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Distributed Machine Intelligence for Automated Survivability

Katherine Drew, Office of Naval Research
David Scheidt, Johns Hopkins University Applied Physics Laboratory

Abstract - Future Naval platforms face new dynamic
operational scenarios that demand more flexible
performance. At the same time, reduced manning and
lower total ownership costs are now major design and
acquisition objectives. Improved warfighting capability
can be achieved by reducing vulnerability to damage and
failure events. Rapid system recovery from unanticipated
damage using current doctrine and practice conflicts with
today’s reduced manning objectives. Decentralized ship
system architectures and agent based technologies
promise to enable the Navy to improve rapid system
recovery and assist in meeting these affordability
challenges. Decentralization of systems and resources
improves both ship survivability and fight through
capability. This is accomplished through rapid sensing
and response as well as dynamic reconfiguration, which
results in improved continuity of service of ship systems.
Embedded intelligence at the component level insures
rapid, effective autonomous reaction and response to local
fault conditions. Agent based technologies are utilized to
provide autonomous cooperation between sensors and
actuators, where elements reason and react locally while
achieving global objectives through agent-to-agent
communications. While intelligent decision-making is
performed locally by autonomous agents, the sailor will
direct these agents through comprehensive supervisory
control, with improved on-demand situational awareness.
When fielded, these systems will provide increased
situational awareness, increased fight through capability,
and improved damage control. This paper describes Navy
Science and Technology projects currently underway in
academia, industry and Navy laboratories to achieve these
goals.

1. INTRODUCTION

Present day Naval warfare scenarios point to the need
for rapid and flexible response to a broad spectrum of
threats. Incidents such as the attacks on the USS Cole,
Stark and Princeton have demonstrated that threats to
Naval platforms can arise quickly, unexpectedly, and
have huge adverse consequences for personnel and
platforms. Survivability of Naval platforms when
operating under unpredictable and lethal circumstances
is obviously a critical concern for the Navy.
Survivability consists of the elements of susceptibility,
vulnerability and recoverability. [1] Recoverability is
defined as crew actions to reconfigure and restore
systems to enable the ship to carry out its missions
under damaged conditions. Recoverability has the

clements of minimizing the time required for
restoration of mobility, seaworthiness, and crucial ship
systems, and the sustainment of warfighting capability
(sometimes referred to as  “fight through”).
Survivability objectives, such as rapid location and
containment of damage, rapid restoration of operational
effectiveness, and maintenance of C’ Operational
Condition without Interruption, all point to the need for
most timely intervention in the case of a damage event
or critical system malfunction. [1] Given Naval
requirements for reduced onboard manning, and the
DoD drive to lower Total Ownership Costs while
maintaining ship performance, development of
technologies to maintain ship readiness and
recoverability under conditions of reduced manning is
critical.

II. BACKGROUND

Early ships were controlled entirely by human
operators. Control mechanisms were manual switches
and valves. System knowledge was obtained via
human inspection of mechanical sensors. System
reconfiguration required humans to turn switches and
valves manually. System operation required continuous
manipulation of system actuators by human operators.
Coordination between components within a system was
performed by human operators. Larger systems
required more than one operator. Coordination between
these large systems was achieved through operator
dialogues. [Figure 1].

SYSTEM 1 SYSTEM 2
Figure 1 - Yesterday’s Shipbeard Coentrol Architecture

The advent of automated closed-loop controllers
reduced the frequency with which human operators
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were required to manipulate individual components and
subsystems ~ consisting of small numbers of
interconnected components. By enabling operators to
consider a multi-component assembly as a single
system, modern controllers enabled today’s Navy to
increase the complexity of ship control systems without
corresponding increases in operator workload. The size
of a system that can be controlled by today’s controllers
is limited. This limitation necessitates continuous direct
human supervision of subsystems consisting of large
numbers of components. Coordination between these
large ship subsystems is still done sailor-to-sailor

[Figure 2].

CVTEGRATION CF SCNTROL

SYSTEM 1 SYSTEM 2

Figure 2 - Today’s Shipboard Control Architecture

The complexity of ship systems is expected to increase
exponentially with the advent of next generation ships.
Continued reliance upon present-day automated
controllers will necessitate a proportional increase in
the workload required to operate ship systems.
Fortunately, due to the growth of processing power
available in microprocessors and advances in control
theory, the sophistication of automated control
continues to evolve. Individual devices now exhibit
Component Level Intelligence (CLI), an example of
which is the Smart Valve, which contains sensors,
computation and communications capabilities. The
Smart Valve can compute physical parameters such as
flow rate and pressure associated with its operation as
part of a shipboard fluid system,, and can share this
information with its peers using a distributed control
network.

The next step in the evolution of ship control will be the
distribution of machine intelligence across multiple
cooperating smart components. Initially, intelligent
components will cooperate at the subsystem level.
Distributed intelligence will enable subsystems to
perform  diagnosis, control and reconfiguration
autonomously [Figure 3]. Example subsystems include
valves, compressors, and power distribution modules.
Above the autonomous system layer will be a system

coordination layer, which will provide subsystem
reconfiguration goals based on relationships between
the machines in the subsystem level. The system
coordination layer is concerned with optimizing the
performance of the components and ensuring the
availability of services. Examples of system functions
at this system coordination level are Propulsion, Power
Generation and Distribution, and Damage Control.

At the top, ship level control is concerned with ship
wide resource allocation. At this level there are operator
interfaces where the human can provide direction to the
ship wide control system.

Figure 3 - Future Control Architecture

Allocation of responsibility between the operator and
the automation systems will be a critical driver in
determining future control system architectures.
Ultimately, humans must be responsible for the
operation of the ship. Even as the more tedious and
dangerous tasks are off-loaded onto increasingly
sophisticated autonomous controllers; the sailor must be
made aware at all times of what the automated systems
are doing. The control system must provide the sailor
with situational awareness which, combined with
operational context provided by the sailor, will enable
shipboard systems to adapt in order to fulfill mission
goals. Continuous feedback establishes a symbiotic

Figure 4 — Effects Based Control,
Removing the Human From the Loop




relationship between the control system and the human
operator. In this architecture, the role of the human will
be to (1) establish mission objectives, (2) establish
priorities for resource allocation, and (3) provide
operational context. Humans will dictate goals to the
system, and the system will determine what actions are
to be taken to meet these goals and execute these
actions. This method of operation is referred to as
“effects based control”, and is the goal of the
architecture outlined here. [Figure 4] The use of agent
based technologies and reasoning is a key enabler of
effects based control.

HL AUTONOMOUS CONTROL

Autonomous (or automatic) control is closed-loop
control that continuously reconfigures a physical
system in response to feedback without requiring
human intervention [2]. The reconfiguration triggered
by the control system is guided by human inspired
goals or objectives. We say human inspired rather than
human-provided, because goals may be obtained either
directly from humans during design, system start-up or
run-time, or inferred from pre-existing goals by the
control system. Regardless, the distinguishing feature of
autonomous control is that it provides control
continuously without halting operations to wait for
human instructions.

Devising a policy for correct, complete control of a
simple system may be accomplished by analyzing all
possible states within the system through a failure
means and effects analysis (FMEA). FMEA-based
control policies consist of a set of predefined actions in
response to system states. However, complete control
policies derived from FMEA are only feasible for
systems with few moving parts. As the size and
complexity of a system increases, the number of
possible system states increases exponentially,
prohibiting the generation of a comprehensive policy in
polynomial time. Systems that are small by Navy
standards are far too complex to exert complete control
through exhaustive rule sets. For example, a household
system of twenty electrical circuit breakers with three
states {on, off and tripped} has 3,486,784,401 possible
states. Next generation auxiliary ship systems, such as
those proposed for DD(X), are orders of magnitude
more complex than household electronics and will
consist of tens of thousands of connected components.
The possible states of the DD(X)’s auxiliary systems
will be on the order of 10°*.

Control engineers manage complexity by predefining
control policies for a small number of predefined
nominal states and all possible single component failure
within each nominal state. In our household electrical

example two nominal states might be on and off. By
considering single component failures only, the states
that must be considered by our control policy are
reduced from over three billion to a manageable
twenty-two. This strategy for constructing a control
policy works well when highly reliable components are
used and component failure is limited to normal wear
and tear. For example, using components with a mean-
time to failure of less than 10° seconds will generate an
unanticipated system state due to wear and tear roughly
once every thirty-thousand years. Engineers account for
these extremely rare unanticipated states by devising a
control policy that moves the system into a universally
safe state, usually shutting the system down.

These standard control practices cannot be relied upon
to control Navy systems. First, the assumption that wear
and tear is the primary cause for failure is false. Battle
damage can be expected to cause multiple simultaneous
failures. Second, fallback to a safe state when
confronted with simultaneous failures is unacceptable.
Continued functional performance in the presence of
damaged components is a necessary requirement for all
ship systems. Since comprehensive control policies for
auxiliary ship systems are infeasible, and ship
operations require that effective control be provided in
the event of multiple simultaneous failures, correct
control can only be achieved by establishing the control
policy at run time. Automated mechanisms for
devising control policies at run time are called
intelligent control.

IV. INTELLIGENT CONTROL

Over the last fifty years a number of intelligent control
techniques have been devised. All of these techniques
involve reasoning, the ability to interpret information,
usually provided by sensors, and generate knowledge
through inference or deduction. Most reasoning
techniques involve searching through possible future
states and selecting those actions that generate the most
advantageous futures as impetus for control. Others
techniques, such as neural networks[3] and Q-
learning[4], compare the effects of historical choices in
order to continually improve a growing, emerging
control policy. By themselves, these learning
approaches are not suitable for auxiliary ship systems
control as they require a tolerance for an occasional
“wrong” answer from which the system learns'.

Search-based approaches vary in both the strategy by
which they search and by the method by which they

! Hybrid systems that incorporate learning approaches to
reasoning as a component of the control system are a
promising avenue of research.




generate future states for consideration. Early reasoning
systems research represented future states as sets of
unstructured facts [S]. Facts could be inferred by
applying existing facts against a set of loosely
organized rules. The successors to these early systems
are Bayesian Belief Networks [6] which provide an
ability to manage uncertainty and add structure to the
application of rules. These rule-based systems have
been shown to be effective at modeling the rules of
thumb that constitutes human “expertise”. However, the
engineering effort required to extract the expertise
represented by the rules used to generate a hypothesis is
an arduous and inexact science. Further, the resultant
rule set is difficult to validate other than through
empirical testing which, due to the complexity of future
Navy systems, is not feasible. Accordingly, these
approaches to generating intelligence and their recent
variants of Case-based Reasoning [7] and Partial Order
Planning [8] are useful as operator assistants but may
be inappropriate for autonomous control.

An attractive method for generating future states is the
use of predictive system models that isomorphically
represent the system being controlled. These methods
of intelligent control typically rely upon qualitative
models [9]. Qualitative models model physical
components as separate logical units. How the model
interacts with connected components is defined
propositionally as a function of the component state.
For example, the propagation of current across a simple
electrical switch might be described by the following
table [Figure 5].

Input O——— Output
State Output
Open iour =0

Closed iour = iN

Shorted iOUT <= i[N
Failed Open | iour =0

Figure 5 — Qualitative Model of a Switch

Models of large complex systems may be devised by
modeling the relationships between component models.
Component models, because they represent simple,
well- understood systems, may be devised analytically
and validated through empirical testing. Model
validation may be assured by confirming that the
structure of the model (component connections)
accurately represents the physical system, thus resulting
in a highly reliable method for system modeling.
Sophistication, in terms of describing the continuous

behavior of a component, may be described through
hybrid models [10].

The search strategy used to select future states for
investigation is a factor that determines the quality of
the control strategy devised. Literally hundreds of
search strategies have been developed over the last fifty
years. However, the taxonomy of search algorithms
may be organized by their approach to addressing three
search related issues: goal or conflict resolution;
breadth or depth first searching and stochastic or non-
stochastic. A good general description of leading search
algorithms may be found in [11].

V. SOFTWARE AGENTS

Intelligent control provides autonomous control the
ability to address large complex systems. However,
reliance upon a single intelligent controller presents a
survivability problem. Damage to the centralized
controller or to the communications infrastructure used
by the central controller to communicate with actuators
and sensors can result in a loss in controllability.
Historically, the survivability risk of ship systems due
to the loss of control was been minimal because
intrinsically mobile human operators performed the task
of high level control. Distributing control can be used to
improve survivability as well as reducing the
complexity of the system being controlled by an
individual controller. Ideally, device controllers will be
co-located with the device they are controlling
decreasing the likelihood that an intact, serviceable
device will be unable to function due to loss of control.
In order to satisfy ship-wide goals distributed
controllers must cooperate. Mintzberg [12] identified
three cooperation mechanisms by which distributed
controllers may coordinate: direct supervision, mutual

Figure 6 —Software Agents

adjustment and standardization. Standardization
requires an a priori policy for decision making which,




as explained earlier, is not feasible for ship control
systems. Distributed ship control systems will use either
direct supervision, mutual adjustment, or both. The
mechanism used to trigger distributed control will be
software agents. Software agents are software processes
that reason about and act upon their environment — in
this case the devices being controlled [Figure 6]. The
software agents used for future autonomous control will
be intrinsically permanent and stationary, deliberatively
diagnosing the state of and creating plans for physical
components within their scope, in response to defined
goals. Extrinsically, these software agents will be
socially independent, requiring no actions on behalf of
other agents yet sharing state information and goals
with other agents in order to provide ship-wide control.

The cooperative mechanism used by agents to
coordinate dictates the organization of the agent system.
Supervisory control forms a basis for centralized or
hierarchical control while mutual adjustment forms a
basis for flat or heterarchical control. The simplest
organization structure is centralized control. In
centralized control, [Figure 7] individual devices are
controlled by low level agents co-located with the
devices they are controlling. Coordination between
low-level devices is performed through direct
supervision by a central software agent.

Sensors and Actuators

Figure 7— Centralized Agent Topology

A variation of the centralized control theme is
hierarchically organized control agents. [Figure 8]
Hierarchical structures have successive tiers of agents
that use direct supervision to control agents at a lower
level and provide coordination between agents at the
lower level. At the highest level, a single software agent
provides coordination across the entire ship.
Hierarchical agents allow designers to limit the scope of
individual agents to manageable size by separation
(dividing a system into multiple parallel components

and by abstraction (reducing the fidelity with which an
agent models the system it controls).

Low Level
Agent,

Sensors and Actuators

Figure 8 — Hierarchical Agent Topology

Software agents using mutual adjustment as a basis of
coordination may be used to form flat, heterarchical
structures. These agents use peer-to-peer relationships
to satisfy ship-wide needs. [Figure 9] Coordination
may be explicit, in which adjustments are mutually
agreed upon by corroborating agents; or implicit, in
which agents react to a common set of knowledge
without explicit knowledge of other agents intentions.
Regardless, heterarchical agents share knowledge of the
underlying system as well as system goals.

The survivability of an autonomous system is heavily
dependent upon the continued operation of its control
system. In turn, the survivability of the control system
is dependent upon the continued operation of the
infrastructure upon which the control system operates.
We can infer that the survivability of the hardware
controllers, the agents that operate on the hardware
controllers and the control network by which they
communicate directly impact the survivability of the
ships auxiliary systems. If the ship is to continue to
function in the presence of battle damage, the control

Sensors and Actuators

Figure 9 — Heterarchical Agent Topology




system must maintain the ability to reconfigure itself
when processors, agents and network components fail.
Centralized and hierarchical control systems, because
they are dependent upon a single top level software
agent for ship-wide coordination, are inherently less

Sensors and Actuators

Figure 10 — Standby Agent

survivable than heterarchical systems. Robustness may
be added to centralized and hierarchical systems by
adding redundant processors hosting “standby” agents,
albeit at the cost of additional infrastructure [Figure
10]. These standby agents operate passively, gathering
data and maintaining an awareness of the system state
but exerting no control over the physical system until
the currently active agent fails. At this time, the standby
agent becomes the active agent asserting control over
the system.

VL. EMERGING APPLICATIONS

Intelligent Control, Distributed Intefligent Control and
Software Agents are active bodies of research in the
control systems and computer science communities. To
date, little work has been done to transition these
emerging techniques into ship control systems. A few
representative examples of the work that has been
performed are described here. Specifically, we describe
the following experimental systems: the Smart Valve,
an example of CLI; Starfish, a self-reconfiguring
control network; the Open Autonomy Kernel, a
framework for employing distributed intelligent agents;
and the Integrated Engineering Plant.

Smart Valve

Smart valves are self-controlling valves that use sensed
or inferred information on the valve (actuator) position,
fluid flow rate, surrounding pressure and fluid
temperature to diagnose the current state of the valve
and proximate components [Figure 11]. By itself the
smart valve is a useful tool for performing fault

isolation, such as closing the valve when a pressure
drop indicates a rupture within the system. Smart valves
incorporate an embedded communications
infrastructure that allows them to interface with a
device or field-level network. Additionally, smart
valves are programmable, allowing them to be adapted
to future distributed intelligent control architectures.
Rapidly maturing, smart valve technology was tested
under live fire conditions [13], [14].

Figure 11 — Smart Valve

Starfish

Component Level Intelligence and Network Fragment
Healing technology for reconfiguration was
demonstrated on the ONR Afloat Lab, the YP-679 (the
STARFISH) [Figure 12]. The YP demonstration
addressed two of the three requirements for survivable
automation: (1) Survivable Information Processing, and
(2) Survivable Network Communications.

Fig 12 — YP-679 STARFISH

The YP Starfish project involved the development and
demonstration of concepts for autonomous healing of
component level shipboard networks utilized for
automation of machinery systems. [15]. Automation
system architecture was applied to the Propulsion
Engines, the Fuel System, the Seawater Cooling




System, the Diesel Portion of the diesel generators, and
the Steering System. The Afloat Lab automation system
includes 183 sensors and actuators that are controlled
and monitored by 85 computing nodes grouped into 8
different special locations throughout the vessel. By
distributing the intefligence of the entire system
towards individual components, each of the computing
nodes is responsible for a relatively small portion of the
overall control and monitoring function. If a processor
fails, only a small part of the system’s functionality is
lost. Loss of a critical node or sensor could result in the
inability to execute a needed control algorithm.
Redundant sensors or actuators can be utilized, or data
fusion using inputs from other independent sensors
could be used, so that a new level of survivability can
be reached.

The YP Starfish project showed that system
reconfiguration using distributed intelligence can be
achieved, with resultant continuity of platform services.
Research issues remain, the most notable being
scalability of technology to a full sized Naval platform.
Other issues are associated with the reconfigurable
electrical system capability to provide the same degree
of power survivability that the YP communications
System Nnow possesses.

Open Autonomy Kernel

A prototype Intelligent Agent system called the Open
Autonomy Kernel (OAK), designed to control auxiliary
systems distributed on U.S. Navy surface combatants,
has been developed and tested [16]. As an architecture
for autonomous distributed control, OAK addresses
control as a three-step process: diagnosis, planning and
execution. OAK is specifically designed to support
"hard" control problems in which the system is
complex, sensor coverage is incomplete, and
distribution of control is desired. A unique combination
of model-based reasoning and autonomous agents are
used. Model-based reasoning is used to perform
diagnosis. Observations and execution are distributed
using autonomous intelligent agents. Planning is
performed with simple script or graph-spanning
planners. OAK has been tested on a hardware
simulation of the chilled water system of an ARLEIGH
BURKE (DDG-51) Class destroyer. The simulator,
known as the Chilled Water Reduced Scale Advanced
Demonstrator (CW-RSAD) [Figure 13], consists of
approximately 45 interdependent subsystems that must
be coordinated by a higher-level control system in order
to achieve a desired operational state. OAK has
demonstrated control of system level responses (i.c.
reconfiguration to meet mission goals) using the model
based reasoning engine and an expert system

implemented on a distributed device level control
system to support normal operations.

Fig. 13 — Chilled Water Test Bed

Integrated Engineering Plant

The Integrated Engineering Plant (IEP) is a
dynamically reconfigurable and scaleable automation
system architecture [Figure 14]. The overall goal is to
progress from centralized control for each major ship
system (propulsion, power generation, power
distribution, damage control, weapons, etc) to an
integrated automation system that provides for all
aspects of ship control under varying conditions. The
objective is to automate the engineering plant while
inheriting all systems within a single reconfigurable
network. This will be accomplished by developing and
integrating three layers:

Figure 14 — Integrated Engineering Plant

1. A Module/Component Layer in which Component
Level Intelligence will reside. Each
module/component will be a node that
communicates with the Shipboard Local Area




Network (LAN). Each node will have local
computational capability. In addition, information
and control for each module/component is resident
in the node as well as in the LAN. Examples of
nodes at this level are the propulsion module,
compressors, converters and power distribution
modules. Diagnostics are performed in this layer,
and HMI functionality may be required.

2. A Process Layer concerned with diagnostics and
with optimization of overall system performance
by ensuring availability of any required system
level function. The controllers at this level will
communicate with system function controllers.
Examples of system functions are propulsion,
power generation, and damage control. HMI
functionality is not required at this level.

3. A Mission Control Layer that is associated with
ship wide resource allocation and planning.
Management of all IEP systems are based on
current ship status regarding mission, operating
scenarios, priorities and available resources. [15]

VII. CONCLUSION

The complexity of ship control systems is increasing
exponentially with each successive generation of ships.
State-of-practice automated controllers will be
incapable of effectively controlling next generation
ships without exponentially increasing the workload of
the individual sailor. Distributed intelligent control
promises to advance automated control and enable
control of complex ship systems with limited manning,
Specifically, distributed intelligent control architectures
will provide benefits with respect to the requirements
for (1) enhanced recoverability and continuity of
service to assure fight through capability through
reconfiguration and resource reallocation on the fly, (2)
reduced workload, resulting in lower manpower costs
and Total Ownership Cost, and (3) reduced
maintenance due to improved diagnostic capability and
capability to predict impending failures.
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