Naval Research Laboratory
Washington, DC 20375-5320 A

NRL/MR/6180--04-8800

Simulation Environment for
Onboard Fire Network Model
Version 1.0 — Theory Manual

TuoMasz A. Haurt
DMrTRY SHULGA
BHARGAVI SURA
SurAvAN K. DURvVASULA

Cooperative Computing Laboratory BEST AVAILABLE COPY

Center for Advanced Vehicular Systems
ERC, Mississippi State University, Starkville, MS

Patricia A. TATEM
ITT Industries, Advanced Engineering and Sciences Division

Alexandria, VA

FreDERICK W. WILLIAMS

Navy Technology Center for Safety and Survivability

20060604 282

May 12, 2004

Approved for public release; distribution is unlimited.




REPORT DOCUMENTATION PAGE o A

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
12 May 2004 Memorandum Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

. . . . . 5b. GRANT NUMBER
Simulation Environment for Onboard Fire Network Model Version 1.0 — Theory Manual

Sc. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Thomasz A. Haupt,* Dmitry Shulga,* Bhargavi Sura,* Shravan K. Durvasula,* Se. TASK NUMBER

Patricia A. Tatem,T and Frederick W. Williams
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Naval Research Laboratory, Code 6180
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/MR/6180--04-8800

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM(S)
Office of Naval Research
800 North Quincy Street 11. SPONSOR / MONITOR’S REPORT
Arlington, VA 22217-5660 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
*Cooperative Computing Laboratory, Center for Advanced Vehicular Systems, ERC, Mississippi State University, Starkville, MS
HITT Industries, Advanced Engineering and Sciences Division, Alexandria, VA

14. ABSTRACT

The collaborative work of Hughes Associates, Inc. (HAI), the Naval Research Laboratory (NRL), and a group at Mississippi State University
(MSU) resulted in developing a simulation system including Graphical User Interface (GUI) and visualization capabilities. The system is intended
to provide real-time information to assist an emergency response team. The GUI must be relatively simple and straightforward to use. The design
platform is Windows NT/XP. The general system design is developed with help of Unified Modeling Language (UML). The GUI is written with
ANSI C* programming language and Microsoft Foundation Classes (MFC) library. Windows API provides functionality for multithreading.
OpenGL and mySQL are used for implementing visualizations and database, respectively. This report is organized as follows. The overall system
design is presented in Section 2. Section 3 explains the structure of the code, and Section 4 discusses the database schema. Section 5 describes the
process of populating the GUI data structures with data from the database, which is critical for the overall performance of the system. The
information provided in Sections 2 through 5 is summarized in Section 6 that describes the resulting 3D model of the ship. Section 7 provides
details of the runtime environment, including implementation of GUI elements for interactive control of the ship state and setting the network
model parameters. The visualization of the network model output is described in Section 8. Finally, Section 9 summarizes the project.

15. SUBJECT TERMS
Modeling; Fire Modeling; Network Model; Simulation; Network

16. SECURITY CLASSIFICATION OF: 17. LIMITATION | 18.NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT | OF PAGES Frederick W. Williams
a. REPORT b.ABSTRACT __|c. THIS PAGE UL 26 19b. TELEPHONE NUMBER (include area
e
Unclassified Unclassified Unclassified %) 02-767-2476

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Sid. Z39.18




1.0
2.0

3.0

4.0

5.0

6.0
7.0

8.0

9.0
10.0
11.0

CONTENTS

INTRODUCGTION ...ttt ettt e e e e e e e e e s e eessaseessesssesseassessssesseesessseseas 1
SYSTEM DESIGN ..ottt teeteee et et ee e e e e eesaeesesesessesseeseesssssessessesssesssesssosssss 2
2.1 USE CASES .eviinreeetieteeeeeeeteeteet et ee e e e st e e st e esese s e e se s esseessesseasesseessenseneentssssenes 2
2.2 System COMPONENLS........cvvrurverererereriretetieniteee sttt reeeseseseseessesesessseeresesessessens 3
CLASS HIERARCHIES.......c.ooitieteeeeeeeeetee oo eeeeeeeeeee e e e e e ees s ee et et esses s e eeeeee oo 4
3.1 Class IAENTITICATION ....cueeuveveeeeereeeeeeeeeeeee e e e e e e oo e e e e ese s e e e e eessss s e sene st e 4
3.2 GEOMELIY CIASSES.....coueveirieiiiinrrtsiesesesesereseeteses st eseseseneeeseeseseeseeeneeeesassessenssens 4
3.3 Ventilation and Fire Main SYStEMS. .........ocoviuiieeeeemerreereeeeeeesesseeseesessesssessesesesesens 5
3.4 SCEIIE CLASSES ...t eeeee e eee et e erees e e e s es e et ees e e e e ee s et ee et e et 7
3.5 IMAINE SCEME. ...vvtiteeee ettt ee et e e e e e e eseesees e s eeses e e e esee et e e e oo e 7
DATABASE STRUCTURE ..ottt e oo e ere e e e e ettt 8
4.1 GEOIMIEITY ...ttt ettt et ee e eee et e s s s senesesses 8
42 Ventilation SYSEEM........c.oovvuierieeeeeeeeee e e e 9
43 FIre Main SYSEIM......c.coviviieieeeieee e ee e e e e e e 10
4.4 SIMULALON DATA ..o e, 10
DATABASE BUFFERING ......c.ooteteteeeeee oot e e e 11
5.1 IMOtIVALION . ...ttt e e et et 11
5.2 Classes and STIUCTUIES. .....c.veveeeeeeeeeeeeeeeeeeeee oot e oot 12
53 Scene Classes DEPENAENCe ........vuuruviuiuiureireeeeieeveeeeeeeeeeeeeeeeeeseee e ererereseseeene 14
3D MODEL OF THE SHIP ..ottt e e 14
RUNTIME ENVIRONMENT FOR THE NETWORK MODEL ..., 18
7:1 MUIEITRIEAAING. ...ttt 18
7.2 INPUL FIlE GENEIALOT .....veeveeeeeeeeee e e 18
7.3 Real-Time SIMUIATIONS .....cveeeeeeeeeeeeeeeeeeeee oo 19

7.3.1  Status of ACtIVE ODJECES........uivieeireeeeeeeeeeeeeeeereee oo oo oo e eseseeoeeossoan 19

7.3.2  Simulation and Fire Parameters ......o.veeveeeoeeoeeeeoeeeeeeeeeeeeeeeeeeoeeeoeeeo 20

7.3.3  Running @ SImMUIAION c....ooveeveeeeeeeeee oo 21

7.3.4  SIMUuIation REPIaY........coooviiirieerieeeeeeeeeeee e e 22

7.3.5 Comparison of TWO SIMUIAHONS .eeveeveeereeeeeeeeeeeeeeoeeoe oo 23
VISUALIZATIONS OF THE SIMULATION RESULTS oo 24
8.1 COLOT MAPPINE ......vvveiriereririeretete ettt eese e e s e e e e s s es e e s eeeeenee s 25
8.2 Options Dialog Tab: Adjusting the Color Mapping ...........coevevevererreresrerrernn, 27
8.3 SITIOKE ...t 28
SUMMARY .ottt 29
ACKNOWLEDGEMENTS ...t eeteteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeeeeeeeeeeeee 33
REFERENCES ...t 33

il



SIMULATION ENVIRONMENT FOR ONBOARD FIRE NETWORK MODEL
VERSION 1.0 - THEORY MANUAL

1.0 INTRODUCTION

The lifetime management of future naval vessels dictates its own requirements in addition
to the phenomenological ones. During the ship’s exploitation, it is necessary that all
information accompanies the ship as related to its design, construction, operation, crew
training and maintenance. These data need to be stored in a digital library or database and
carried with the ship. The ability to perform fire modeling is needed throughout the ship
life cycle.

Fire modeling is needed to evaluate ship designs and design philosophies to quickly
arrive at an overall concept to meet required performance goals. As the design concept is
refined, fire modeling is used to continue evaluation of ship vulnerability and to begin the
process of ship operations.

During operation and crew training, the fire modeling requirements change drastically as
the focus changes to damage control and recoverability efforts. In the design phases, the
computational time of the various modeling techniques are not critical, but in the
operational phases of a ship's lifetime, the model must provide information faster than
fire-related events occur on board the ship while maximizing accuracy of prediction.

The collaborative work of Hughes Associates, Inc. (HAI), the Naval Research Laboratory
(NRL), Havlovick Engineering Services and a group at Mississippi State University
resulted in developing a simulation system including Graphical User Interface (GUI) and
visualization capabilities. HAI provided a one-zone-based network model, which
assumes that the modeled environment in each compartment can be represented by one
set of physical variables as opposed to multiple set zone or CFD models. As such, a
network model is capable of modeling an entire ship and its ventilation system. Since the
number of variables being solved for is minimized — one per compartment — a network
model also has the potential for the fastest computations.

The system is intended to provide real-time information to assist the emergency response
team. The GUI must be relatively simple and straightforward to use — there will be no
time for clicking buttons and making out complex schemes and diagrams when a fire is
advancing to ship’s control room.

The next GUI requirement is that crew members do not have to possess any knowledge
of fire physics or fire protection engineering. In general, none of the future users of the
systems will be experts in fire protection or physics of fire. Furthermore, the system must
not overwhelm the operator; only minimum information that is highly relevant or
recommended for fire suppression activity must be shown.

The fire simulations produce sufficient information for making adequate conclusions
about environment and ship object states including the physics and chemistry of the fire:
temperature, pressure, visibility (smoke) and species concentrations (toxins and oxygen).

Manuscript approved April 14, 2004.




The design platform is Windows NT/XP. The general system design is developed with
help of Unified Modeling Language (UML). The GUI is written with ANSI C++
programming language and Microsoft Foundation Classes (MFC) library. Windows API
provides functionality for multithreading. OpenGL and mySQL are used for
implementing visualizations and database respectively.

The rest of this report is organized as follows. The overall system design is presented in
Section 2. Section 3 explains the structure of the code, and Section 4 discusses the
database schema. Section 5 describes the process of populating the GUI data structures
with data from the database, which is critical for the overall performance of the system.
The information provided in sections 2 through 5 is summarized in section 6 that
describes the resulting 3D model of the ship. Section 7 provides details of the runtime
environment, including implementation of GUI elements for interactive control of the
ship state and setting the network model parameters. The visualization of the network
model output is described in section 8. Finally, Section 9 summarizes the project.

2.0 SYSTEM DESIGN

2,1 Use Cases

The developed system is intended to serve as a design tool, a tactical tool or a training
tool depending on the configuration (Fig. 1). This defines three major actors: a ship
designer, a ship operator and a trainee.

e For a ship designer, the system must provide a solid feedback on geometry, ducts
and other elements, as coming from CAD systems. The designer must be able to
analyze and modify ship structure.

e For a ship operator, the system must provide real-time predictions on possible
effects of an onboard fire. In addition, the operator must also be able to change
ship structure to study the effects of wartime damages and run different “what-if”
scenarios for optimized and more effective fire suppression.

e Finally, for training purposes, a trainee must be able to access simulations stored
in the database and compare effectiveness of various fire suppression strategies.

) Q © f_
/t\ - /\\\\ N
Ship Designer . /Ship Operator \\ Trainee
\ , 4
4 ! N // v N \‘/

DO o OO

.- ~ -

i

v

LA - -
Import CAD Mode! ( ) Edit Ship Structure Simulate Fire Analyze Simulations
/N

Analyze Ship Structure N ‘/ \l

Change Fire Parameters  Change Objects State Replay Compare

Figure 1: Use cases

2




2.2 System Components

To satisfy the requirements, we have divided the overall system design into components
as shown in Fig. 2.

output management

\
- - e
b 4

| 3Dmodel

input management

Tob submrission
and monitoring

fire
parameters

archival

configuration i loggingand | _[F=
management I persistence | [ [DBMS

property : i
editor . material - . CAD
geometry . -properties . geometry -

editor B )

Figure 2: Architecture of the simulation environment for the onboard network fire model

1. Input management
- GUI for setting the fire parameters (location, size, type, etc.), and the state

of the ship (state of the ventilation system, doors and hatches, initial
concentration of species, etc.)
- GUI for setting simulation parameters (such as duration of the simulation)
- GUI for editing geometry and properties
2. Runtime environment for the network model
- Database (DBMS) containing the geometry of the ship, material properties
and results of previous runs
- Input file generator that collects information from the GUI and the
database and formats it according to the network model specification
- Modules responsible for configuring, running and archiving results of the
network model
3. Output management

- 3D model of the ship
- Real-time, 3D visualizations of the output: heat, smoke and toxins spread

- GUI for replaying faster than real time results of previous runs
- GUI for back-to-back comparisons of results coming from two different

simulations




A more detailed discussion on the design process and literature review is given in [1].
3.0 CLASS HIERARCHIES

3.1 Class Identification

The object-oriented approach in design is an obvious choice today. It is more difficult to
use than the function-based approach, but it produces a solid understanding of core
processes that occur in the system and their initiators and participants. The system is
represented by a complicated network of objects and their collaborations. A simple but
powerful approach of noun extraction was applied to identify them.

A ship is built of compartments. A compartment is composed of sides each of which
belongs to a wall. Each side is a set of vertices. A wall is built of two sides. It also
includes active elements like doors, hatches, scuttles, a ventilation system with fans and
dampers and a fire main system with plugs and valves. The ventilation system is built of
ventilation duct sections that are composed of a pair of ventilation nodes. A ventilation
node can be a simple node, a fan or a damper. The fire main system consists of fire main
sections that are built of pairs of fire main nodes. In addition, a fire main node can be a
valve or a plug. The activity of an object suggests its ability to be in multiple states. A
duct section can have the following states: fake (virtual object not affecting simulation
equations), disabled or enabled. A door can be fake, disabled, closed, opened or be a
joiner. A hatch, scuttle, fan, damper, valve or plug can be fake, disabled, closed or
opened.

The nouns are in italics and they define candidates for real classes. “Ship” is a general
definition of the model so it should be ignored. Also “state” is not actually a real entity. It
is a property of the object so it is also ignored as being represented as a class.

The denoted general idea about the system allows developing possible classes and
hierarchies. All classes can be divided into two groups: scene classes and general classes.
Scene classes can be split into two groups: geometry and systems. Geometry is defined
by compartments, walls and sides. Systems include the ventilation system (doors,
hatches, scuttles and ducts) and the fire main system.

In following sections, the design of classes of each group is considered separately in
details.

3.2 Geometry Classes
A compartment represents a volume in space bounded by sides belonging to it. A wall is

also defined by sides. Therefore, a side is a main visual element that will define
geometric representation of the model.




Compartment Wwall

Figure 3: geometry class associations

A definition of a side is straightforward (see Fig. 3). In a sense of projection on one of
three main planes, it is a flat polygon represented by a list of vertices fixed to four.
Similarly, a compartment and a wall are lists of sides.

3.3 Ventilation and Fire Main Systems

The next observation is that a door, a hatch and a scuttle have the same semantic meaning
— they are openings in a wall, floor or ceiling. As any opening does, they all have a
position and size (Fig. 4).

Generally speaking, a ship may have not only above mentioned openings but also
potentially any arbitrarily located object that can be represented as one and that appears
anywhere due to a ship structure modification or outside impact-caused structural
damage. The described structure satisfies such cases by adding a new class derived from
the Opening class.

_Opening

pos : Vector3f
size : Vector3f

Door 1 Hatch Scuttle

Figure 4: Openings class hierarchy



The next structural elements are ducts, e.g., a ventilation and a fire main duct. A duct is
represented as a network of duct sections. Each section in turn is a pair of nodes or points
in 3D space. Thus, a network is a collection of interconnected nodes. Connectivity of a
given network is represented by duct sections.

Vertex
: float
vy ¢ float
: float
Iy
T
DuctNode
TR TR T
//)/ ﬂ /I >\/\
/ \\ \
Fan Damper ? Plug Valve
; kg o vave
i
. E— SV ) ———
R A | N 7l
\ S R /
\ / DuctSection \ /
N\
N A Y S N
N ] L/
VentDuctSection i FiremainDuctSection
i
1]
A | M
i NodeNetwork |
| f: N4 [
L/ S
VentilationDuct FiremainDuct

Figure 5: Ducts class hierarchy

A duct node may carry a meaning that is wider than just a point. It may possess some
characteristics or behavioral attributes that may affect a network it belongs to. Nodes of a
ventilation duct can be fans or dampers. Nodes of a fire main system can be plugs and
valves (Fig. 5).

Further extension of this class family is also easy. It can be done by deriving from class
bases, namely the DuctNode, the DuctSection and the NodeNetwork.




3.4 Scene Classes

The previously considered classes are not complete, hence not ready for explicit
rendering. They should be converted into classes that can be shown on the screen, i.e.
scene classes. A classical approach suggests using an abstract scene class that will
represent a base for all other elements and encapsulate all necessary behavioral attributes
like the ability to draw itself. This is the SceneObjectBase. The SceneObjectBase class
allows the generalization of objects’ representation and unification of the drawing
process. Most often each object should have a position and a color as attributes as well as
a drawing routing for calling by the render.

Not all of the ship elements are suited for rendering; i.e. drawing is meaningful only for
ship geometry and systems. Also, some objects must be able to interact with a user and
accept requests for changing their state. The object state may affect its appearance,
physical or behavioral properties. Doors, hatches and scuttles are examples of such
objects.

3.5 Main Scene

At this moment, it is possible to proceed with developing a manager of scene objects that
is responsible for maintaining their creation, manipulation and finally release.

The previous section describes a range of scene classes. Among them, at least two groups
should be distinguished: static and active objects. Thus, classes that do not have any
dynamically updated properties will be children of the general scene base class, whereas
for classes with active features (state, for one) a common parent will be created that will
provide its descendants a functionality necessary for maintaining their dynamically
updatable properties.

The system should also provide access to instances of the same class so that they can be
treated differently from others. The SceneObjectMngr class, a manager of scene objects,
serves these needs. It stores instances of the same class as a separate list, thus, always
allowing identification and use of them independently. It extensively exploits C++
Standard Template Library that provides unprecedented flexibility, controllability and
speed.

The SceneBase class is the hierarchy topmost class. It manages the whole rendering
process and uses the SceneObjectMngr for scene objects management. The SceneBase
provides a set of virtual functions for scene initialization, manipulation and drawing. The
functions of that set can be overridden to enhance or change predefined behavior.

The complete class hierarchy is shown in Fig. 6.



. sceneduse
| ecvitual>> inif) Fantay} Fanie}
§ @cevitual> render() Ve S ScencObjectBas
g L gecor s 1 Vectord
: C grmua | Urmue | Gt vectorx
1 ~objMagr_ :
© sceneobjectngr i - —~ Qccabstract> draw()
H — -
"“?'9“0 '°""°"="‘£’£ﬁ"” M . (o raiga | SceneCompatment i SceneActveObject
: ::::ga;um e ! o ' | @ostate : INTEGER
B Cl B . .
© Goperator {)() . W<cconst>> get_state()
ender() T st state()
 SceneOpening ) ' SceneDuctSection ‘ " Seenebuctvode
: : ‘ :
. Scenedoor , SceneScutie . i nevent
i ScneHatch AN ~
‘ \\ i SceneDamper |
[ Sceneran | :
: i
SceneFremainSecton . ___ . ScencFremioNode '
S B
e T ——
~ —.

T scenepmg |
' i

Figure 6: Complete scene class hierarchy

4.0

4.1 Geometry

DATABASE STRUCTURE

Compartments

il

PK ID : INTEGER

Desc : VARCHAR(1)

v
<<Idenfitying>>
0.1 - 1
. Vertices
Sides PKID : INTEGER
PK CmptID : INTEGER x : FLOAT(0)
K NUM : INTEGER y : FLOAT(D)
1D : INTEGER z: FLOAT(0)
<<Identifyl)g>>--— e - = -4 g e
1 1 \ ,,‘ 1
, <<Identifying>> <<Identffying>>
’ .‘:‘ I/‘/
[T 0.% U ﬁ]_j
Walls SideVertices

K SidelD : INTEGER

EKSideID : INTEGER
P Vertices_ID : INTEGER

rx 1D : INTEGER
3

Figure 7: Geometry tables. Blue symbols PK and PKF in this and the following
diagrams denote the table Primary Key and Foreign Primary Key respectively.

i Saneions



The Compartment represents a rather simple class that does not carry much information
so far. Actually, the only additional field besides id is a description field. As mentioned
before, each compartment is composed of sides which in turn are represented as a set of
four vertices or points in 3D space. Each side also belongs to a wall. Generally, a wall
consists of two sides and separates two compartments (Fig. 7).

4.2 Ventilation System

The ventilation system is represented by a ventilation duct and openings. A ventilation
duct is a network of ventilation sections, each of which is a pair of ventilation nodes, i.e.
points in 3D space. Theoretically, a section may consist of more than two nodes.

A node can be simple or complex. A complex node is a node that actively participates in
the ventilation process. Currently, the only complex nodes are fans and dampers. The
structure shown in Fig. 8 reflects the described relationship:

__ VentiationNodes
PK 1D : INTEGER

x : FLOAT(0)

y : FLOAT(0)
! z: FLOAT(0)

| SRR

- ...1_....,...1..\\‘.
<<Identifying>>
N 0.

1
<<Id9r1ﬁfylng>> <<Identifying>>

e ) 1 . N
M Frl
i L]
VentiationDuct . VentlatonFens | VentiationDampers
KID : INTEGER EKNodelD : INTEGER ; PK NodelD : INTEGER
£KNodelD : INTEGER T

il

Figure 8: Ventilation duct tables

H
i
Wals
K ID : INTEGER
FK SidelD : INTEGER

1
<<Non-Identifying>>

0.* E[ﬂ

Openigns

PRID : INTEGER

x : FLOAT(0)

y : FLOAT(0)

z: FLOAT(0)

width : FLOAT(0)

height : FLOAT(0)
FK WalllD : INTEGER

Figure 9: Openings table



Doors, hatches and scuttles have the same physical meaning so it is possible to store the
information about them in one table. But for more convenience, three separate tables may
be created. Each opening should possess knowledge of what wall it belongs to.

4.3 Fire Main System

The fire main system is very similar to the ventilation duct. It is also a network of node
sections. The current active nodes of a fire main system are plugs and valves. The
database table structure is shown in Fig. 10:

FiremainNodes

il

Pg 1D : INTEGER
x : FLOAT(0)
y : FLOAT(0)
z: FLOAT(0)

<<Id eptiﬁ"ing >>
] |

01 i.0.1

<<Identffying>>

1

<<Identifying>>

0..1

iremain . .
FiremainDuct FiremainValves

EK ID : INTEGER
K NodelD : INTEGER

il =0 i

FiremainPlugs

gx ID : INTEGER

PKID : INTEGER

Figure 10: Fire main tables

4.4 Simulation Data

The predictions from the Network simulator need to be saved for future analysis and
replays. The simulator produces a data block that contains the following scalar
parameters (not exactly in the same order):

Compartment temperatures
Compartment pressures.
Compartment O2.

Compartment CO.

Compartment soot.

Compartment heat release.

Duct node temperatures (not used).
Duct node pressures (not used).

Front surface temperatures (not used).

Back surface temperatures (not used).
Fire size (not used).

10




Compartment related data is combined into one table. Similarly, duct node data are
placed into another table.

il

Simulations
PR ID : SMALLINT
Desc : VARCHAR(255)
Duration : FLOAT
AmbTemp : FLOAT

AmbPressure : FLOAT
e O2part: FLOAT
- ’ . 1 VentilationNodes
Compartments 1 \ PK ID : INTEGER
PK ID : INTEGER <<Identifying>> x : FLOAT(0)
Desc : VARCHAR(255) : y : FLOAT(0)
. 1 <<Idenﬁfy!hg>> 2: FLOAT(0)
<<Identifying>> N Z 1
ify 9 ,/ ! <<Idehtifying>>
0.* s 0L
0=* [ 0.*
= IDSIMOmpammmam SimDuctNodeData
E:Cm.pgh[g‘:l}%\ngER EK 1D : SMALLINT
temp : FLOAT K VentNodelD : INTEGER
pressure : FLOAT e e e e o e
02: FLOAT
CO : FLOAT
soot : FLOAT
heat : FLOAT

Figure 11: Tables for storing simulation data

Using these tables, it is very easy to access and study the simulation results in the scope
of compartments (all or single), ducts, time or space.

5.0 DATABASE BUFFERING

5.1 Motivation

Scene classes described above are able to render themselves, but they still need to know
where to render themselves on the screen, i.e. they need to know their coordinates. This
information comes solely from the database. Database access is fast but still
incomparably slower than access to data stored in the main computer memory. Since
rendering is an extremely demanding process, the best performance highly depends on
the amount of information to render and access information speed. Critical information
should read, or be pre-buffered, from the database into the main memory.

The most significant information is ship geometry. Due to complexity, a very quick

access to all ducts, e.g. a ventilation duct, must also be provided. The next section
presents the data structures for storing and manipulating mentioned types of the data.

11



5.2 Classes and Structures

As referred before, some elements of the geometry are composed of smaller units, e.g.
vertices comprise a side and sides comprise a wall or a compartment. This general

approach helps to create a class, the customization of which easily allows us to reflect
described relationships.

| Element 1
o
BultOf
Bold_: int
QBuIOF()
®BuiltOf()
®operator =() -
$<<const>> k() : I |
<<const>> count() i [
Qoperator(]() vector
<<const>> operator{)() (from std)
| SoddEkment)

| <
#elements_
it
| <<typedef>>
! tElementRefs
l (from Builtof)

Figure 12: Generic class for representing a complex entity (for example, side is

composed of vertices)

Jeement

BuOf |
oy felements, __{from Shadwet) _ |
<<typedef>> | - - - om ..o {

tElementRefs |~ T B int
(from Bukor) e i -~
- 7 \
7 / .
. L N

< <anony mous_ty pe>>
BuiltO f<VentNodeBase>

<<anonymous_type>> |

BulltO f<SideBase> | BuiltO f<V ertexBase>

-

<<anony mous_ty pe>> l

< <anony mous_ty pe> >
BuiltO f<FireMainN odeBase>

(from Ghobal Data Types) {from Gbbal Data Types) | (from Global Data Types) (from Giobal Data Types)
A - IR T N e
ZI.\. &/\] \\) ) /T\)
/ K
<<struct>> <<struct>> - <<struct>> <<struct>>
VentDuctBase CompartmentBase <;IS‘IE¢>> SideBase FireMainSectionBase
({rom Shadvel) (rom Shadwer) ; mfan 9‘:‘:: (from Sracwet) rom Saowel)
oﬁmete;';a ftloat odeck : int —{fonede | | oemptld : UINT odiameter : float
1% ; oframe : int A
oheight : float ©opos : Int
e ] Qdesc : std:istring

Figure 13: Geometry data storage class

12




The class represents a wrapper around an array of pointers to instances of arbitrary
classes. The class provides functionality to access interesting elements of the array. Using
this generic representation, a data structure or class can be built that it will accommodate
the information from the database (Fig. 12). This class serves as a base class for all
complex geometry elements (Fig. 13).

A centralized class management increases code accuracy, efficiency and maintainability.
The BodyStructure class serves as a depository of all geometric data (Fig. 14).

)

<<struct>>

Entity A rray
. <<typedef>> !
QEntity Armay () - rvales S eyOfT |
:o<<cons!>> count() (from EnttyAmay) :
== %operatodX) =
o Syl e
= < ®add() TR T e
e - . > ~
S e I ~ A
- T ~ ~. S~ T~
— T T . SN~ Y~
gl - o S Y~
- - . ~ Ny T~
~ ~ S T
e ! . ~ .~ ~
<<anony mous_ty pe>> ~ . \>| ] !
<<anonymous_type>>  +sides ; <<anonymous type>> . || |
Entity Amay <Side> . Entity Amay <Door> ! !
+ventDucts +doors. ! ! j I
<<anonymous.t}pe>> +vertices Y ’ P " <<anonymous_type>> | | | |
Entity Armay <Vertex> . EntityAmay <Hatch> -
- Body StructureBase -~ +hatches . | | |
<<anony mous_ty pe>> +walls Body StructureBase() ; <<anonymous_type>> | I
Entity A may <Wall> @ @dpody StructureBase() < +scuttles Entity A rray <Scuttle> X
perator =() : I
~Body StructureBase() .
< <anony mous_ty pe>> Y 4 rator &() ®  +fireMainNodes f‘aW"V"‘QUS’—"WI"»’ J |
Entity Array <Compartment> +compartments ' . Entity A may <FireMainNode> |
. <<anonymous_type>> +frames +fireMainSections  <<anonymous_type>> |
~  EntityAmay <VentNode> +ventNodes +decks  +positions *  EntityAmay <FireMainSection> -

<<typedef>>
tIntSet

Figure 14: The BodyStructure class — a container for all ship data

The most important detail about the design is that it does not duplicate any data. The
simplest unit of the geometry is a vertex. Vertices are read from the database as they are.
A set of vertices defines a side, so a side has knowledge of them by creating an array of
references to already created and loaded vertices. In turn, a wall or compartment contains
references to sides. This is a very flexible and memory-efficient scheme that also is
extensible and easily evolvable.

The described hierarchy also needs a very sophisticated loader. The loader can be
designed to provide a generic functionality capable of reading different parts of the
geometry data with just a few customization details since it is built with templates. A
source of data is transparent for a loader; i.e. it uses a bridged connection, or interface, to
access information (data bridging is described in later sections). After data reading, a
loader creates necessary data interconnections by means of references.

13



5.3 Scene Classes Dependence

A motivation for data buffering was that scene objects must possess information on how
to draw themselves. The classes described in the previous section are intended to provide
such information. The dependence between them is straight forward — a scene class is
associated with a corresponding data buffering class (Fig. 15).

. ~geometn <<sgtruct>> . <<struct>>
. SceneCompartment : geo - CompartmentBase :  SceneVentNode geometry._ VentNodeBase !
(from Shadwelt) . . B (from Shadwell)
<<struct>> <<gruct>>

SceneDoor | "geOMeY_  poorBase SceneventSection 9eOMEY_  yentbuctSectionBase |
. : (from Shadwelt) : . (from Shadwell)
-geometry_j <<typedef>> g -geometry _ <<typedef>>

| SceneHatch ' HatchBase SceneFiremainNode FireMainNodeBase

. (from Shadwell) : {from Shadwell)
. . <<struct>> . . i <<struct>>

. SceneScutte ; geometry_ ScuttleBase . SceneFiremainSection geometry_ FireMainSectionBase .
R (from Shadwell) i ; . {from Shadwell)

Figure 15: Relationships between scene and data buffering classes

6.0 3D MODEL OF THE SHIP

The data collected in the buffering classes are used to build a 3D model of the ship ex-
USS Shadwell/test area 688. The simplest visualization is a wire frame model shown in
Fig. 16.

Figure 16: Wire-frame model of the ship

14




It can be zoomed and rotated to reveal the ship features of choice (Fig. 17).

Figure 17: Zoomed and rotated view of the wire-frame representation of the ship

By showing bulkheads we provide a more realistic view of the ship (Fig. 18).

Figure 18: 3D solid model of the ship (doors, hatches and scuttles shown as well)

15



However, we found it most useful to remove the front bulkheads that obstruct view into
the inside of the ship. When the ship is rotated 180 degrees, the front bulkheads become
back ones and vice versa. Therefore, the removal of the bulkheads is done on-the-fly
depending on the position of the ship (Fig. 19).

Figure 20: Views of different ship elements

16




With the basic geometry in place, we can add openings (doors, hatches and scuttles) as
well as ship subsystems (ventilation and firemain). Those can be shown separately or in
combination with other elements (Fig. 20). Finally, we provide a capability to inspect
particular fragments of the ship, such as selected compartments or decks as shown in Fig,
21.

Figure 21: Selected compartments

A complete 3D model of the ship is shown in Fig. 22.

Figure 22: The complete 3D model of the ex-USS Shadwell/test area 688

17



7.0 RUNTIME ENVIRONMENT FOR THE NETWORK MODEL

7.1 Multithreading

The network model [2] developed by Hughes Associates and delivered to Mississippi
State University as a MS Windows executable is run as a separate thread. There are
several reasons for creating a multithreading environment. The network model and the
rest of the system, in particular, real-time visualizations and controls, are competing for
the CPU. Thus, the most important role of the runtime environment is to guarantee the
user run-time control over simulation while allocating as much CPU for the simulation as
possible. The amount of CPU allocated for the simulation critically influences its
performance. On the other hand, the rendering functionality must be available for
redrawing a ship model after each time step. Also, it is necessary to support the
interaction with the user, which includes pausing, resuming and stopping simulation
execution.

Multithreading under the Windows operating system can be achieved in different ways.
Our implementation takes advantage of Windows native functions:

CreateThread for a simulation thread properties initialization and its start.
CloseHandle for releasing system resources allocated for a thread.
SuspendThread for pausing or suspending a running simulation thread.
ResumeThread for resuming execution of a suspended simulation thread.
TerminateThread for exiting from or forced termination of a running simulation
thread.

7.2 Input (file Eénerator

The network model is a standalone application written in FORTRAN 95 that accepts
input in the form of a namelist file and produces formatted text output [3]. A namelist
file, which is a standard FORTRAN language feature, comprises lines of formatted text
data. Simplifying the FORTRAN standard, a definition of the format of the namelist file

is as follows:
NAMELIST /namelist-group-name/ [attribute=value[, attribute=value..]]

Each namelist-group-name defines its own set of attributes. For example, junctions —
objects connecting two others (openings and duct sections ) — in the Network model are

defined as:

18




&JUNC id=5, kloss=2.04,
area=0.95, location= 3,4,
bidirectional=.TRUE. /Door 1'

orientation=4,
Control -NAV

The code accepts namelist statements with the following tags:

EXEC — general simulation parameters.
FIRE — fire source parameters.

JUNC - junction parameters.

CTRL - control element parameters.
COMP — compartment data.

SURF - surface data.

MTRL - compartment walls material data.
CMPN - component of a material.
RDCT - ventilation system.

RNOD - ventilation system nodes.
RFAN - ventilation fan parameters.
CURYV - an item of tabular data.

height=-2.66,-2.66,

span=1.88,1.88,

It is the simulation environment’s responsibility to generate the input file for the network
model, that is, to generate the namelist statements. The data come from the database
describing the ship geometry and GUIs through which the user specifies the state of the

ship and simulation parameters.

7.3 Real-Time Simulations

Creation of a new simulation begins with the definition of states of the ship’s active
objects (e.g., doors and fans), setting simulation parameters (e.g., duration of the

simulation and ambient environment parameters) and fire
propagation parameters (e.g., number of fire sources and
their strength) though the GUI.

7.3.1 Status of Active Objects

Each active object may be in several different states
depending on its type. Any object can be declared as fake
(not related to any physical object included in the simulation
area) or disabled (its state cannot be changed; for example,
one cannot open an external hatch while the submarine is
submerged). An opening can be either in an off (or closed)
state or an on (or opened) state. A door also canbe in a
Joiner state (partially closed). Using the state edit dialog,
shown in Fig. 23, the user can set the state of each active

19

ventilation node: 30

“State

Orue o]
(O Disabled }

- O Off (Closed) |
" ®n (Opened) f
!

l

O Joiner .

Switching active
state time, sec:

Include Frame Bays

! if Showe l

Figure 23: The Object
State Edit dialog



object separately, or set all active objects to the same state by selecting a sought state and
clicking on the Set All button.

The network model does not accept the status changes of an active object at runtime (this
feature will be implemented at a later time). However, a delayed change of status can be
declared prior to the model execution. For example, in Fig. 23, the ventilation node 30
(fan) is scheduled to change its status from on to off after 60 seconds of the simulation
time. The change of state always means a transition from one state to the opposite: e.g.,
from open to close or from off to on.

The final feature available from the Object State Edit Dialog is
the ability to include or exclude the Frame Bays in the
simulation. Frame Bays are a test area 688 specific ventilation
system feature. Frame Bays were added to the 688 test area of
the ex-USS Shadwell to simulate openings between the decks
and hull of a submarine
through which heat, smoke,
and other combustion
products can travel. Frame
Bays are displayed as
vertical flat ventilation sections. For example, frame
bays connecting the combat system room (1-75-2) and
the torpedo room (3-74-2) are shown in Fig. 24.

Fig 24: Frame Bays

& e

An example of a “fake” object is a side door on deck .
2.1t physically_ exists in 'the 688 test area; is present in Figure 25: fake doors
the CAD drawings, and is therefore transferred to the
database. This door is always closed during tests in the 688 area because the 688 test area
is intended to simulate a submarine and no submarine has side doors. By introducing
“fake” objects we preserve the accuracy of the ship representation (with respect to CAD
drawings), while hiding them from the simulation operator ( Fig. 25).

A ship model can have hundreds of active elements. It is impractical to force a user to set
all of them for each new simulation. To overcome this problem, several default modes are
provided; each of which will define a unique set of states for all active elements. For the

currently used ship model, there are three predefined modes: Recirculation, Snorkel and
Pier-side. By default, the system is set to the most frequently used one.

The status of the active object is passed to the model as elements of the namelist file.

7.3.2 Simulation and Fire Parameters

Fig. 26 shows the GUI that allows the user to set simulation and fire parameters as well
as to control the simulation (start, pause-resume or stop).

Simulation parameters include simulation description and name of the name list file
created for the particular run, the requested duration of the simulation, external conditions

20




(ambient temperature and pressure), and initial concentration of oxygen (assumed to be
constant throughout the entire ship).

The description and name of the namelist file is used for identification of the simulation,
used for subsequent replay or comparison.

The “New” button resets the current settings
to their default values. The “Namelist” button

f Simulator—] Replay ”—a&pare

shows the actual contents of the generated Gunlation Description:

namelist file. This feature is targeted only for { :

CXpel't users and for debugglng purposes. Namelist file 1D: namelist52153
Duration: 100 fsec  fv

Each of these data fields (upper part of the Ambient temp. : 2815 [k |v

GUI shown in Fig. 26) has a default value, Ambient pressure:| 101325 |pa ts'

including a description, which will be set into Oxygen: [0.23_] set default |Closed =

a name of the input namelist file in case no (New |[Nemelist) [ Add | Delete )

description is given. i

Fire sources:

Location
3-74-2: T Room

Power, kW:

The controls in the central part of the GUI
allow definition of fire source(s). Each fire
source has a unique set of parameters that
includes location (to be selected from a drop

list), fire type (constant, t fire and tabular), Type:
power, starting and ending times, fuel [constar ¥ JEE i)
parameters and others, as shown in Fig. 26. 2power, kit | | cetime,sec [ |
By default, a fire source is constant in time start,sec: || Endysec: [ |
with a power of 100 kWatts. Yield, kg per kg of fuel:

coz -1 | H20 1.596
A simulation can have several fire sources i 0.012 | soot 0.042
each of which may have different settings. A Heat of combustion, ky: 4.46e+007
new fire source is created by clicking the Heat of vaporization, k! 365000
“Add” button and can be removed by using Pyrolysis temperature, Ki )
“Delete” buton. (i) e s 505

§imulation Clocks: {

P A , Show parameter - -

B0

]

i

" (®Temp. & Smoke |

LA

7.3.3 Running a Simulation

e t I OTemperature !
gn‘= 1% ;O Smoke ;
% i o  OToxidty (CO)
| S R . O oxigen

All this information (together with the ship
geometry stored in the database, and state of Time passed, sec:
the active objects) is used to generate an input
file for the network model (i.e., the namelist
file). The creation of the namelist file occurs
when the user clicks on the “Start” button
(Fig. 27). If it succeeds, the system starts the

0.0

Figure 26: The Fire Simulation
dialog window

21



Network model in the separate thread and begins processing its output step by step. The
user may pause or suspend this process, resume execution of a suspended simulation or
stop it by clicking on the corresponding button (Fig. 28).

Cstat i Pause Jiresumo [ stop ) (Reset ]
Simulation Clocks: Running. .
f AN Show parameter - -
© Temp. B Smoke
O Temperature

O smoke :
O Toxkity (CO)
Qoxigen :

Time passad, sec: 16,0736

Figure 27: After clicking the “Start” button the namelist file is created, and the status
line is set to “Preparing ...”" If the incorrect data are entered (no fire source defined,
duration is not an integer number, etc) the status line is set to “Error...”

2 P.aus-» Rezume | stop { t
;
s Smulatbn Chf,k.s, Prepamg
- Show parameter
T (® Temp. & Smoka
¢ O Temperature
O smoke
, O Toxicity (€0)
O oxigen

Figure 28: After a successful generation of the input file the simulation begins. The
simulation time is shown using an analog clock, a digital clock as well as a progress bar.
The digital clock provides exact time. A digital clock make it easy to compare the rate of
simulations with the real time while the progress bar gives an estimate how much time is
left until the end of simulation.

7.3.4 Simulation Replay

[simietor [{Replay || compare

Since all simulations (both settings and results)

Description: are stored in a database, each simulation can be

[ | Select l replayed at later time (Fig. 29). Replaying means

Time, sec: [—]G oo [‘—]N " that the resultg are reafl from an existing file and
' I = not generated in real time.

!f Sampling o e s .

| O 1n time with step size, sec - | To replay a simulation, the user must select it

1’ (® Step-by-step with interval | from the list of available simulations (Fig. 30)

| andpause [0..1} sec . | which contains the names of namelist files and
.= 1| the descriptions of the simulations. After a

simulation is chosen, the selected namelist file is
parsed and the system sets the ship’s objects into

Figure 29: The Replay tab of the .
th te states. To start th lay, th
Fire Simulation dialog window ¢ appropriate states. 10 start the repiay, the uset

22



must press the Start button. The functionality of the rest of the buttons is the same as
described previously.

Available Simulations
Name Desc
.\688-3_04.txt Jason's 688-3_04
\688-3_10. txt 683-3_10 I
\688-5_03.t¢t | 688-5.03 S B
.\688-5_07.txt Jason's 688-5_07 -
\688-5_t4txt | 6885 14 )
Ndemo1.txt demo1l )
Ynamelist2609. txt namelist2609 o
Viamelist34456.txt | namelist34ds6 |
Anamelist8094. txt - namelistSOgiw-mm T

Lok | concel |

Figure 30: the Available Simulations dialog Window

The replay dialog allows the user to control how the simulation is replayed. The replay
(reading from a file) is much faster than real-time simulation. To slow down the replay
the user may request a pause (a delay) between time steps. On the other hand, for very

long simulations, the user may also request skipping time steps (e.g., displaying every

second or every third time step) making the replay even faster.

The network model uses a variable time step during the simulation. While replaying, the
user may select between constant rate of time steps (which corresponds to a variable
temporal rate) and constant temporal rate (with variable amount of time steps skipped).

Finally, the user may skip the beginning of the simulation and jump directly to a specified
time step or specified simulation time.

7.3.5 Comparison of Two Simulations

23



Back-to-back comparison of two simulations (Fig. 31) is an extension of the replay mode
with two data sources and two ship models. Using the “Compare” tab of the Fire
Simulation dialog window (Fig. 26) the user selects two previously run simulations and
controls them the same way as it is in the case of a simple replay. The simulations are
replayed in separate threads.

7 Shadwell Research
Flle View Help

ation

‘Smulator | Replay | Compare |

Description: Time, sec

‘688310 1200 |[select]

[ 688514 || 1200 |fselect]

- Sampling .
o dntine with step gz, sec

i (® Step-by-step with interval
and pause [0..1] sec A [

Fire sources:
Locatlon

Type: Speed:

[t2fre & [e7

t2 power, kKW {_ﬁ t2 time, sec [: o
Start, sec: ,I _»___J End, sec: { ]
Yield, kg per kg of fuel:

el e [T
co i B | soot |
Heat of combustion, kw: » 3;7_?_~_FUO7 I
Heat of vaporlzation, kw:

Pyrolysis temperature, K: | i

Sta‘u;t 1[ Pausej‘f(ééuﬁwéi( Stop ”ResetJ

Simulation Clocks: I RunnINg. ..
[

T —— y Show paramster
.‘E:. o ® Temp. & Smoke
ﬁf . . :[ . O Temperature

4 i O smoke

% te : ’i O Toxicky (CO)
Lo 7o O oxigen

Time passed, sec: 403,526

Figure 31: Back-to-back comparison of two previously run simulations
8.0 VISUALIZATIONS OF THE SIMULATION RESULTS

The currently used Network model provides one value of each dependent variable
(temperature, smoke, CO and oxygen concentration) per volume (i.e. ship compartment).
This representation does not provide enough information for creating a quality value
gradient in the scope of that volume. For example, if there were more than a single value
for the smoke then it would be possible to visualize it as a non-homogeneous instance
inside of compartments.

24




Nevertheless we can still get a picture that will decently reflect the processes taking place
during the fire by using color maps, which is one of the best ways to represent physical
values changing in time or space. Moreover, such data granularity is satisfying for
real-time ship control and making appropriate decisions in case of emergency.

8.1 Color Mapping

The simulator produces a data block that contains several scalar output values —
temperature, density of smoke (soot) or visibility, concentration of oxygen and, finally,
concentration of toxic substances such as carbon monoxide.

A good representation of such data type is a color. According to studies in cognitive
science, color saturation should be used to represent the magnitude of a scalar. Indeed,
changing from light grey to dark grey indicates that a displayed parameter either
increased or decreased in magnitude whereas changing from yellow to red indicates a
qualitative transition. One exception is when one desires to show critical transitions, such
as when a compartment becomes uninhabitable. For such cases, dramatic change in color
hue vividly notifies the user about passing some important thresholds (Fig. 32).

No color or
default color First color Second color

Color

e ——,,———

L
v

Value

Figure 32: Color mapping with two critical levels and constant gradient.

25



This technique is not sufficient in all situations, in particular when this software is used as
a tactical tool. A person who makes simulations or who controls a ship in real time also
wants to know when a value is close to critical points in order to be prepared to take
appropriate actions (for example, to give a command to put on protective suits).
Therefore, the selection function should be modified so that in the end of each range
(except for the last one) there will be a region showing a transition from a current value
range to the next.

No color or

default color First color Second color

- =

Color

B et

Low High Ramp

Low Ramp

e~ - ——-
B e

v

Value

Figure 33: Color mapping with two critical levels and two gradients at the end of each
threshold.

Thus, the color map is defined by four parameters (threshold values): low ramp, low,
high ramp and high. The values below the low ramp threshold are ignored; that is, no
visual effects are produced as the conditions do not impact activities of people. The
values between the low ramp and the low thresholds correspond to the transition between
a safe region and a region where persons need protective equipment. This is visualized
by painting the compartment walls in yellow with intensity proportional to temperature or
concentration of species. The region between the low and high ramp threshold is shown
in saturated yellow (i.e., constant intensity). That is, in this region the color does not
show any differences in temperatures or concentration of species as long as the values are
in the range where persons with protective equipment are safe. The values above the high
threshold are shown in saturated red and they correspond to inhabitable areas. Finally, the
values between the high ramp and high threshold indicate the transition between the
limited access and no access regions and are visualized by a change in hue from yellow to
red, proportionally to the value.

The loss of visibility due to smoke is visualized by opacity rather than color (for details
see below); nevertheless the same four threshold approach is taken: no visibility (<2

26




Simulation Environment for Onboard Fire Network Model

458

438

Figure 34: Color and opacity mapping for four variables: temperature, CO
concentration, Oxygen level and visibility

1.1 Options Dialog Tab: Adjusting the Color Mapping

The advantage of the described method of color mapping is flexibility in adjusting of the
threshold values. Indeed, the only thing to be done is to define the threshold values and
provide a proper range identification mechanism to be able correctly normalize a
parameter value in scope of that range.

There are three scalar value parameters simulated by the Network model — temperature,
oxygen and toxicity (CO). Critical levels for each of them were recommended by Hughes
Associates, Inc., but the user also has ability to change them through the Species Color
Mapping tab in the Options dialog window (Fig. 35).

27



There are three scalar value parameters simulated by the Network model — temperature,
oxygen and toxicity (CO). Critical levels for each of them were recommended by Hughes
Associates, Inc., but the user also has ability to change them through the Species Color
Mapping tab in the Options dialog window (Fig. 35).

Options

[ Color Settings | Species Color Mapping

Ranges -> Low Ramp Low High Ramp High
Temperatur,,, {313 333 438 458
Visibility, Feet |10 o _8 R 444 2 o
Toxicty,ppm |1300  |1400 1600 (1700
Oxigen, % 1? o '15‘ - .i-s—----.--.--- ) 12

E OK }][ Cancel ]

Figure 35: The Option dialog window for adjusting threshold values for temperature,
visibility, CO concentration and oxygen level

8.3 Smoke

The smoke is perceived as a loss of clearness of details of objects. There can be different
ways of achieving this effect.

First, using particle systems or volumetric smoke can produce the most realistic smoke.
Although results are very persuasive, the degree of rendering complexity is very high.
Each particle is represented as an individual object, so for very dense smoke the number
of particles must be rather high.

The second approach that can be used is imposing another semi-transparent object in
front of the details to be obscured. In this case, controlling the amount of smoke reduces
to manipulating the color’s alpha channel. There is less smoke when an alpha value is
lower and vice versa. There is a good reason for using this method — the data block
produced by the simulator is very sparse; that is, it has just a single data value for each
compartment. Such conditions prevent a quality smoke analysis inside each compartment,
so making complex smoke representations with particle system is hardly possible and
even redundant.

28




The compartment is represented as a set of sides or quadrangles. Thus, the effect of a
smoky room is achieved by drawing the same compartment over again with a side color
different from the original in its alpha channel value. An alpha blending produces desired
results as shown in Fig. 36.

Figure 36: Smoke visualization: the top compartments and the bottom left are partially
smoked; the compartment in the middle is free of smoke; a bottom front compartment has
a higher concentration of smoke than any.

9.0 SUMMARY

In collaboration with NRL, Hughes Associates ,Inc. and Havlovick Engineering Services,
we have developed a simulation environment for an onboard fire network model. The
complete system (3D model, input GUI, the network model developed by HAI, database,
the runtime environment and visualizations) allow the user to

- specify the state of the ship (in particular, the state of the active elements of the

ventilation system)
- specify the location and parameters of a fire
- run the simulation of fire and smoke spread

29



- display the results in a graphical form in real time (Fig 37)
- replay and compare previously run simulations

Currently the system simulates fires on board the ex-USS Shadwell/test area 688
emulating a submarine. The results have been validated by Hughes Associates, Inc.
against data coming from the actual fire tests performed on board the ex-USS Shadwell.

The system is a proof of concept prototype and the future work will transform it as an
onboard tactical tool, as well as tool for design support and training.

w Persp Rotation XY Rotation w gO:thv\’qew Q0O

Simulation Description:
{ tost 92261 |
Namelist Fle ID: 1\mmeﬁst92261

Duration:

Ambient temp,:

Ambient pressure: i 101325
Oxygen: [0.23 ] set defauk |Closed
[“New [ nometst} [ add | Delets |

Fire sources:

Bl stert, sec: )
= | Yield, kg per kg of Fuel
ooz | L ..
| co | o012 fso0t |
MR Hoot of combustion, ki
f‘;‘ Heat of vaporlzation, kw:
L‘,‘:v Pyrolysls temperature, K: r ’ . 376 (

‘ et | Pause Ma-;-unni[ Ston Reset]
' Running...

. Show paramptey

| (® Temp. & Smoke
i O Temperature

' O Smoke

. O Toxicky (CO)
. O0xgen

Figure 37a: Simulation of a fire of a constant power of 1000 kW set in the torpedo room
(symbolically marked with a red ball): a snapshot taken at 10.4843 seconds after the fire
started. The fire has no effect on any compartments except for the torpedo room, where
the temperature requires wearing protective gear. No substantial smoke at this time.

30




7i Shadwell Research

LBX

Fie View Help

H e Siiation.

£} [Smulstor |Replay ! Compars
Sinulation Description:
[test 92261
Namelist fils ID:  { namelst92261

LY Duration; 100 [sec é_i»_*
Ambient temp, : 298,15 |K M
Ambient presars:) 101325 |Pa ﬁ
Oxygen: rU.ZG ]Setdefatk gosad f
([(ew Ynameist] [add ] oelete ]

!cm;ng e et D ...._hg‘;:

2 power, kW [ 1 énm, se¢ | ]
Start, sac: [_ End, sec: I___]

B vield, kg per kg of Fuel:
[ coz | 1 ]weo [ 1.59 |
co | 0.012 | soot | 0.042 |

B Heat of combustion, k: _aset007 |
8 Heat of vaportzation, kw: 365000
“'v Pyrolysis temperature, K: L 372;

SPJ'E, ’| Pause l‘-Rrésume" Stop Reset ’
| Seouistion Docks: Runing...

e Show parameter
1 gf ﬂi " ®Temp. & Smoke
. " O Temperature
¢ O smoke
" Y O Toxiciy (€O)
[T 1Y O oxigen
PR Time passed, sec:  38.4571
Read

o 0089

Figure 37b: Snapshot of same fire at 38.4571 sec. The torpedo room becomes
uninhabitable. The heat propagates through the frame bays to the combat systems room,

which now requires protective gear.

31




i Shadwell Research

[ =FE3)

Fio View Help
{111 simutation )
(Srmdatr (R ¥ Compws) -
nepay . L2 ’%m 5311
Simulation Description: N
[ tost 52261 |
Namelist Fle ID: | name¥st92261 _j
LY | Duration: 100 |sec (8
Ambient temp. : 298.15 {K W
Ambient pressure: 101325 {pa ﬁ

Ouygen: (023 | et otk [ cosed (4
[ Now Y Nemelist] [[add ] oelete ]

Fire sources:

B ook [ ] vt [
{

| sty | | Endsec ||

B vield, kg per kg of fuel:
ozt 1o | 159 |
o | 0.012 | soot | 0.042 |
4 ‘ Heat of combustion, kW: Lnj‘iéﬂl [
oot of vaportzation, |____sssooo |
Bt Prrolysis temperature, K: L 30 J

P rmgume {1 Stop ‘

g Senulotion Clodks: Complets
r H Show parameter
«| i @ Temp. b Smoke
o O Temperature
" QO smoke
. O Toxicky (CO)
s i O oxgen
U] Time passed, sec: 100 R

Read

‘;”é’frlR:vtetinn %Y Rotation M;

'} Ontho viess OO

j SCRL| _:

Figure 37c: Snapshot of same fire at 100.0 sec. The torpedo room is now full of smoke.
The heat and smoke propagates to the combat system room, resulting in limited visibility
there. The heat propagates further to the control room (through the joiner doors) and the

crew living room (through the hatch).

32




7l Shadwell Research

? persaPotton XY Rotation

[est 92261
Nemelst fie ID: | namekst92261
Duation: 100

Amblent tamp.: 298.15
Amblent pressure:i 101325 |Pa
Oxygen: ! 0.23 | Set defack

Vield, kg per kg of fuel:

X ,
coz | A jweo [
o | 0.012 | soct |

Heat of kw:
Heat of vaporization, kW:
Pyrolysis temperature, K:

{ QTodcy(coy -
O

Figure 37d: Another simulation with identical fire setting as in Figure 37a-c. The only
difference is that the joiner door between the torpedo room and the store room is now
open and the hatch in the torpedo room is closed. The propagation of the heat from the
torpedo to the store room is clearly seen. There is no visible effect of the status of the
hatch. The snapshot is taken at 64.8409 seconds after the fire started.

10.0 ACKNOWLEDGEMENTS

This material is based upon work supported by GEO-CENTERS, INC. Subcontract
40939MK-GC-3448 under NRL Contract N00173-00-C-2096.

11.0 REFERENCES

[1] Dmitry Shulga, “The Simulation System for Propagation of Fire and Smoke”, Master
Thesis, Mississippi State University, 2003. Also available from
http://www.erc.msstate.edu/~haupt/FireSmoke/dmitry.pdf

[2] Floyd, J., Hunt, S., Williams, F., and Tatem, P., “Fire and Smoke Simulator:(FSSIM)
Version 1 - Theory Manual”, NRL/MR/6180—04--, in publication

[3] Floyd, J., Hunt, S., Williams, F., and Tatem, P., “Fire and Smoke Simulator(FSSIM)
Version 1. - User's Guide”, NRL/MR/6180—04--, in publication

33



