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SPECIAL SECTION

Real-Time Assessment of Mental Workload Using
Psychophysiological Measures and Artificial Neural Networks

Glenn F. Wilson and Christopher A. Russell, U.S. Air Force Research Laboratory, Wright-
. Patterson Air Force Base, Ohio

The functional state of the human operator is critical to optimal system performance.
Degraded states of operator functioning can lead to errors and overall suboptimal
system performance. Accurate assessment of operator functional state is crucial
to the successful implementation of an adaptive aiding system. One method of
determining operators’ functional state is by monitoring their physiology. In the
present study, artificial neural networks using physiological signals were used to
continuously monitor, in real time, the functional state of 7 participants while
they performed the Multi-Attribute Task Battery with two levels of task difficulty.
Six channels of brain electrical activity and eye, heart and respiration measures were
evaluated on line. The accuracy of the classifier was determined to test its utility as
an on-line measure of operator state. The mean classification accuracies were 85%,
82%, and 86% for the baseline, low task difficulty, and high task difficulty condi-
tions, respectively. The high levels of accuracy suggest that these procedures can be
used to provide accurate estimates of operator functional state that can be used to
provide adaptive aiding. The relative contribution of each of the 43 psychophysio-
logical features was also determined. Actual or potential applications of this research

include test and evaluation and adaptive aiding implementation.

INTRODUCTION

Modern complex systems can place very high
cognitive demands upon their operators. The rate
of information flow, the complex nature of this
information, and the number and rate of required
decisions can overwhelm the human operator.
At the other end of the continuum, automation of
tasks can lead to operator complacency and er-
rors of inattention (Billings, 1997). However, cur-
rent systems are capable of modifying themselves
to meet the momentary needs of the operator.
This includes assuming some task functions un-
til the operator’s mental load is reduced. In other
cases, systems can adjust to improve the opera-
tor’s awareness to relieve boredom or inattention.
Adaptive aiding based on the current functional
state of the operator can be most beneficial when
supplied at the appropriate time and with the

consent of the operator (Rouse, 1988). Further,
accurate assessment of operator functional state
is required in the test and evaluation of new and
modified systems (Charlton & O’Brien, 2002).
In these situations the critical factor is the accu-
rate and reliable assessment of the operator’s
functional state. The functional state of an oper-
ator is defined as his or her ability to carry out
the job at that moment in time.

One method of monitoring operator function-
al state is by examining the operator’s physiology.
The various physiological measures provide
unique information about several aspects of oper-
ator state. Eye blink rate contains valuable infor-
mation with regard to the visual demands of
tasks. Heart rate is useful to determine the oper-
ator’s global response to task demands (Wilson
& Eggemeier, 1991). The electroencephalogram
(EEG) provides useful information about both
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high workload and inattention (Gundel & Wil-
son, 1992; Kramer, 1991; Sterman & Mann, 1995;
Wilson & Eggemeier, 1991). EEG measures have
been used to classify patients with regard to types
of neuropathy and psychiatric disorders using
linear statistical techniques (John, Pricep, Frid-
man, & Easton, 1988) and artificial neural net-
works (ANNs; Kloppel, 1994). EEG has also been
used to classify drug effects and to detect alco-
hol intoxification and fatigue (Gevins & Smith,
1999; Herrmann, 1982). Physiological signals are
always present and can be unobtrusively col-
lected and, thereby, are able to provide uninter-
rupted information about operator state (Wilson,
2001, 2002).

Several studies have used psychophysiological
measures to classify operator state with regard to
mental workload. Most of these studies have
employed EEG, cardiac, and eye data. Several
of these studies used either simple, single-task
paradigms (Gevins et al., 1998; Gevins & Smith,
1999; Nikolaey, Ivanitskii, & Ivanitskii, 1998;
Wilson & Fisher, 1995) or relatively few periph-
eral nervous system variables in the context of
complex task performance (Wilson & Fisher,
1991). Others have used complex tasks with
skilled operators (Russell & Wilson, 1998; Rus-
sell, Wilson, & Monett, 1996; Wilson & Russell,
2003). These papers report overall successful
task classification in the 80% to 90% correct
range. The success rate of correctly classifying
high mental workload or altered operator state is
very encouraging. This suggests that these meth-
ods could be used to provide accurate and reli-
able operator functional state assessment during
test and evaluation and to implement adaptive
aiding systems. Hilburn, Jorna, Byrne, and Para-
suraman (1997) used psychophysiological mea-
sures to show that adaptive aiding controlled by
the task demands of their air traffic control task
reduced mental workload. This demonstrates
that psychophysiological measures of operator
functional state change to show reduced mental
workload when adaptive aiding is applied.

Psychophysiological measures have also been
used to implement adaptive aiding in laborato-
ry situations designed to detect lowered opera-
tor engagement in the task being performed
(Freeman, Mikulka, Prinzel, & Scerbo, 1999;
Freeman, Mikulka, Scerbo, Prinzel & Clouatre,
2000; Pope, Bogart, & Bartolome, 1995; Prinzel,

Scerbo, Freeman, & Mikulka, 1995). These in-
vestigations demonstrated enhanced operator
performance when the EEG-based adaptive aid-
ing system detected operator disengagement or
lowered attention and modified the task to in-
crease operator involvement. Prinzel, Freeman,
Scerbo, Mikulka, and Pope (2000) studied the
effects of utilizing their engagement index when
participants performed either one or three tasks.
They reported improved performance with adap-
tive aiding, even though the index values did not
differ between the two difficulty conditions.
Most contemporary systems, such as civil and
military aircraft, are a complex combination of
multiple tasks that can easily place demands
upon operators that may exceed the operator’s
cognitive capabilities. This can result in errors
and catastrophic performance breakdowns that
can lead to system failure. In the case of mental
overload, it may be possible to avoid system
failure by reducing the task demands on the
operator. Accurate estimation of the operator’s
functional state is crucial to successful imple-
mentation of such an adaptive aiding system
(Byrne & Parasuraman, 1996; Scerbo, 1996).
In the present investigation psychophysio-
logical signals were continuously monitored on
line in order to determine the participant’s func-
tional state in real time. Further, this informa-
tion was used to adapt the task when high levels
of mental workload were detected in order to
see if task performance would be enhanced or
harmed. The goal of the present study was to
determine the level of accuracy that an ANN
could achieve in real time using psychophysio-
logical variables to determine participants’ level
of mental workload while they performed a com-
plex task. Previous work in our laboratory has
demonstrated that very accurate levels of oper-
ator functional state assessment are possible
using ANNs when the data are analyzed off line
using a different task (Wilson & Russell, 2003).
Further, the relative contribution of EEG and
peripheral nervous system measures was de-
termined. In addition, saliency analysis was
performed on all of the EEG and peripheral mea-
sures (Ruck, Rogers, & Kabrisky, 1990). This
type of analysis permits one to interrogate the
trained ANN to determine which of the input
features provide the most relevant information
to the classifier solution. This information can

T
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be used to provide a better understanding of the
underlying dynamics in the data.

METHODS

Seven participants (4 women, 3 men) took
part in the experiment. Their age range was from
19 to 26 years. They were trained to stable per-
formance on the NASA Multi-Attribute Task
Battery (MATB; Comstock & Arnegard, 1992).
After initial familiarization with the task, they
were taught to manipulate a joystick with their
right hand, which controlled the position of the
tracking cursor, and to use their left hand to
move a mouse, which controlled a pointing cur-
sor on the screen. All of the MATB subtasks
were used: lights and dials monitoring, manual
tracking, resource management, and the audito-
ry communication task. Two levels of task diffi-
culty were provided and were manipulated by
varying the number of events that occurred dur-
ing each of the 5-min trials. In order to avoid
confounding by learning, performance scores
from each task were recorded and practice was
continued until each participant exhibited stable
performance on all tasks. Stable performance
was defined as level performance scores over
successive trials. This required approximately
6 hr of practice spread over 3 days.

Physiological data were recorded during task
performance on the 4th day and consisted of six
EEG channels as well as electrocardiographic
(ECG), electrooculographic (EOG), and respi-
ration inputs. EEG electrodes were placed on
the scalp at Fz, F7, T4, T5, Pz, and Oz sites of the
10-20 system. Electrodes placed on the mastoids
served as reference and ground. Horizontal and
vertical EOG signals were recorded from elec-
trodes placed by the outer canthus of each eye
and above and below the midline of the right
eye, respectively. Grass P511 amplifiers were
used to amplify and filter the signals with a band
pass of 0.3 to 30 Hz for the EEG and EOG and
a band pass of 10 to 30 Hz for the ECG. The
respiration was recorded with a Respitrace sys-
tem. For the ECG signals, R-wave peaks were
detected on line and interbeat intervals were cal-
culated. The EOG signals were evaluated by
laboratory-developed software that detected
blinks and provided interblink intervals. The
respiration signal was used to derive interbreath
intervals using a zero crossing algorithm.

On the day of data collection, Day 4, the
participants practiced the tasks for 5 min prior
to data collection. Then three 5-min long con-
ditions were presented to the participants. One
was a baseline condition, during which the
participants merely looked at the static MATB
screen, The second condition required them to
perform the task at the low difficulty level. In
the third condition the task was presented at
the high difficulty level.

The psychophysiological data from these
three conditions were input to a multiple-layer
perceptron ANN classifier using backpropaga-
tion. The ANN contained three layers: an input
layer, a hidden layer, and the output layer. The
input and hidden layers consisted of 43 nodes
representing the EEG features plus the periph-
eral features. The output layer consisted of three
nodes representing baseline, low, and high.
The ANN was trained to recognize these three
conditions separately for each participant. The
input to the ANN consisted of the log power of
spectral EEG and EOG features, which were
derived by the fast Fourier transform. The five
bands included delta (1-3 Hz), theta (4-7 Hz),
alpha (8-13 Hz), beta (14-30 Hz), and gamma
(31-42 Hz). The low-pass filters used on the
Grass P511 amplifiers are analog and pass fre-
quencies are reduced in magnitude above 30 Hz,
thereby passing some gamma band activity.
Other features included ECG interbeat, EOG
interblink, and respiration intervals. The 43 in-
put features to the ANN consisted of six EEG
channels and two EOG channels with five bands
each, plus the three peripheral interval measures.

The data were segmented into 10-s windows
with a 50% overlap. Of the 10-s segments
from each of the three conditions, 75% were
randomly selected and used as training data.
The remaining 25% were used as test data to
determine the accuracy of the ANN training.
After the ANN training reached the sum squared
error of .04, which usually required fewer than
10 000 passes through the data, the remaining
25% of the data were then used to test the ac-
curacy of the classifier. These data were evaluated
with the trained ANN coefficients to determine if
the ANN would place the data segments in the
correct class of baseline, low, or high. Using
the trained ANN, the level of mental workload
was determined on line to be one of the three
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conditions (baseline, low, or high). This was
accomplished based entirely on psychophysio-
logical data. The block of three conditions used
for training was repeated twice. During both re-
plications, on-line determination of participant
mental workload level was performed every 5 s
using the ANN weights derived from the training
session. The output node with the largest value
determined which of the three conditions the
operator was in at that moment. The workload
classifications were recorded to determine the
accuracy of the trained ANN.

The number of correctly classified 5-s epochs
during the 5-min task performance was used
to determine classifier accuracy. In the other
replication, adaptive aiding was applied such
that when the high workload condition was de-
tected by the trained ANN, the MATB task was
adapted by “turning off” two of the subtasks.
During adaptive aiding, the lights and dials mon-
itoring and the communication tasks were turned
off, and their areas on the screen were high-
lighted in blue to indicate that an aiding period
was in progtess. The participants were instruct-
ed to ignore these tasks and concentrate their
efforts on the tracking and resource manage-
ment tasks. They were given practice with the
aiding by ignoring these tasks. The order of pre-
sentation of the classification and aiding runs
was alternated across participants.

In order to assess the relative contributions
of the EEG and peripheral measures, off-line
analyses were performed separately on these
data. The EEG and the heart, eye, and respira-
tion rates were separated into two data sets and
were individually used to train the separate
ANNSs. The same procedures used for training
and testing the ANN with the full data set were
used with these data. An additional saliency
analysis was carried out to determine which of
the features contributed the most information
or were the most salient to the ANN. The Ruck
et al. (1990) saliency measure was used to deter-
mine the relative importance of each feature to
the overall solution. A partial derivative analysis
was performed on the fully trained ANN, and
the importance of each feature was rank ordered
in the final solution. The saliency values for each
participant were normalized so that their sum
equaled 1.0. The results of the saliency analysis
were examined via visual inspection to deter-

mine the “break point” for each participant’s
data — that is, the point where the saliency values
noticeably changed, by showing a marked de-
crease, was used as the break point. The features
above this point were designated as the most
salient or important features. In order to deter-
mine the effects of feature reduction, a separate
set of ANN analyses was completed using only
the salient features.

Tracking task root mean square (RMS) error
and resource management error scores were re-
corded so that the effects of task difficulty and
the adaptive aiding could be evaluated. After
performing each condition, the participants were
asked to provide subjective estimates of their
mental workload using an 11-point scale (0-10),
with 10 representing very high workload.

RESULTS

Analysis of the performance data showed
that the RMS error of the two difficulty levels of
the tracking task and resource management task
error were significantly different: tracking task,
mean low = 12.4 versus mean high = 59.9,
t(6) = 1.46, p < .00007; resource management
task, mean low = 42.5 versus mean high = 51.0,
#(6) = 2.63, p < .023. Subjective reports of over-
all task difficulty for the low- and high-difficulty
conditions showed that the participants per-
ceived them as different: mean low = 2.7 versus
mean high = 8.3, #(6) = 8.18, p < .0002. The
accuracy of the trained ANN was first tested by
having it classify the withheld 25% of the train-
ing data set. These were the 25% of the data not
seen by the ANN during training. The mean
ANN accuracy for the training data was 98.5%
correct. We have previously found this almost-
perfect accuracy of classifying the test data set
(Wilson & Russell, 2003). The levels of classifi-
cation accuracy were very high during the test
run, in which the trained ANN was used for on-
line classification of the workload while the
participants performed the three task difficulty
levels. The mean accuracies were 84.9% for the
baseline condition, 82.0% for the low-workload
condition, and 86.0% for the high-workload con-
dition (see Table 1).

These results demonstrate that an ANN can
produce high levels of correct classification while
participants perform complex multiple tasks.
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TABLE 1: Mean Percentage Classification Accuracy

Base Low High
Base 84.9 14.1 1.0
Low 14.5 82.0 3.6
High 2.6 11.3 86.0

Note. Rows are truth, columns are test.

Note the pattern of confusion by the ANN of
adjacent workload conditions when misclassifi-
cations did occur. During the baseline condition,
the majority of errors (14.1%) were assigned
to the low condition, with only 1% misclassified
as high. The errors during the low condition
were primarily confusion with the baseline con-
dition (14.5%), and most of the errors for the
high condition (11.3%) were misses categorized
as belonging to the low condition, with only
2.6% misclassified as baseline.

Classification accuracies for each participant
showed a mean correct classification range
from 69.0% to 97.8% (see Table 2). The high-
est accuracy for any one condition was 100%,
which occurred in 4 of the 21 comparisons, and
12 of the comparisons were in the 90% range.
All of the observed accuracies were well above
the expected chance level of 33%. Exceptions
to the very high classification levels were condi-
tions for Participants 3, 4, and 7; each had one
condition that was classified with a low percent-
age correct of 28.7%, 41.3%, and 41.0%, re-
spectively. The next-lowest accuracy was 76.7%,
with most of the estimates being in the 80% to
100% correct range.

The results of the off-line analysis using only
the EEG data are shown in Table 3. The mean
correct classification accuracy was 87.2% for
the three conditions, with a mean of 85.0%
for the baseline condition, 87.4% for the low
condition, and 89.2% for the high condition.

As was the case with the entire data set ANN,
the misclassification results showed the closest
neighbor receiving the highest percentage of
incorrect classifications.

Using only the three peripheral measures, the
overall accuracy dropped to 55.9% (see Table 4),
The correct classifications for the baseline, low-
workload, and high-workload conditions were
59.1%, 64.9%, and 43.8%, respectively. Because
separate analyses of the EEG and peripheral
features were performed off line, the entire data
set was also used to train an ANN in order to
provide comparison with the original on-line
analysis. These results are shown in Table 5.
The results of the off-line analysis are very simi-
lar to the on-line results. The mean correct clas-
sifications for the baseline, low-workload, and
high-workload conditions were 86.2%, 89.6%,
and 86.5%, respectively. The mean correct clas-
sification was 87.4%, compared with 84.3%
found with the on-line analysis.

Table 6 shows the salient input features for
each participant and rank ordered across the 7
participants based on the saliency analysis. This
table can be used to show which features were
the most important for each participant as well
as across the 7 participants. For example, theta
band EEG activity from the Fz electrode con-
tributed the most information for the ANNs of
all of the features. This was followed by F7
theta, Pz theta, and vertical electro-oculographic
(VEOG) theta band activity. The mean number
of salient features was 14.9. The number of
salient features for Participants 1 through 7 was
17,17, 12, 17, 28, 8, and 5, respectively.

The final analysis used only the salient fea-
tures to train ANNs for each participant using
combined EEG and peripheral features. This
was accomplished to determine the accuracy of
the off-line-trained ANN using only the salient
features, compared with using all of the available

TABLE 2: Percentage Correct Classification Accuracy for the Three Conditions

P1 P2 P3 P4 P5 Pé6 P7 Mean
Base 100.0 85.0 85.0 93.3 100.0 90.0 41.0 84.9
Low 95.0 86.7 28.7 76.7 91.7 100.0 95.0 82.0
High 98.3 81.7 93.3 41.3 93.3 100.0 94.3 86.0
Mean 97.8 84.4 69.0 70.4 95.0 96.7 76.8 84.3

Note. Rows are truth, columns are test.
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TABLE 3: Mean Percentage Classification Scores
Using Only the EEG Data

Base Low High
Base 85.0 13.6 1.5
Low 8.7 87.4 3.9
High 1.0 9.9 89.2

Note. Rows are truth, columns are test.

TABLE 4: Mean Percentage Classification Scores
Using Only the Peripheral Measures

Base Low High
Base 59.1 37.3 3.6
Low 247 64.9 1.4
High 13.8 42.4 43.8

Note. Rows are truth, columns are test.

TABLE 5: Mean Percentage Classification Scores
Using the Combined EEG and Peripheral Measures

Base Low High
Base 86.2 11.6 2.2
Low 8.5 89.6 1.9
High 3.2 1.3 86.5

Note. Rows are truth, columns are test.

features for the on-line analysis. Only the sali-
ent features for each participant were used to
train ANNSs using the procedures outlined earli-
er. The results of this analysis showed an overall
correct classification accuracy of 88.0%. The
mean accuracy was 91.0% for baseline, 85.2%
for low, and 88.7% for high (Table 7).

During adaptive aiding, the participants’ per-
formance on the tracking and resource man-
agement tasks was monitored. By removing the
monitoring and communication tasks when
the classifier determined high workload, the par-
ticipants were free to focus their efforts on the
remaining two tasks. Adaptive aiding resulted in
a 449% reduction in RMS tracking error, #(6) =
-6.134, p < .0008, compared with the nonadap-
tive condition. Performance on the resource man-
agement task improved with a 33% reduction
in the error score that was marginally significant,
1(6) = -1.822, p < .06.

DISCUSSION

These results demonstrate that an ANN using
central and peripheral nervous system features
can be trained to very accurately determine, on
line, the functional state of an operator. This is
especially significant in light of the complex
multiple task that was performed by the partic-
ipants. All four subtasks of the MATB were
performed during both the low and high diffi-
culty levels of task demand. Only the density of
stimulus and response events was changed. The
mean correct classification accuracy across par-
ticipants for the three task conditions during
the on-line classification ranged from 82.0% to
86.0%. These results are consistent with pre-
vious reports and demonstrate the high levels of
accuracy that are possible using ANNs (Gevins
& Smith, 1999; Russell et al., 1996; Wilson &
Russell, 2003). These results were derived from
ANNSs using both central and peripheral ner-
vous system features. The EEG-only analysis
produced classification accuracies that were
essentially identical to the overall accuracy of the
on-line results. The analysis using the peripheral
measures alone did not show very high levels
of correct classification. The off-line analysis,
which included both the EEG and peripheral
measures, showed the same accuracies as the
EEG-only analysis.

Because there are a greater number of EEG
features, they probably contain more informa-
tion relevant to the functional state of the par-
ticipants than do the three peripheral features.
This is not surprising, given that six electrodes
placed over widespread scalp sites were used
and their electrical activity was divided into five
different frequency bands. In our analysis, only
interval information was used from the three
peripheral measures. Further, spectral analysis of
the VEOG and horizontal electro-oculographic
(HEOG) channels were included with the EEG
features. One of the VEOG bands was among
the five most salient features. HEOG and the in-
terbeat and interbreath intervals were in the top
third of the salient features. In order to deter-
mine the contribution of the peripheral interval
data, they should be tested in other task situa-
tions. This may be especially true if the classifier
results are to be used in the test and evaluation
of systems and to implement adaptive aiding.




REAL-TIME WORKLOAD ASSESSMENT

641

TABLE 6: Ranked Saliency Results from Highest to Lowest across All Participants

Feature P1 P2 P3 P4 P5 P6 P7 Totals

FZ theta .00 .1329827 .1120869 .00 0285860 .1378697 .2620487 .6735741
F7 theta .00 .00 .0857638 .00 .0420032 .2306649 .1873129 .5457449
PZ theta .1049727 .1705432 .00 .0488417 .0553200 .00 .00 3796776
VEOG theta .0790230 .00 .0813453 .00 .0382658 .1599230 .00 3585571
T5 theta 0776711 .00 .1313170 .0474553 .0469925 .00 .00 .3034359
HEOG beta .00 .0853052 .00 .00 .00 .00 2166377 .3019429
Interbeat 0746387 .1297913 .00 .0580571 .0366611 .00 .00 .2991481
FZ alpha 0692260 .00 .0825001 .1070838 .0320736 .00 .00 .2908835
02 theta 0756671 .00 0944248 .0621385 .0556574 .00 .00 .2878878
02 delta .00 .1673464 1040000 .00 .0144115 .00 .00 .2857578
PZ delta .00 .00 .00 .0192943 .00 .00 2470484 2663427
HEOG theta .00 .00 .00 0996785 .0476519 .0932338 .00 .2405642
FZ delta .00 .00 .0559547 .00 .0380030 .1390996 .00 .2330574
Interbreath 0710244 .1313430 .00 .00 .0235684 .00 .00 .2259357
F7 delta .1500198 .00 .00 .00 .0450658 .00 .00 .1950857
02 alpha .00 .00 .00 .1023400 .00 .00 0869522 .1892922
VEOG delta .0896979 .00 .00 0489865 .0436826 .00 .00 .1823670
T5 delta .00 .00 .00 0492989 .0318804 .0794221 .00 1606014
HEOG delta .0582251 .00 .00 .00 .0214459 .0753290 .00 .1550001
HEOG alpha .00 .00 .0747617 .00 .0518247 .00 .00 .1265863
02 beta .00 .00 .0651665 .00 .0579911 .00 .00 .1231576
T5 gamma .00 .00 .00 .00 .0284830 .0844578 .00 .1129408
T4 beta .00 .0871344 .00 .00 .0189423 .00 .00 1060767
F7 gamma .00 .0955537 .00 .00 .00 .00 .00 .0955537
F7 beta .0897480 .00 .00 .00 .00 .00 .00 .0897480
VEOG gamma .00 .00 .0375791 .0484944 .00 .00 .00 .0860735
F7 alpha .00 .00 .0751001 .00 .00 .00 .00 .0751001
VEOG alpha .00 .00 .00 .0701445 .00 .00 .00 .0701445
T4 gamma .00 .00 .00 .0401841 .0221903 .00 .00 0623744
FZ gamma .00 .00 .00 .0602198 .00 .00 .00 .0602198
FZ beta .0600862 .00 .00 .00 .00 .00 .00 0600862
T4 theta .00 .00 .00 .0545696 .00 .00 .00 .05456%96
T5 alpha .00 .00 .00 0432652 .00 .00 .00 .0432652
HEOG gamma .00 .00 .00 .00 .0420444 .00 .00 .0420444
PZ alpha .00 .00 .00 .0399481 .00 .00 .00 .0399481
02 gamma .00 .00 .00 .00 .0345670 .00 .00 .0345670
T4 alpha .00 .00 .00 .00 .0321225 .00 .00 .0321225
PZ gamma .00 .00 .00 .00 .0320942 .00 .00 .0320942
VEOG beta .00 .00 .00 .00 .0302448 .00 .00 .0302448
Interblink .00 .00 .00 .00 .0289569 .00 .00 .0289569
T5 beta .00 .00 .00 .00 .01926%94 .00 .00 0192694
T4 delta .00 .00 .00 .00 .00 .00 .00 .00

PZ beta .00 .00 .00 .00 .00 .00 .00 .00

Very high accuracies will be required to assure
acceptance by users, and the peripheral data
may improve the overall accuracies in some situ-
ations. The operator functional state assessment
must be very accurate and reliable in order to
gain the confidence of the operators who will
depend on the classifiers.

The results of the analysis using only the sa-
lient features did show an approximately 4%

benefit over the on-line analysis, as has been
previously reported (Wilson & Russell, 2003).
The overall accuracy scores were essentially the
same as those when all of the data were used off
line to train the ANN. This is interesting because
fewer features were used in this investigation
than in the Wilson and Russell (2003) study, in
which 17 EEG channels with five frequency
bands and three peripheral features provided a
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TABLE 7: Mean Percentage Classification Accuracy
Using Only the Salient Features

Base Low High
Base 90.1 9.0 1.0
Low 1.4 85.2 34
High 3.0 8.4 88.7

Note. Rows are truth, columns are test.

total of 88 features. The EEG electrode positions
used in the present study were based on the
saliency analysis of the earlier work.

ANN classification accuracy improvement
has been achieved, during off-line analysis, with
the addition of performance features to the psy-
chophysiological data (Wilson & Russell, 1999).
However, many modern systems do not provide
adequate performance data to augment psycho-
physiological data because few operator respons-
es are required (Kramer, Trejo, & Humphrey,
1996). The value of performance data to on-line
ANN operator functional state assessment is yet
to be determined. However, the present results
demonstrate that very high levels of correct clas-
sification can be achieved using only the psy-
chophysiological features.

The utilization of operator state information
to govern the application of adaptive aiding is
also interesting. Lowering task demands based
on operator state resulted in large improvements
in performance. The tracking task error was
reduced by 44%, and the resource management
error was reduced by 33%. Reduction of over-
all task demands by temporarily removing the
burden of the monitoring and communication
tasks, based on the physiologically determined
operator state, freed the participants to concen-
trate on the two remaining tasks and greatly
improve their performance.

The effect of removing the two subtasks
without regard to the participant’s state remains
to be determined. Randomly removing these
subtasks could also have improved performance.
However, it is possible that there would have
been no change or even degraded performance
from the random removal of the two subtasks.
Random removal might interfere with the partic-
ipant’s strategy and lead to deteriorated perfor-
mance. This question will have to be determined
by further research.

Acceptance of psychophysiologically deter-
mined operator functional state assessment in
the workplace will be based to a large extent
on the accuracy of the classification and accept-
ability of the data collection methods. This
requires that the operator functional assess-
ment methods must be highly accurate. If the
assessment is not highly accurate and reliable,
then it will not be used. The accuracy may have
to approach 95% to be acceptable (Rouse, 1991).
Even if the psychophysiological assessment does
not meet the 95% criteria, it still may be a use-
ful component of a procedure that incorporates
other aspects of system and operator variables.

Another issue has to do with the day-to-day
reliability of the measures and the effects of
other factors such as illness, drugs, fatigue, and
circadian shifts. Other considerations include
whether or not it is necessary to establish an
ANN or other type of classifier for each opera-
tor or if a generic solution can be found that
would accommodate all operators. By develop-
ing an ANN for each operator, one takes ad-
vantage of the unique physiological response
patterns of each person. This capability may
outweigh advantages for a “one-size-fits-all”
solution, which would have the benefit of rapid
training or fine-tuning of the ANN.

The results of this study show that ANNs
using psychophysiological measures can pro-
duce very high levels of correct classification in
real time. These procedures show promise for
use in applied scttings where real-time opera-
tor functional state assessment is needed. This
includes test and evaluation and adaptive aiding.
Miniaturization of physiological recording equip-
ment and computer hardware will make possible
the development of small wearable assessment
systems. Dry sensors with small telemetry units
will eliminate the need for the operator to wear
all of the recording and computing equipment.
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