it -t . o . R .

: by g fﬁé E%.ng,}%;c ;inf!muu\.:} A{}%}{Q‘J@d fﬁr gu%}!gg 1 e{aﬁ{,l:ji

2y LTI T I TIUET IR '
s distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This investigation considered the challenge of real-time, distributed data mining across high-level TCP/IP protocols
for application layer intrusion detection. The approach taken was to focus on the fundamental challenges of; a)
evaluating similarities between different application-level TCP/IP protocols, b) node-based header evaluation
methods for HTTP, ¢) a communication strategy to support aggregation and coordination. This streams-based
approach to real-time data mining appears to be a useful in many areas including; security monitoring, intrusion
detection and sensor networks.

15. SUBJECT TERMS
Data mining, Real-time processing, Application security, Distributed processing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
UNCLASSIFIED OF ABSTRACT OF PAGES
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
ode)
30 c

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, 239.18

20040706 004

Distributed Streams-based Data Mining for Application Intrusion Detection

Phase | Final Report

Version 1.0

ABSTRACT: This investigation considered the challenge of real-time, distributed
data mining across high-level TCP/IP protocols for application layer intrusion
detection. The approach taken was to focus on the fundamental challenges of;
a) evaluating similarities between different application-level TCP/IP protocols, b)
node-based header evaluation methods for HTTP, ¢) a communication strategy
to support aggregation and coordination. This streams-based approach to real-
time data mining appears to be a useful in many areas including; security
monitoring, intrusion detection and sensor networks.

KEYWORDS: Data mining, Real-time processing, Application security,
Distributed processing

COMPANY: RealTime Methods, Inc.
RESEARCH INSTITUTION: Stanford University

TOPIC: Storage Efficient Data Mining - AF SB032-037

RealTime Methods

1.0 EXECUTIVE SUMMARY
2.0 SCIENTIFIC/TECHNICAL OBJECTIVES

3.0 APPROACH TAKEN
3.1 The Extraction of Communication Headers
3.2 What Questions can be answered through Header Analysis?

3.3 Practical Methods for Communication Header Analysis
3.3.1 String Categorization
3.3.2 Range-Checking Methods
3.3.3 Clustering Analysis Methods
3.3.4 Bloom Filters

3.4 The Lightweight Data Mining Process Developed

3.5 Communication and Reporting

4.0 PERFORMANCE TESTING

4.1 Description of Test Case

4.2 Test System Configuration

4.3 Testing Performed

4.4 General Discussion on Performance Resuits

4.5 Data Storage Efficiency and Sliding Windows

5.0 POSITIVE AND NEGATIVE RESULTS SUMMARIES

5.1 Positive Results Summary

5. 2 Negative Results Summary

6.0 CONCLUSION

7.0 COMMERCIALIZATION SCENARIO
8.0 ADDITIONAL RESOURCES

9.0 REFERENCES

Distributed Streams-based Data Mining for Application Intrusion Detection

Phase 1 Final Report

20
20
21
21
24
24

26
26

26

27

27

28

29

Page 2

RealTime Methods Phase 1 Final Report

1.0 Executive Summary

This investigation considered the challenge of real-time, distributed data mining
for application layer intrusion detection across high-level TCP/IP protocols. In
focusing on the application level, it's possible to view activities in real-time that
may provide specific insight into human or machine behavior patterns. The rapid
assessment of such behavioral patterns may reveal much about the health and
status of applications, individuals, nodes and network services. The general
approach taken was to focus on three fundamental challenges; a) characterizing
the application layer challenge b) developing streams-based data evaluation
methods, b) identifying a communication strategy that enables aggregation and
coordination.

The data mining process developed evaluates an HTTP header stream by
filtering and analyzing requests for particular conditions of interest. When the
evaluation pipeline detects an anomaly of some type (i.e. - a URI parameter is
outside an allowable range), the condition generates a notification event. Much of
the analysis performed exploits the native structure and artifacts of the HTTP
protocol. The communication headers captured, essentially create a ‘bread
crumb trail’ that provides for step-by-step evaluation of user interactions.
Discerning ‘normal’ behavior from ‘abnormal’ behavior is accomplished by
working with resource and parameter values as well as expected paths through
resource hierarchies. This exploitation of protocol-specific convention appears to
create a suitable starting point for the further application of statistical measures.

The second major aspect- the communication strategy, was addressed using a
commercial Web services platform as the basic communication infrastructure.
While Web services infrastructure promises to fulfill the needs of message-
oriented applications in the long-run, a couple of technology issues still exist.
Today, Web services infrastructure is still largely oriented to simple data
exchange such as passing parameter values or arrays, when both ends of the
conversation understand the full context of the data being passed in advance.
Ultimately, it is believed that Web services will work very well as a message-
oriented communication infrastructure for applications similar to the one
proposed here. However today, the commercially available infrastructure is only
starting to address requirements for improved message-oriented functionality.

The analysis infrastructure investigated here appears to be well-matched to
distributed processing scenarios where application monitoring routines need to
be lightweight and storage is bounded. Applications where this approach may be
especially productive include; security monitoring, telecommunications, ad hoc
wireless networks, and sensor networks.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 3

RealTime Methods Phase 1 Final Report

2.0 Scientific/Technical Objectives

This research investigated the potential for streams-based data mining to deliver
improved functionality in the area of application-level intrusion detection.
The primary technical challenges to be investigated were as follows:

1. Investigate the feasibility of streams-based data mining in a distributed
environment

2. Investigate the effectiveness of cluster-based analysis methods for
application intrusion detection.

3. dentify appropriate control, messaging and reporting mechanisms to
support streams-based data mining and intrusion detection.

3.0 Approach Taken

The general approach taken was to define, model and simulate the services
required in a prototype system to evaluate feasibility. The technical investigation
consisted of the following five activities.

1. Investigate HTTP and IRC communication headers as a basis for
application layer intrusion detection

2. Evaluate HTTP header analysis alternatives and algorithms

3. Design and develop a lightweight data mining process to extract
information from HTTP communication headers

4. Define control, communication and reporting mechanisms

5. Simulate system behavior using component models

3.1 The Extraction of Communication Headers

The target data source for this investigation was high-level TCP/IP-based
protocols. Considering the OSI communication model, this effort focuses on
capturing information at the Application Layer (Layer 7), which is responsible for
providing appropriate semantics and meaning to the transported data. In
contrast, most packet-level firewalls and IDS systems are focused on the
Transport Level (Layer 4), where messages are segmented into packets. The
most popular high-level TCP/IP protocols include; FTP, HTTP, NNTP, SMTP,
POP3, IRC and others.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 4

RealTime Methods Phase 1 Final Report

Figure 1 - Application Layer Protocols based on TCP/IP
(Excerpt from Agilent Protocol Map)

FTP Telnet !
Al Tramalar el — "~ SwiaRE

Pmcnl - ne .V - a— A v e 20 ..“w‘ .7,,,.; Te—— 'Rc and an
NNTP 3 Protocols

Nework News o Hatneyel Investigated

POP3.. . TTRPWWW
imt ngue Tag Distribution Hypar Taxt
rotucd v3 Pmtocal Transie Protocol |

For the investigation of node-based data evaluation methods, two application
layer protocols in particular were looked at closely- IRC and HTTP. The
differences between HTTP and IRC were thought to be substantial enough that
each would require a distinct effort. HTTP was selected as the best candidate for
an initial implementation effort since the IRC protocol allows for dynamic
indirection- potentially removing the ‘conversation’ from the view of the original
monitoring node.

The general data stream parameters of interest in this investigation can be
divided into three groups: 1) connection parameters, 2) communication headers,
3) content parameters or features.

The premise behind the focus on communication headers was that the extraction
of this data may provide an efficient ‘view’ into the context of a communication
exchange. It is worth challenging this notion however. Protocol-specific header
data has largely not been used in modern IDS systems which tend to rely more
on packet inspection methods. Clearly if you need to monitor every port and
every packet, the use of a proxy server is not a good choice. However, in the
domain of application security, the examination of communication headers to
assess the health of an application is not uncommon.

Much of the data that is intercepted here in the form of HTTP communication
headers is also available in Web server logs. Along these lines, many of the
same questions that someone might try to answer through the process of ‘Web
mining’ on log files can start to be answered in near real-time using the
techniques developed here. In the domain of user behavior analysis and
clickpath analysis, the extraction of communication headers essentially provides
a step-by-step sequence of nearly every action a user takes.

While there appear to be advantages to the use of communication headers, there
are also disadvantages. With respect to the overall generality of this approach, it

Distributed Streams-based Data Mining for Application Intrusion Detection Page 5

- - RealTime Methods Phase 1 Final Report

may be regarded as ‘somewhat limited’ since the headers and protocol artifacts
exploited here for HTTP can not be generally applied to other TCP/IP protocols
such as; IRC, NNTP, SMTP, etc.

The advantages of the use of communication header methods relative to packet
inspection include:

» Produces a precise account of a communication exchange with context
and semantics

» Sessions can be actively intercepted or halted (pass/no pass)

> Encrypted sessions can be decrypted at the proxy intercept point

The disadvantages of the use of communication headers relative to packet
inspection include:

> Not as general as packet-level inspection

> Requires a proxy server for the protocol of interest

» The use of a proxy server has the potential to create client-server
compatibility issues

As more and more enterprise content streams are encrypted, the use of a proxy
server remains one of the few good alternatives to decode encrypted sessions
and gain insight into encrypted stream activity. Accordingly, some leading
network security solutions include both firewalls and proxies within a single
product (including the Microsoft 2004 Internet Security and Acceleration Server
used here). This integration of firewall and proxy server functionality offers a
high level of flexibility to help address a wide variety of potential deployment
scenarios.

3.2 What Questions can be answered through Header Analysis?

In the domain of communication analysis, it's relatively easy to entertain
interesting ‘what if?’ questions. However, getting answers to such
questions on a real-time basis is computationally expensive so one must
carefully select each analysis task to fit within a performance budget that is
limited. Along these lines, any practical analysis method selected for real-
time use must be evaluated from a ‘cost-benefit’ perspective. Analysis
methods that can be applied generally to the broadest range of scenarios,
become highly desirable from the perspective that ‘lightweight and efficient’
are probably key to success.

While a large number of different questions can potentially be answered through
the analysis of communication headers, one of the advantages of listening to the
TCP/IP stack at the application layer is the ability to capture the context or
semantics of an exchange. Some the most valuable questions that might be
answered here are already being answered today- except in less expedient

Distributed Streams-based Data Mining for Application Intrusion Detection Page 6

RealTime Methods Phase 1 Final Report

ways. Today, firewalls and directory servers are setup to enforce broad policies
on resource access. However, more specific detail indicating ‘who’ accessed
‘what’ and ‘when’ is typically only available from server-based log files which
often represent the only detailed transaction record in an organization.

The investigation focused on addressing the basic questions about users such
as; who? what? and when? Getting answers to these questions requires more
specific analysis focused in the following areas.

» Request origination - Where did the request come from? What domain, IP,
or organization? Is this origination known?

> Resource requested - What resource is requested? What URI or
particular name-value pairs were called? Is this resource known?

> Request sequence - Extraction of session information, links or paths
between resources or the lack thereof. Is this sequence known?

3.3 Practical Methods for Communication Header Analysis

A number of different analysis methods were considered to determine
which might be successfully applied to the task of HTTP communication
header analysis. The data mining and analysis methods investigated
included; string categorization, range checking, clustering, and Bloom
filters. The critical factor in designing streaming algorithms is reducing
computational workload and managing scaling factors- which ideally should
have linear characteristics. While many different statistical measures could
be applied here, at a practical level, we can afford only a modest workload
and still keep up with real-time arrival rates. One intuitive concept
described in work at Stanford is that good streaming algorithms can often
be derived from conventional analysis algorithms®.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 7

RealTime Methods

Table 1 = Summary of Analysis Methods Investigated

Phase 1 Final Report

Summary of Ana!ysus Methods

Investigated =

Analysis Method Application Examples Strengths
+ Origination domain, .

String and IP, destination : g';?,g?a[

Categorization domain and IP, others + Efficient

Range Checking

Clustering

Bloom Filters

_value pairs, others

+ URI resource, name-

+ URI name-value pair + Can be adapted to

checking work with strings

+ QOrigination or + Can answer general
destination domain and ‘set membership’

IP questions

+ Name-value pairs,

feature vectors, others + Very efficient way to
+ Strong opportunity to identify 2™ order
pre-calculate values for relationships

use in r/t analysis

+ Highly efficient way to
+ URI resource and differentiate ‘seen’ vs.
name-value pairs ‘never before seen’
requests

Weaknesses =~

+ Difficuit to adapt
strings to most
numerically oriented
statistical methods

+ Requires
application-specific
information to treat
strings numerically in
most cases

+ Computationally
expensive to perform
all work in real-time

+ Requires data
cleaning and
alignment

+ Implementation
more difficult in the
case of dynamic
content

Since header information is initially gathered as strings, string-oriented evaluation
methods are the easiest to apply. Certain header fields such as the URI field,
potentially contain many embedded parameters of interest. In the case of the
URI field, the machine, domain, resource identifier, and a number of name-value
pairs may be present. With respect to application intrusion detection and
clickpath analysis, such details are both important and interesting. However, for
any analysis process to successfully use such embedded parameters, one must
first successfully extract, filter and align them.

Distributed Streams-based Data Mining for Application Intrusion Detection

Page 8

RealTime Methods Phase 1 Final Report

A lot of research has been done in the area of Web Usage Mining which directly
or indirectly addresses some of the issues involved in the extraction of;
navigational patterns, ordering relationships, clustering of web usage sessions,
and prediction of behavior. Most commonly this work is focused on Web logs
and possibly supplemented with the analysis of web content or other information.
“One fundamental challenge in all these problems is that the raw data is in the
form of sequences, and not vectors. As a result, it is difficult to apply many well
developed data mining techniques for vector type data.”

3.3.1 String Categorization

String-based analysis methods can be applied to the exploitation of protocol-
specific header data and artifacts. The resource requested, parameters passed
and clickpath may all be reflective of the behavior of the user. To efficiently work
with such sequences of events, mechanisms are required which quickly
categorize large numbers of requests and efficiently determine their nature.

String categorization can be used to extract, record and catalog recurring string
sequences by capturing the relationships between substring segments. Strings
can be parsed into a series of sub-strings which are then ordered and arranged
into a hierarchy that reflects the characteristics of the passing content.

One way to make string manipulations more efficient is to tokenize recurring
substrings into a common form that normalizes variants. In the case of HTTP,
URIs can be tokenized into a series of resource parameters and often a series of
name-value pairs as well.

In the following URIs, the domain, resources and name-value pairs have been
extracted and organized as sub-strings that can then be classified in a hierarchy.

URI #1: hitp://www.rtmethods.com/home/company/contact. html

Primary domain: rtmethods.com
Sub-domain: WWW

Resource token series: home
company
contact.html

URI #2: http://ncid.rtmethods.com/cgi-bin/gx.cai/applogic+ftcontentserver?
pagename=sitea/tsearch/common&z5=18&z4=38&t3=1051026822=10001

Primary domain: rtmethods.com
Sub-domain: ncid

Resource token series: cgi-bin

Distributed Streams-based Data Mining for Application Intrusion Detection Page 9

RealTime Methods Phase 1 Final Report

gx.cgi
applogic+ftcontentserver

Name-value pairs:

pagename | sitea/tsearch/common
z5 1

z4 3

t3 1051026

z2 10001

In each case, the primary domain is rtmethods.com, and we can map the
relationship between these elements by constructing a simple tree as follows.
The chain of relevant tokens for each of these URI examples is shown in gray in
the content hierarchy below.

Figure 2 — Categorization Hierarchy Example

dev
|
home L sevr\\l/ie:es RSS indices
A
Company { | products services
contact . about jobs

Name-value pairs subsystem

3.3.2 Range-Checking Methods
The use of range-checking appears promising in the domain of communication

header analysis- in part, due to the inherent flexibility of range checking methods.
While most easily applied to numbers, range checking variants can also be

Distributed Streams-based Data Mining for Application intrusion Detection Page 10

RealTime Methods Phase 1 Final Report

applied to strings. In the domain of numerical sorting, significant value is
associated with each ordered position relative to the decimal point (or least
significant integer placeholder). With character-based sorting, each character is
simply compared against others in the same position starting from the left. In the
case of name-value pairs, a character-based sort can be applied to string-based
parameters. While a string may not be ‘in range’ numerically, when it's bounded
by two other string values, it is certainly characterized within certain limits. This
type of string-boundary characterization is relatively effective and efficient.

One of reason that range-checking appears to be so useful in the real-time
processing domain is simplicity. It is very easy to specify a particular range-
based test condition and also very easy to describe a ‘pass’ or ‘failure’ condition.
Second, range checking appears to be very efficient from a computational
workload perspective. Third, range-checking is inherently flexible and can be
applied to many things. For example, an IP number can be range checked to
determine its relationship to other known subnets.

The simplicity of range-checking also seems to offer advantages in the domain of
distributed applications. Since specific values are enumerated and tested, it is
relatively straightforward to share this type of information with other nodes.
Distributed range-checking schemes such as Top-k, offer the opportunity to
extend range checking evaluation into the distributed fabric of the network.

3.3.3 Clustering Analysis Methods

The application of many common clustering analysis methods to HTTP
header analysis is challenging for two reasons. First, header data is
generally captured as strings which makes numerical comparisons difficult.
While there is a wealth of header information available, a significant amount
of cleaning and alignment work is required before second order
relationships can be reliably extracted.

Second, while there are certainly a large number of conceptual
opportunities for the application of clustering, practical considerations make
many applications difficult. From a ‘workload’ perspective, many common
clustering methods are computationally expensive and difficult to fit into a
real-time evaluation scheme. One way to bring the benefits of clustering
into a real-time evaluation environment is to pre-calculate clustering-based
comparison values. In the case where comparison data can be analyzed or
optimized off-line, a very significant design win is available from an
efficiency standpoint.

An interesting opportunity to apply this hybrid clustering approach is found in the
area of clickpath analysis methods. “Data mining from web access logs is a
process consisting of three consecutive steps: data gathering and pre-processing
for filtering and formatting the log entries, pattern discovery which consists of the

Distributed Streams-based Data Mining for Application Intrusion Detection Page 11

RealTime Methods Phase 1 Final Report

use of a variety of algorithms such as association rule mining, sequential pattern
analysis, clustering and classification on the transformed data in order to
discover relevant and potentially useful patterns, and finally, pattern analysis
during which the user retrieves and interprets the patterns discovered.”

Some off-line methods for clickpath analysis rely on clustering methods to
evaluate page ‘similarity’ with other pages. One such approach explored
here involves the use of a ‘similarity’ measure that is calculated based on
the content features of a Web page or resource. If the
similarity/dissimilarity measure for different content resources is pre-
calculated, then the real-time evaluation process can be as simple as
comparing requests against known values.

3.3.3.1 Pre-calculated Path Clustering for Session Analysis

To address the challenge of session analysis, an approach that relies on pre-
calculated path clustering was investigated. The general idea is to use off-line
similarity clustering to determine most likely path vectors through a resource
hierarchy. The results of this similarity measure are calculated off-line and
converted to an index which is associated with each defined node in a resource
hierarchy. Two simple variants of this method were noted; a) using path tokens
to assess similarity, b) using link analysis to assess similarity.

In the case of path tokens, similarity is computed base on the position of a
resource within a content hierarchy. Resources that are adjacent to one another
are considered similar, while those that are distant are deemed dissimilar. The
process of calculating path token values proposed here is adapted from similar
work performed by Banerjee and Ghosh®. In their work, they described the
process of calculating path tokens as follows:

“This method first determines the intersection of any two paths under
consideration as defined by the longest common subsequence (LCS) between
the two sequences of pages visited by each user. Then, a similarity value is
computed over this LCS as a function of the closeness in the times spent on the
corresponding pages weighted by a certain importance factor. Using these
similarity values, a graph is constructed whose nodes are the paths.”

For any particular pair of sequences, as the path corresponding to the session
under consideration, we are interested in finding the maximum-length or longest
common subsequence (LCS) given two paths or sequences of page-visits. To
calculate the LCS for a pair of sequences, the following procedure suits our
purposes.

Step1: Compare each corresponding token of the two token strings one by one
from the beginning, until the first pair of different tokens is encountered.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 12

RealTime Methods Phase 1 Final Report

Step2: Compute the similarity of two resources by first determining the length of
the longest token string among the two. Then give a weight to each level of
tokens: the last level of the longest token string is given weight 1, the second to
the last is given weight 2, etc. Next, the similarity between two token strings is
defined as the sum of the weight of those matching tokens divided by the sum of
the total weights.

In the case of link analysis, the number of ways that two different resources are
linked or associated by hyperlinks can be measured and indexed using a Web
robot. This is similar to the link analysis approach used by Google which
evaluates the ‘authority’ and ‘popularity’ of different references. For purposes
here, once hyperlinks are extracted other content features can generally be
ignored. We consider that two different resources have ‘high’ similarity when
they include many of the same links or are pointed to a similar set of references.

if the two pages are totally different, i.e. no corresponding hyperlinks, their
similarity is 0.0. If the two pages are exactly the same, their similarity would be
1.0- perfect matching between two session sequences. The optimal match is the
alignment with the highest score reflecting the best fit between a series of
requests.

3.3.4 Bloom Filters

The final method that we consider for communication header analysis was the
use of Bloom filters®. Bloom filters are compact data structures for answering
set-membership type queries with a high degree of precision. Given a list of
strings and a key string, a bloom filter will answer whether the key string is
contained within the list with a low probability of error. The filters work by
representing each stored list element as a low dimension vector of bits. Query
strings are then converted to like bit sequences and are compared to the stored
bits in an efficient manner to determine set membership. The representation of
each string by only a few bits results in the filters being extremely fast and
economical; however, the drawback of this technique is that it introduces some
lossiness into the data and results in a small false positive rate i.e. occasionally a
bloom filter will say an element is in the filter even though it is not. It is, however,
possible to parameterize the filters so that this error rate is made arbitrarily small
with a corresponding incremental increase in the filter's space requirement.

The filters were first described in a 1970 paper by Burton Bloom’, and have since
found use in password appropriateness verification®, unix spell checkers, ice-
berg queries, packet routing, IP tracing along with a myriad of other applications
in databases and networks®. In fact, nowadays the filters are considered to be so
widely applicable that some senior scientists from IBM and Harvard have coined
the Bloom filter principle: “Wherever a list or set is used, and space is a
consideration, a Bloom filter should be considered. When using a Bloom filter,
consider the potential effects of false positives.”®

Distributed Streams-based Data Mining for Application Intrusion Detection Page 13

RealTime Methods Phase 1 Final Report

The use of Bloom filters offers a very efficient way to distinguish between ‘never-
seen-before’ and ‘seen-before’ requests. Specifically, the use of Bloom filters to
ascertain whether the parameters of an incoming HTTP request are ‘in range’ or
‘not’ was considered. This proposed approach involved storing all in-range
strings for a given request parameter in a Bloom filter and then querying the filter
to check whether the value of the corresponding parameter in an incoming HTTP
request was in the stored list or not. An affirmative reply for all parameters in
incoming request would imply that that HTTP request was (with high probability)
in range and had been ‘seen-before’, a negative reply for even one parameter in
the incoming request would mean that that request had ‘never-been-seen-
before’. The advantage that of using bloom filters to support this type of analysis,
was that the filters require far less storage space than the other approaches (raw
data, hashing, patricia trie’s etc), but still are very accurate.

To test the suitability of this approach, a bloom filter implementation for the SQL
Server environment was constructed with an expected false positive rate of 0.15
% (i.e. we would expected the filter to misclassify 2 strings for every 10,000
strings queried against it.) We stored 5000 strings of a fixed length in the filter,
and then queried this structure with 100,000 random strings (of identical length
as the strings stored in the filter). After each test we tabulated the size required
by the bloom filter and the actual misclassification rate observed. The results are
presented as follows.

Table 2 - Bloom Filter Accuracy Trials for Various String Lengths

String - - | Sizeof - |Sizeof = | Theoretical - '|Actual .
length | raw data _bloom filter - | misclassificati on” ; "mlsclassﬁ‘catnon i
3 104 KB 40 KB 4, 1%

5 120 KB 40 KB 0.16%

10 200 KB 40 KB 0.16%

20 200 KB 40 KB 0.15%

50 352 KB 40 KB 0.15%

100 608 KB 40 KB 0.15%

200 1112 KB 40 KB 0.15%

In the results above, the ‘size of the bloom filter’ column refers to the size of the
table (in SQL Server) required to store the bloom filter containing the 5000
strings. The ‘size of the raw data’ column gives the size of the table (in SQL
Server) required to store the same strings as raw text (i.e. not encoded in the
bloom filter) and has been provided for the purpose of comparison.

The results indicate that, for our application, in all cases bloom filters use far less
space than just storing the raw data (approx. 3 to 28 times less space) and are
still very accurate. In most cases their precision is still close to the configured
value of 99.85%, but for small strings (of length 3) this accuracy falls to about

Distributed Streams-based Data Mining for Application Intrusion Detection Page 14

RealTime Methods Phase 1 Final Report

95%. It should be noted that the increased error for small strings can easily be
addressed in our implementation by appending to a small constant suffix to each
stored string to ensure that all strings in the filter are of length larger than 5.

The above tests indicate that Bloom filters are appropriate for the set
membership queries required by our application. However, to be applied in a
practical way, data alignment and conditioning of header data is required. For
example, name-valued pairs appended to a URL are valid when presented in any
order. Prior to casting a Bloom filter, the order of name-value pairs needs to be
normalized in some consistent way. Other important data conditioning steps
include the cleaning of escape characters and other string artifacts which might
create variability in the way ‘equivalent’ requests are presented.

3.4 The Lightweight Data Mining Process Developed

A lightweight data mining process was developed that filters, aligns and
evaluates inbound requests against specified values and recent history.

The communication headers captured here, essentially create a ‘bread crumb
trail’ that provides for step-by-step evaluation of every resource a user requests.
The high-level functionality implemented in this request evaluation pipeline can
be summarized as follows.

Distinguishes between 'seen before' versus 'never seen before' requests
Hostname Matching - resolves synonyms, etc.

Path Matching — resolves URI path elements

Continuous Parameter Range Checking — range checks parameters in
continuous ranges

Discontinuous Parameter Range Checking — range checks parameters in
discontinuous ranges

Indexed-based evaluation for additional discriminators- such as pre-
clustered path vectors based on URI analysis

vV V. VVVYV

This data mining process was implemented in the SQL programming
language and runs on the Microsoft SQL Server 2000 relational database.
While this same evaluation pipeline could be implemented outside of a
database, the benefits to using a database include; rapid data capture,
support for math and statistics, Web services connectivity, data integrity
checking and more.

The data mining process developed can be expressed as a series of
standard data mining ‘steps’ or procedures. Once data is extracted, it is
cleaned and aligned in preparation for further analysis. The general flow of
the data mining process can be seen in the diagram that follows.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 15

RealTime Methods

Figure 3 — Functional Diagram of HTTP Analysis Framework

Phase 1 Final Report

Project: AFO11 - Distributed Streams-based Data Mining
HTTP Common Analysis Framework Version 1.01
Data Extraction _Data Analysis Reporting Interface
Alignment
+ Capture real-time | + Focus analysis + Focus on + Share simple + Report on rit
HTTP request on particular goals Parameter Tree summary reports activity including
stream using proxy + Format to assist Analysis, Range with other nodes resource and
intercept method rocessin (3; e checking and other | expressed as parameter analysis
% °SS! ? qt analysis methods | XML messages of request stream
, origination, efc.) (i.e.- most recent
+ Remove data + Evaluation + U§e Web activity, Jnon- '
tems not of pipeline using services as the confc?r[nmg acfi\{uty,
interest (i.e- some cascading triggers | message suspicious activity,
file requests, transport layer eic.)
graphics, js, etc.)
HTTP
Proxy Server | | | _» Data Alignment Activity Summary
Extracted Data and Initial Filtering and Status Monitor
Stream T]
- “URI Analysis
Resou.r.ce [
F? rameter | Tree-based
7 > Resource
(Ordered N
paranl;eeter lis) [Analysis
: ‘r.larne-\./a‘ll‘.l:e‘: : g ’
‘| Pairs Paramater List or Range-
ey based
3 {Unordered ; 5
| parameterfis) || Pairs Analysis
Lightweight
s?:p"‘:r&’;ed Report Viewing
Structure
% I
2 Other Analysis -
S Candldateslnclude
(2] + Connection, .70
= -parameters " i g Other
5 “# Embedded header.:
et “parameters . ;
L #Others i
S *C LT
=

At each stage in the processing pipeline, data items are processed by a
series of stored procedures which are triggered when new data arrives. A
Sliding Window implementation is used to define the working set at each
stage in the data pipeline and automatically drops data items based on their
age or conformity.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 16

RealTime Methods Phase 1 Final Report

The data model discussion that follows is summarized at a high-level in the
following sequence diagram. Data items enter the process at the capture
point on the left and proceed step-by-step to the right.

Figure 4 - Data Mining Pipeline Stages

T B Data Cnioi [T T
o Date T o SR CRURE i
s o e Filtering & T iy el Reporting”|
“Capture. [™ signment | | Analysis | T Statistics | T T

The Data Filtering and Alignment data model which follows illustrates initial
data conditioning steps. First, data is captured by the proxy server and
written in sequential blocks to the database. Second, a unique ID is
assigned to each data item and preliminary filtering conditions are applied.
Third, domain names are resolved against a synonym list which cross-
references multiple IP addresses or domains which should be attributed to
a single entity.

Figure 5 —~ Data Filtering and Alignment Unit

Data Filtering and Alignment
Data Fittering Data Alignment
o ‘cdptured -1 e g S
ClientlP PK |reald PK |reqid
ClientUserName i i
ClientAgent logdatetime logdatetime
ClientAuthenticate sysdatetime sysdatetime
logDate dotr;: dom
Time " pa Ali path atch Analyze
Capture | 22005 e Extract paths ClientUserName equlest pa ClientUserName
P | reforedsenver |t service > service —
DestHost servername servername
DestHostP DestHost DestHost EER SRR View - - - -.
DestHostPort DesttostiP DestHostlP <
processingtime DestHostPort DestHostPort . ;
bytesrecvd protocol protocot T urView - -
bytessent transport transport e
protocot operation operation timestamp - %
transport origuri origufi dom 7
operation mimetype mimetype path - 0.
uri objectsaurce Align objectsource pardmName:’ -
mimetype resuftcode Domain Name, resuttcode paramValue .-
objectsource step Replace request step ClienttP' -
resultcode p ClientUserName
Cachelnfo Filter data based on [Fifiparamy - Serviee
nile domaln and path suffix. ey] ~ servername : -
Fiterinfo Replace path i based " PK | reqid DestHost . <]
SrcNetwork synonyms - PK | reqParamid DestHostiP.."5.:
DstNetwork v PK {name DestiostPort
Emorinfo R TN — sysdatetime | -~ protocol 7]
Y S reath it (D] LS o dom name transport
domfiterd| |- pathfilterd — value [origuri 2.
»p | Mimetype
symbol : : resultCode
dom pathsuffix pattern PP View: « -+

Once data items are conditioned and initial filtering is accomplished, data items
are forwarded to the URI analysis unit which parses each URI string. While the
implementation specifics of application URIs vary widely, there is consistent
structure present which can be exploited. Static Web resources are typically
arranged in a hierarchy that often mirrors the file system directory structure where

Distributed Streams-based Data Mining for Application Intrusion Detection Page 17

RealTime Methods Phase 1 Final Report

the content resides. And dynamic Web resources are typically exposed using a
set of name-value pairs that represent the essential inputs to an information
application. Of course, it is also common to have these conventions combined.
The URI analysis unit addresses both of these situations and essentially
characterizes every element of every request.

Figure 6 — URI Analysis Unit

URI Analysis
o treet
PK |treeld paramrange1 :
Is dom Continuous PK |treeld
Resource path Range? PK |paramid
Node and name -
Parameter parent e mlnvall
maxva
Mapped? lastieaf
-1 type
code
flag
abbr
ref1
ref2
maxparam Discontinuous | paramrange2 .
minparam Range? Sndorinial- e
PK |treeld
- — : . PK
fitreeparam?” : PK |lineld
L 5| PK |treeld : vt
PK {paramld { View. -
Is name
HTTP Emror required
Code OK ? - Log Data and Errors

In the case where a request has been ‘seen before’ and is deemed ‘valid’, the
request is statistically recorded so that the occurrence is captured and
characterized. In addition to simply counting requests, the URI Statistics Unit
keeps a running count of activity levels over muitiple Sliding Windows of time.
Activity is recorded for the standard time windows of ‘last minute’, "last hour’ and
‘last day’. Sliding Window evaluation parameters can be set for any time period of
interest and for any number of independent instances.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 18

- RealTime Methods

Figure 7 — URI Statistics Unit

Phase 1 Final Report

URI Statistics

PK

anomalyld

reqld

treeld
logdatetime
sysdatetime
dom

path
uriParamName
uriParamValue
ClientiP
ClientUserName
DestHostIP
DestHostPort
origuri
statusMsg
statusCodeld

PK

statusCodeld

statusCodeDesc

anomavien

« « View- PP

timestamp

uriParamValtue “
ClientlP .=
| ClientUsel rNarhe
DestHostlp, '
DestHostPort
origuri -
statusMsg 1
statusCodeld -

e
PK | statsld - statsView |
treeld
treeld R A
serverTime -
reqlastMin ST
re:LastHour reqtastMin
reqlastDay | - - - View. ppfFegLastiour .
reqTotal reqlastDay -
errorLastMin Lerrq;?.taas'tMm -
er| |
errorTotal Y erorLastDay
erorTotal
S :
.......... View .

currentdatetime

3.5 Communication and Reporting

A publication-subscription model was chosen that supports the exchange of light-
weight event-oriented messages in an efficient manner. This model effectively
removes communication burden from data producers and assigns it to a data
broker that shares information across an ‘n x n’ matrix of nodes. The JBI
Commercial Standards Working Group reviewed the use of Web services to
address Pub-Sub scenarios in findings they reported in 2002."

SOAP-based Web services offer promise as a ubiquitous machine-to-machine
message transport mechanism. However, shortcomings in the use of Web
services as a messaging fabric were identified. Today with Web services, there
is no support for the notion of a general delivery ‘destination’. However, there
are workarounds that enable posting a message to a specific network end-point
or machine. One new Web Services standard currently being pursued by the
W3C may help change this; WS-MessageDelivery'2. This effort promises to
overlay an SMTP-like message delivery framework on top of SOAP. While
similar to the previous WS-Addressing initiative, this new effort is thought to be
more compatible with the existing WSDL standard.

In this investigation, a simple polling model was implemented using Web
services, SOAP and XML. The test client subscribes to data from a remote
evaluation node using Web services. Using the Microsoft .Net framework, the
evaluation node is polled at regular intervals by the monitoring client to retrieve
an activity summary. The .Net Web services implementation that was developed

Distributed Streams-based Data Mining for Application Intrusion Detection

Page 19

RealTime Methods Phase 1 Final Report

for this application proved reliable down to polling intervals as small as 1/3 of
second. At polling intervals of less than 1/3 second, update requests started to
be dropped. To construct a more scalable architecture, two-way push-pull
architecture is needed. Not only should updates be available via regular polling,
but certain exceptions should be propagated to a client immediately. While there
are some work-around approaches to accomplish this objective, pushing a
message to a client on an exception basis would certainly be made easier with
the implementation of a standard such as WS-MessageDelivery.

4.0 Performance Testing

The test case developed was based on a single evaluation node which was
connected to a remote test client. The test client gathered the output of the data
mining process from the remote evaluation node at regular intervals via Web
service requests.

4.1 Description of Test Case

The goal of the performance testing was to assess the nature of the workload
that could be accomplished. A desktop PC was configured as an evaluation
node and was subjected to increasing numbers of requests until requests started
to get dropped. The point at which application requests started to be dropped
was designated as the maximum number of requests per second that the
application could service on that specific machine.

Figure 8 — Diagram of Performance Testing Environment

Remote Monitoring Load Generation

I Web Service Calls B

Control Client ~_—"" Load Client
\ % P Requests
K
Evaluation

Server 2

Request Service Nodes

Distributed Streams-based Data Mining for Application Intrusion Detection Page 20

RealTime Methods Phase 1 Final Report

4.2 Test System Configuration

The test system developed is based on the Microsoft Windows operating
system and .Net Framework. Microsoft SQL Server was used as the
database, however, other relational database products are also suitable for
our purposes. Further details on the hardware and software used for
testing purposes are described in the table below.

Table 3 -Performance Test System Configuration

Test System Configuration

Hardware Configuration Software Configuration

Intel 2.4 GHz Pentium 4 CPU | Microsoft Windows Server
2003

ASUS 9000 Motherboard Microsoft Internet Security and
Acceleration (ISA) Server
2004 Beta

512 MB RAM Microsoft SQL Server 2000

100 MB Ethernet

4.3 Testing Performed

The test node was subjected to a request load that was generated across a LAN.
A test client was developed in Java that would dispatch a specified number of
HTTP requests each second where a specified fraction of the requests were
either ‘good’ or ‘bad’. The ‘good’ requests were already categorized in the URI
Analysis tree and would pass the inspection portion of the evaluation process.
The ‘bad’ requests had never been seen before and would resuit in anomalies
being reported. In the case of ‘bad’ requests, anomaly reporting resuited in a
slightly greater workload.

To assess the impact of incremental pipeline stages on the performance of the
system overali- two different scenarios were run. In the first case, the complete
evaluation pipeline was used and the second case, the URI Statistics Unit was
turned off to reduce overall workload.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 21

RealTime Methods Phase 1 Final Report

Case 1 - Performance Testing of Full Data Model

The test results shown below were recorded on May 27, 2004 using Datamodel
Version 2.30 with the URI Statistics unit turned on. The workload applied was 25
HTTP requests per second issued from a test client over a 30 second period. An
average CPU workload of 40% was observed. For this test system and
configuration, an arrival rate of 25 requests per second may represent a practical
limit. Subsequent trials at higher request arrival rates (30 and 35 req./sec.) both
showed a significant percentage of dropped requests. During these subsequent
trials at higher requests rates, CPU load tended to increase, however the total
number of requests processed during the duration of test rarely exceeded the
case when requests were arriving at a more modest rate and no requests were
dropped.

Figure 9 - Test Results for Full Data Model - Arrival rate of 25 requests/sec.

0| Datamodel 230, May 27, 2004

| Color_Jscale |counter | instance |Pparent

1.000 Pages/sec - -
Avg, Disk Qu.., Total = -—
o) —--

Distributed Streams-based Data Mining for Application Intrusion Detection Page 22

RealTime Methods Phase 1 Final Report

Case 2 — Performance Testing of Reduced Data Model

The test results shown below were recorded on May 27, 2004 using Datamodel
Version 2.30 with the URI Statistics Unit turned off. The workload applied was 30
HTTP requests per second issued from a test client over a 30 second period. An
average CPU workload of 35% was observed. At higher arrival rates (35 and 40
requests per second), some requests were dropped, suggesting that a practical
limit had been reached around 30 requests per second.

Figure 10 - Test Results for Reduced Data Model (URI Statistics Unit Turned Off) -
Arrival rate of 30 requests/sec.

Memary

. Avg. DiskQu... _Total
1.000 % Processor... _Total --- Proces... WATC ¢
{ 000, CommittedB.. - - Memory WATC

Comparing the Case 1 and Case 2 test results between, we observed that the
test system was able to keep up with a higher arrival rate when the analysis
workload was simplified with the URI Statistics Unit turned off. This performance
sensitivity to the depth of the analysis performed confirmed the ‘workload vs.
performance’ balance that one might intuitively expect in this case.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 23

RealTime Methods Phase 1 Final Report

It should be noted that while performance was a design goal, there are many
‘known’ optimization techniques that could be used to further increase efficiency.
For example, our table-update mechanism relies on the use of triggers to detect
the arrival of new data. Under high-volume conditions additional efficiency may
be gained by ‘batching’ updates at specific increments of time.

4.4 General Discussion on Performance Results

The performance results obtained suggest that useable results for an application
of this type are available today. From the 25 request per second load supported
here on desktop PC, it is conceivable that a 3 to 4X improvement in performance
is achievable through a combination of optimizations in the software and faster
hardware. Performance on the order of 100 req./sec. would certainly be
considered useable in most circumstances and might be sufficient to front-end a
small server farm.

4.5 Data Storage Efficiency and Sliding Windows

Through a series of less formal tests, we were also able to observe that
performance was directly impacted by the size of the Sliding Window used
in certain table sets. When the Sliding Window size was increased and the
core tables accumulated thousands of rows of data, a noticeable
degradation in performance could be observed. Conceptually, this is
expected since the number of data rows represents the ‘working set’ of the
evaluation process. Simply put, the more data that needs to be ‘handled’,
the greater the workload.

In the case of the data conditioning, alignment, and filtering steps of the
evaluation process, there appears to be little advantage to maintaining any
historical data in some cases. Accordingly, as soon as each of the
conditioning, alignment, and filtering steps are completed, all data at that
stage can be discarded. On the contrary, in the later stages of the
evaluation process, there are benefits to storing data in the form of
evaluation results. For example, in the model used here, data items that
are not fully ‘understood’ are stored or reported as anomalies.

The Sliding Window model for data processing appears to be a natural fit
for storage-efficient data mining. One of the advantages of a Sliding
Window approach to a processing pipeline is that emphasis can be placed
where ever it is desired. The performance characteristics of a particular
implementation are easily tailored to suit specific objectives.

If we assume that the structured output of our HTTP evaluation process is a
substitute for logging and storing every request received, then we can

Distributed Streams-based Data Mining for Application Intrusion Detection Page 24

RealTime Methods Phase 1 Final Report

calculate the storage efficiency of the model under varying conditions. It
should be noted that the storage efficiency here is dependent on a variety
of variables- including our ability to efficiently catalog the content or the
request sources. The analysis being performed largely exploits similarity
and redundancy. If every request received was ‘out of the blue’ and
completely unique, our pipeline would record the request as an anomaly-
and essentially log every request. The storage efficiency of our solution in
this case would be no better than simply logging each request. On the
other hand, as similarity increases across the pool of requests received, the
storage efficiency of this model becomes more compelling. If the number of
valid resource ‘destinations’ is limited and the overall percentage of ‘valid’
requests is high then the storage efficiency of our model can be quite high.
In the table below, storage efficiency is calculated for a wide range of
request and resource conditions.

Table 4 -Storage Efficiency under Various Conditions

Ave. Ratio of
Requests to Percentage of Storage Space Storage Efficiency

Unique URI Valid Required Compared Compared to Full
Destinations _Requests ~ toFull Loggi Logging (1.0)
tod T 100% 0.
1to1 90%
1to1 80%
(10101
10to 1
10to 1
10010t
100 to 1

100 to 1

100 to 1

. 1000to1
1000 to 1

1000 to 1
 1000to1 70%
T R
10,000 to 1
10,000 to 1
10,000 to 1

10,0001
0.00011
0.00013 8000
0.00014 7000

Distributed Streams-based Data Mining for Application Intrusion Detection Page 25

RealTime Methods Phase 1 Final Report

5.0 Positive and Negative Results Summaries

5.1 Positive Results Summary

1.

Examined four possible methods for HTTP header analysis.

» String-based categorization
» Range checking '
» Clustering

> Bloom filters

Implemented string-based data mining methods to examine HTTP header
data.

> Detects 'seen before' vs 'never seen before' requests

» Parameter range checking (continuous and discontinuous)

» Resolve synonyms and hostname matching

» Computes request statistics for Sliding Window implementation
> Most closely related to ‘Web mining’

Established acceptable real-time performance in a working implementation.
A 2.4 GHz, 512MB RAM desktop PC system intercepting in-bound requests
supported a request arrival rate of 25 req./sec. It was also noted that
workload is dependent on the depth of analysis performed. For example, a
higher processing rate was observed (30 req./sec.) when the 'statistics' stage
of the pipeline was turned off.

Demonstrated Web services-based communication architecture. Web
services infrastructure holds promise as a message-oriented data exchange
mechanism for distributed deployments. Web services are relatively simple to
build and deploy. While current Web services infrastructure can be used to
create additional message-oriented functions, custom messaging
infrastructure provides little basis for widespread interoperability.

5. 2 Negative Results Summary

1.

The initial direction of the investigation was overly optimistic with respect to
how request parameters might be resolved in a numerically relevant manner.
After examining many different clustering methods, only string or character-
based clustering methods appear to be viable in the most general sense.

The task of building the HTTP evaluation pipeline was initially
underestimated. The development of real-time multi-stage evaluation

Distributed Streams-based Data Mining for Application Intrusion Detection Page 26

RealTime Methods Phase 1 Final Report

models in a SQL programming environment proved more challenging than
anticipated.

3. The use of Web services as a messaging architecture posed some
challenges. While most of the required functionality is present in commercial
Web services infrastructure, today, some key pieces related to ‘addressing’
and ‘delivery’ are still formative.

6.0 Conclusion

This investigation examined a number of different approaches to HTTP
communication header analysis. In the end, the most productive analysis
approaches seemed to be the simple ones. In the real-time domain,
performance is nearly always an issue. The simpler and more efficient an
evaluation method, generally the better. The use of string categorization, range
checking and Bioom filters all appear to be techniques that are well suited to
analysis goals here. The use of some clustering techniques also appears to be
viable- especially those where some clustering measures can be pre-calculated
to minimize runtime workload.

The Sliding Window model used here to evaluate streaming data appears
to be a natural fit for storage-efficient data mining. One of the advantages
of a Sliding Window approach to evaluation is that the size of the Sliding
Window can be varied to place emphasis where ever it is needed.

While there are certainly many useful questions that can be answered using real-
time evaluation methods, perhaps the most valuable questions in the near-term
are the pragmatic ones- such as; who, what, where and when. When questions
such as these are routinely addressed by a service-oriented architecture, we can
begin to extract higher order patterns and relationships in real-time.

7.0 Commercialization Scenario

The data collection, integration and alignment tasks typically associated with log
file analysis are sizeable tasks in many organizations- requiring storage,
computing power, manpower and time to manage. One commercialization
scenario currently being pursued is packaging the HTTP analysis pipeline, Web
services implementation and client pieces as an add-on monitoring product for
Microsoft’'s 2004 ISA Server. Based on our experience in developing with 2004
ISA Server, it appears to be a viable platform for more specialized analysis
functions such as those described here.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 27

RealTime Methods Phase 1 Final Report

8.0 Additional Resources

Additional resources are available from the project Web site:

http://www.rtmethods.com/research/af/
id: stanford pw: 94305

Further details are available on: Data models, Web services, Client software, IRC
evaluation, and more.

Distributed Streams-based Data Mining for Application Intrusion Detection Page 28

RealTime Methods Phase 1 Final Report

9.0 References

' S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering Data Streams:
Theory and Practice. “First choose a linear time algorithm that performs well on static data.
Repeatedly compose this favored algorithm in layers — each subsequent layer inputs the
(weighted) cluster centers from the previous layer, and outputs O(k) clusters. The final layer
ensures that only k clusters remain.”

2 Arindam Banerjee and Joydeep Ghosh, Clickstream Clustering using Weighted Longest
Common Subsequences, http://www.lans.ece.utexas.edu/~abanerjee/papers/01/ics.pdf

3 Weinan Wang and Osmar R. Zaiane, Clustering Web Sessions by Sequence Alignment.
http:/fwww.cs.ualberta.ca/~zaiane/postscript/dexa2002. pdf

4 Arindam Banerjee and Joydeep Ghosh, Clickstream Clustering using Weighted Longest
Common Subsequences, http://www.lans.ece.utexas.edu/~abanerjee/papers/01/ics.pdf

® Weinan Wang and Osmar R. Zaiane, Clustering Web Sessions by Sequence Alignment.
http://www.cs.ualberta.ca/~zaiane/postscript/dexa2002.pdf

® B. Bloom. Space/time tradeoffs in in hash coding with allowable errors. CACM, 13(7):422-428,
1970.
7 B. Bloom. Space/time tradeoffs in in hash coding with allowable errors. CACM, 13(7):422-426,
1970.

8 Manber, U., Wu, S. An algorithm for approximate membership checking with application to
password security, Information Processing Letters 50 (1994), 191-197

s Broder, A., Mitzenmacher, M. Network applications of Bloom filters: a survey, Allerton 2002
1% Broder, A., Mitzenmacher, M. Network applications of Bloom filters: a survey, Allerton 2002

" Joint Battlespace Infosphere, Commercial Standards Paper,
http://www.rl.af mil/programs/jbi/documents/CommercialStandardsPointPaper.doc

12 \WS-MessageDelivery Version 1.0, http:/www.w3.org/Submission/2004/SUBM-ws-
messagedelivery-20040426/

Distributed Streams-based Data Mining for Application Intrusion Detection Page 29

