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Abstract

A set of equations seekin’g to model the way the

cortex interacts with subcortical areas to produce cértain”:

higher-level brain functions is described. - The equations
are those of a network of parametrlcally coupled maps
that incorporates salient propertles of the cortex.
Justifications for this approach and demonstration of its
effectiveness for a parametrically coupled Jogistic map
network (PCLMN) are presented. The PCLMN can self-
organize under information driven adaptation, is capable
of handling dynamic (spatio-temporal) input patterns,
furnishes an enormous number of attractors for inputs to
choose from, plus other intriguing features that can be
used in the design of intelligent systems.

Introduction

It is generally agreed that brain tissue is the most
complex self-organizing matter known in the universe. In
particular this applies to the cortex and all subcortical
centers like the thalamus and the hippocampus with which
the cortex interacts to carry out higher-level brain
functions such as perception, cognition, memory,
language, control of complex motion, speech and perhaps
even awareness and consciousness. Understanding and

creating models of how the cortex carries out such -

operations and implementing them in suitable fast and
efficient algorithms or hardware will have far reaching
implications for science, technology and medicine with
the most obvious being the formulation and testing of
models of higher-level brain functions and the design of
future machines with brain-like intelligence.

To create a system of equations that models the
cortex in every small detail, i.e. to model the cortex/brain
on the microscopic scale of neurons, synapses, dendrites,
axons and the dynamics of linear and nonlinear membrane
patches with their voltage and chemically activated ionic
channels, would be a daunting task even with the
computational resources available today or predicted for
the future.

For this reason we developed a macroscopic

o “approach to modeling the cortex that is based on

combining the tools of nonlinear dynamics and
information theory with known salient organizational and
anatomical features of the cortex. [1],[2] This approach
produced the following cortical equations that describe
the evolution of the state vector

}(n) = {X ,-(n), i=012,.N- 1} of a parametrically
coupled logistic map network (PCLMN) and the
dynamics of the coupling factors matrix C(m):

X, (r41) = 1, ()X, (- X, () =012 N1
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Cyj(m+1)=Cy(m)1+AC; (m)) (3)
ACj;(m)= & tanh BI; \ 4
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Here for simplicity, a one-dimensional network topology
of N parametrically coupled logistic maps is considered.
X (n)g[O,l] is the state variable of the i-th processing
element (map) in the network, n is discrete integer time,
,ul-(n)e[OA] is the control parameter of the i-th map,

X f (n)e[O,l] is the extrinsic input to the i-th element of

the network, N; is the number of maps connected to the

i-th map. This includes usually nearest-neighbor and self
connection for which N;=3.In the numerical

simulations described below the nearest-neighbor
connections are set with a probability of p=0.5 or 0.7.

This symmetry breaking is needed to make the network




converge to input-specific attractors. The self-coupling
however is set with a probability of unity. The quantity
« is a positive real constant (typically 0.1) setting the
rate at which control over the dynamics of the network is
passed from the extrinsic input to internal feedback from
the nearest neighbor maps including self-feedback,

C; =0.5 and Cgf{{}, %] represents the coupling factor
between the j-th and i-th ‘map. Note the coupling factor

in this formulation is not coupling strength, because
X;(n) ranges between zero and 1, Cj =0 gives

maximum coupling or excitation and Cj; = gives zero

coupling or. maximum inhibition for all values of X;
except X; =1; m is the updating index. Typically 100
iterations are needed before the values of the coupling
factors are updated. The initial coupling factor Cj; (0) of
the network are selected randomly in a range where the
initial dynamics of the network is disorganized so as to
include elements that spawn chaotic orbits. Typically,
values for both C; and Cj are selected randomly and

uniformly in the [0, 0.5] range. AC’,:,-{m) is the change
made in Cj typically every n=100iterations of the
network, &,and # are noncritical constants, typically
§=5,4=10 for the examples shown here, controlling
the rate of adaptation; [ (m) is the normalized mutual

information at the m-th adaptation associated with the
orbits of the j-th and i-th map observed over the preceding

100 iterations, H;and H ; are respectively the entropies
of the i-th and the j-th orbit and H i is the normalized
cross entropy. Note that equations (1)-(5) describe two
rates of evolution in time, one is fast describing the
evolution of }(rz) and second is slow describing the

punctuated evolution of E(m)

Self-adaptation of the network under the influence
of few (three or four) distinct input (stimulus) patterns

x° (n) leads the elements of the coupling matrix C to

converge to fixed values that do not change with the
application of additional inputs. At this stage the self-
organization of the network is complete.

Publications [1],[2] contain the arguments and
rationale that led to these equations and the way they are
used to self-organize a PCLMN incorporating salient and
plausible features of cortical organization many of which
are not found in current neural net and connectionist
models.

It is also possible by modifying the formula for
adaptation, that attractors of any single class or a mix of .

ACy = & tanh| Al -7

classes selected from fixed-point, period-m, or chaotic
can be achieved. The modification would be

(©)

where the choice of the real constant y enables the

components of }.—f(sz) to converge to values distributed in
any desired part of the x; axis in the bifurcation diagram
of the i-th logistic map.

Significant Properties Of The PCLMN

The adapted or self-organized PCLMN has
several unique useful properties described in [1] and [2]
that are not found in conventional neural net and
connectionist models of {:orticz} dynamics. The most
intriguing of these is the immense number of stimulus-
specific attractors an adapted (self-organized) PCLMN
=¥

has. The number is astronomical being N, where

N is the size of the network and L is the number of
levels over which.the analog valued state variable
X f(ﬂ),f =1,2..N of the i-th element in the network is

measured or discemed. We have strong evidence
supporting the validity of this property. One comes from
convergence considerations of the adapted PCLMN [3]
that resemble the convergence of a class of neural
network known as the Andersen Brain-State-In-a-Box
network [4] and the second comes from extensive
numerical simulations in which the adapted PCLMN was
probed by 100 distinct dynamic (spatio-temporal) input
patterns, and by examining the histogram of the Euclidean
distances between their convergent states (atfractors).

Other significant properties of the adapted PCLMN
are: (a) ability to represent both dynamic or static input
(stimulus) patterns by fixed-point attractors, (b) rapid
convergence to an attractor occurring within few tens of
iterations (time steps) in numerical simulations, (c) ability
to differentiate redundant (structured) inputs from
nonredundant or unstructured inputs that are void of
information and, (d) the nearest-neighbor connections
architecture facilitates analog VLSI implementations of
the PCLMN.

Numerical Simulations

An example of the numerical simulation of the
PCLMN is presented next in Figures 1 and 1(c). The
central top plots in Fig. 1 show two snapshots of the time
evolution of the state-vector X () of a PCLMN of N =

100 processing elements. The narrow leftmost window
mus on the top left shows the values of the control vector

£




; of a stimulus generating layer of individual logistic
maps producing a dynamic (spatio-temporal) input vector

x° (n) a snipet of which is shown to mus the window.
The right-most narrow window gives the encoding scale
of the orbits 0< X;(1n)<1 of the individual elements of
the network, while SZ is the spatial power spectrum of
e/ 2%i0) where x ;(n) is regarded as normalized phase
‘variable. The next two panels from the top show the time
evolution of X;(n) for the i=0 -element. The bottom
square pattern is the mutual information matrix computed

at the 499-th iteration from the preceding 100 iteration.
Without adaptation the nature of the steady-state pattern

_)_(-(n) of the network shown for 400<# <499 would

persist and so would the muitual in’fo_rfnation matrix. The
top left entry in Figure 1(b) shows the state variable Y(n)
of the network following :the ﬁvr,st’ M_I (mutual
information) driven adaptation of the initial coupling
factors matrix E(O) executed at the 400 iteration together
with the MI matrix computed from X(n),
400 < n< 499 which is shown at thé‘_jcop right. The
bottom entries in Fig. 1(b) show the convergent ?* (left)
reached after four MI driven adaptations of the network
made at »=400,500,600,and 700 using always the
" preceding 100 iterations of the network. The

corresponding MI matrix is given at the bottom right
showing its elements /; have conveyed to zero. Because

I i is a measure of the flow of information between the i-

th and j-th elements, convergence of the network is

synonymous with a convergent C matrix that eliminates
the flow of information between the elements (PCLMs) of
the network. We call this process MI driven self-
organization. In the convergent state all elements have
converged to fixed analog values ranging between zero to
a maximum value determined by the upper limit of the
fixed-point regime of the bifurcation diagram of the
conventional (undriven) logistic map which is normalized

—

to 1. Figure 1(c) shows the convergent state vector X
or fixed-point attractor reached by the network for a

different distinct input pattern x’ (n) and the associated

zero MI matrix. Note also the spatial convergence of the

power spectrum SZ and its resemblance then to an
analog bar-code which can be used to label the
convergent attractors.

In the preceding simulation each applied .input

selects one of the N =LV fixed-point attractors of the
network. The selection takes place via a process of
conjugation of the input with the dynamics of the
network. This process defines a new concept: that of a |

dynamic memory with an enormous built-in capacity. The
network is able to produce an internal representation, a
fixed-point attractor, for every input it receives. The
labeling of internal representations by means of a suitable
associative memory or a lookup table e.g., a bar-code

—_F
reader of the convergent SZ can be used to impart
meaning to the representations/attractors forming thereby
what can be called as a cortical module that can be used
in automated input/object recognition.

The PCLMN has another mode of operation that
speeds-up the convergence to a fixed-point attractor. This
involves commulative adaptation of the network by
several distinct input patterns that leads to a
commulatively MI driven self-organized network capable
of converging to an attractor in approximately 50
iterations instead of the 800 or 900 iterations needed to
converge in Fig. 1. In this commulative adaptation

process the final convergent C matrix arrived at as result
of applying a first input to the unadapted network with

C(0) is used as the initial E(O) for a second distinct
input applied to the network and the new convergent
C matrix is used as C(O) for a third distinct applied input

and the process is repeated. Normally a total of three or
four distinct inputs was sufficient to make the values in

the Cmatrix stabilize and not change with further
application of distinct inputs. Such commulatively self-
organized network has the remarkable property of being
able to distinguish between redundant (structured) and
non-redundant (unstructured) inputs where the latter
consists of random spatio-temporal patterns that contain
no meaningful information.

Conclusions

MI driven self-organization in a parametrically
coupled logistic map network capable of handling
dynamic or static input and representing them by input-
specific fixed-point attractors was described.  The
network acts as dynamic memory capable of furnishing an
enormous number of attractors the input can choose from.
Commulative adaptation of the network starting from a
suitably formed random activity-dependent coupling
matrix that spawns initial disorganized activity leads to
rapid convergence as compared to the noncommulatively
adapted network where the initial coupling matrix for all
applied inputs is the same. The commulatively adapted or
self-organized network has several intriguing properties
one of which is the ability to differentiate between
redundant and non-redundant inputs which is a well
known property of the brain.




Acknowledgement

This research was supported by the Office of Naval
Research under grant no. N00014-94-1-0931 and by an
Army Research Office MURI subcontract to ARO Prime:
DAADI19-01-1-0603.

References

[11 N. Farhat, Corticonics: The way to designing
machines with  brain-like intelligence, Critical
Technologies for the Future of Computing, Proc. of SPIE,
4109, SPIE, Bellingham, WA, 2000, 103-108.

[2] N. Farhat, Corticonic systems and algorithms for
dynamical pattern recognition, White Paper/Proposal
submitted to US Army Research Office, March 2000.

[3] N. Farhat, Dynamic Brain-State-in-a-Box, Optical
Memory and Neural Networks, 10, Allerton Press, 2002,
203-209.

[4] J. Andersen, et. al, The BSB: A simple nonlinear
autoassociative neural network, M. Hassoun, (Ed),
Associative Neural Memory, (Oxford Univ, Press, Oxford,
1993) 77-103.

=



N

20

0 max
_10

0% ‘u‘n.,n Y Wi 20

o

40

0.0

60 70 80 80 100

Fig. 1(a). Input-specific orbits (top) and mutual information matrix (bottom) without MI driven adaptatlon of the

network.
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Fig. 1(b). (Top) Orbits and MI matrix following first adaptation.
information in convergent network is zero.
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Fig. 1(c). Another input-specific attractor and MI matrix. Note different inut pattern X .




