

AFRL-IF-RS-TR-2004-14
Final Technical Report
January 2004

INCREMENTAL NEGOTIATION AND COALITION
FORMATION FOR RESOURCE-BOUNDED
AGENTS

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J130

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-14 has been reviewed and is approved for publication.

APPROVED: /s/
 DANIEL E. DASKIEWICH
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JANUARY 2004

3. REPORT TYPE AND DATES COVERED
FINAL Aug 99 – May 03

4. TITLE AND SUBTITLE

INCREMENTAL NEGOTIATION AND COALITION FORMATION FOR
RESOURCE-BOUNDED AGENTS

6. AUTHOR(S)
Charles L. Ortiz, Regis Vincent, Eric Hsu, Bruno Dutertre, Barbara Grosz,
Timothy Rauenbusch, Sarit Kraus, Osher Yadgar

5. FUNDING NUMBERS
C - F30602-99-C-0169
PE - 62301E
PR - H358
TA - 01
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
333 Ravenswood Ave
Menlo Park CA 94025

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-14

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Daniel E. Daskiewich/IFTB/(315) 330-7731 Daniel.Daskiewich@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report describes SRI’s contributions toward the solution of the problem of real-time distributed resource allocation.
For the most part, the distributed multi-sensor challenge problem utilized by the Defense Advanced Research Projects
Agency’s Autonomous Negotiating Teams (ANTs) program was used to motivate the research. However, the
contributions are not restricted to the sensor domain. We model the resource allocation problem as a multiagent
problem in which each resource is modeled as an agent which can communicate with other agents to exchange
requirements or task information. Agent interactions generally take the form of message exchanges to support auction-
style algorithms in which a mediator requests bids on a task or a collection of tasks and then receives bids from agents.
Each bid encapsulates local information, important to the allocation decision, in the form of utility or cost estimates.

15. NUMBER OF PAGES14. SUBJECT TERMS
Software Agents, Resource Allocation, Autonomous Negotiation

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

116

Abstract

In this report we describe both algorithms and experimental results for what we
refer to as center-based approaches to realtime distributed resource allocation.
Resources are modeled as agents that communicate with each other to exchange
resource requirements and task information; one or more distinguished “center
agents” mediate task assignments and interactions between agents. Agents are
also architected to monitor and contribute to team commitments. Several varia-
tions of center-based allocation are explored: (1) Dynamic Mediation is an ap-
proach which supports negotiations between agents in the context of a changing
problem and resource situation and in which tasks can interact in both positive
and negative ways; (2) Allocation Improvement addresses the problem of combi-
natorial resource allocation; and (3) the Distributed Dispatcher Manager (DDM)
supports the hierarchical organization and management of massive agent-based
systems, on the order of thousands of agents and tasks. We also present a solution
to the problem of communications management in the context of a multisensor
allocation problem.

i

Contents

1 Project overview 1
1.1 The problem . 1
1.2 Major elements of our approach 4
1.3 Outline of report . 5

2 Center-based negotiation 6
2.1 Introduction . 6
2.2 Center-based task assignment . 8
2.3 Negotiation in context . 13

2.3.1 Allocation Improvement 15
2.3.2 Experimental Evaluation 16

2.4 Combinatorial task allocation . 19
2.4.1 Incremental Task Allocation Improvement Algorithm . . . 21
2.4.2 Empirical Evaluation . 23

2.5 Dynamic negotiation . 25
2.5.1 Rich bids . 27
2.5.2 Experimental results and evaluation 32

2.6 System architecture: interleaving negotiation and execution 36
2.6.1 Visualization tools and geometric reasoning 39
2.6.2 Experimental results . 41
2.6.3 Auction results . 41
2.6.4 Mediation experiments 45

2.7 Summary and related work . 50

3 Resource allocation in very large-scale environments 54
3.1 The Distributed Dispatcher Manager 54
3.2 The large scale ANTS challenge problem and the DDM 56
3.3 Descriptions of algorithms . 58

ii

3.3.1 The raw data transformation and capsule generation algo-
rithm . 61

3.3.2 Leader localInfo generation algorithm 66
3.3.3 The movement of a sampler agent 72

3.4 Simulation, experiments and results 74
3.4.1 Simulation environment 74
3.4.2 Evaluation methods . 74
3.4.3 Results . 78
3.4.4 Small Scale Results . 85

3.5 Related work . 89
3.6 Conclusions . 92

4 Multi-channel communications scheduling 93
4.1 Scheduling Access to Radio Channels 94

4.1.1 Model . 94
4.1.2 Special Case: Broadcast 95
4.1.3 Algorithms and Experiments 96

4.2 A Channel Reservation Protocol 97
4.3 Paper on Dynamic Scan Scheduling 99

5 Summary and conclusions 100

iii

Bibliography 103

List of Figures

1.1 Multi-sensor tracking. 3

2.1 Center-based Assignment Algorithm 10
2.2 Overview of CBA algorithms . 11
2.3 Multisensor tracking. 12
2.4 Mediation Algorithm . 14
2.5 Sketch of the Allocation Improvement Update Procedure 16
2.6 Comparison of Mediation algorithms in the 4-agent sensor domain 18
2.7 Comparison of mediation algorithms in the 20-agent sensor domain 19
2.8 Task interaction graph and cost function for Agent 1 20
2.9 Anytime Algorithm for Task Allocation 22
2.10 Improvement of task allocation cost under ITAI. 24
2.11 Dynamic Mediation Algorithm 29
2.12 Update procedure for Dynamic Mediation. 29
2.13 Example Construction of Probability Distribution 31
2.14 Results for static mediation. 34
2.15 Results for dynamic mediation. 35
2.16 Results for many task appearances. 36
2.17 Architecture . 38
2.18 The UMass visualization tool . 38
2.19 The geometry tracker in action. 40
2.20 Identifying bad tracker estimates. 41
2.21 Opportunism . 42
2.22 Auctioning, 16 nodes, .5 feet per second, 240-second run. 42
2.23 Auctioning, 24 nodes, .5 feet per second, 240-second run. 43
2.24 RMS by projection length. 44
2.25 Messages by projection length. 44
2.26 Track quality: 0 second projections. 46
2.27 Track quality: 5 second projections. 46

iv

2.28 Track quality: 10 second projections. 47
2.29 Track quality: 15 second projections. 47
2.30 Track quality by number of nodes. 49
2.31 Auctioning versus mediation: quality. 49
2.32 Auctioning versus mediation: messages. 50

3.1 DDM hierarchy information flow diagram. 59
3.2 Target sampling by one Doppler. 62
3.3 Finding a value of

���
. 64

3.4 The rawDataTransformation function 65
3.5 Capsule generation algorithm. 65
3.6 Obtaining new information algorithm. 68
3.7 mergeFunctions algorithm. 69
3.8 Example of a set of unusedCapsules received by the Finding new paths

algorithm. 70
3.9 An example of an outcome of phase 1 71
3.10 Finding new paths algorithm. 73
3.11 Patrol movement pattern. 74
3.12 Simulating 2 Doppler radars tracking 30 targets. The dots rep-

resent sampled target states. The shades of lines represent 100%
and 50% tracked targets. 75

3.13 Simulating 20 Doppler radars tracking 30 targets. The dots repre-
sent sampled target states and the lines represent tracked targets. . 76

3.14 Tracking percentage by time in zone (Sec.). 78
3.15 Time to track distribution (Sec.). 79
3.16 Tracking duration distribution (Sec.). 80
3.17 Accurate tracked target percentage as a function of the number of

levels. 80
3.18 Accurate tracking time (Sec.) as a function of the number of levels. 81
3.19 Maximum agent process time (Sec.) as a function of the number

of levels. 82
3.20 Bytes transferred as a function of number of levels. 83
3.21 Average number of bytes received by a single agent as a function

of the number of levels. 84
3.22 Accurate tracked target percentage as a function of dysfunctional

samplers. 84
3.23 Accurate tracked target percentage as a function of dysfunctional

first level leaders. 85

v

3.24 Accurate tracked target percentage of patrol as a function of lost
communication messages between samplers and leaders. 86

3.25 Target tracking percentage and average time by the settings. 86
3.26 Target detection percentage and average time as function of the

communication noise. 90
3.27 Tracking percentage and average time as a function of the number

of Dopplers. 90

5.1 Meeting the desiderata: note that this table highlights the major el-
ements (left-hand column) addressed by each approach (top row)
examined in this report. The column “combinatorial allocation”
refers to the algorithm described in Chapter 2. 102

vi

List of Tables

4.1 Experiments on a ��������� Sensor Grid 97

vii

Chapter 1

Project overview

This report describes work performed by SRI International, Harvard University,
and Bar-Ilan University under Contract F30602-99-C-0169 for the DARPA Au-
tonomous Negotiating Teams (ANTS) Program. At Harvard and Bar-Ilan Univer-
sities, part of this work was also funded under NSF grant number IIS9907482.
Sections of Chapter 2 and Chapter 3 have appeared in the volume published
in 2003 by Kluwer Academic Publishing entitled Distributed Sensor Networks
[Lesser et al 2003]. The authors of those chapters herein acknowledge that copy-
righted material; any reproduction of this report should respect that copyright.

1.1 The problem

In this report, we describe our contributions toward the solution of the problem of
realtime distributed resource allocation. We use, for the most part, the distributed
multi-sensor challenge problem proposed by the ANTS program to motivate our
research. However, our contributions are not restricted to the sensor domain. We
also describe the application of our ideas to other domains when we see that as
pedagogically helpful, while at the same time drawing connections to problems in
the sensor domain.

We model the resource allocation problem as a multiagent problem in which
each resource is modeled as an agent which can communicate with other agents to
exchange resource requirements or task information. Agent interactions generally
take the form of message exchanges to support auction-style algorithms in which
a mediator requests bids on a task or a collection of tasks and then receives bids
from agents. Each bid encapsulates local information, important to the allocation

1

decision, in the form of utility or cost estimates.
Our focus has been on problem settings and solutions with the following char-

acteristics:

Distributed: Any resource allocation algorithm should be distributed in the sense
that it should not depend on some centralized repository of global informa-
tion where allocation decisions must be made. Such an assumption would
be overly restrictive given the constraints imposed within real world settings
in which inter-agent communications may be limited.

Incremental and realtime: The time-stressed nature of realworld problem do-
mains precludes the possibility of computing optimal resource allocations
before execution. Instead, agents should negotiate partial, good-enough al-
locations which can later be refined if time permits.

Flexible task allocation: Task allocation mechanisms should be flexible in the
sense that potential allocations can be explored either sequentially, in terms
of possible task-resource pairs, or combinatorially in the form of sets of
multiple tasks and resources. In the latter case, mechanisms should be able
to deal with tasks that can interact: that is, in which the cost of doing several
tasks is not simply the sum of the individual costs of each task.

Adaptive resource allocation: Dynamic problem settings in which new tasks or
resources can appear (or disappear) during the allocation process require
that it not be necessary for allocation processes to be re-started from scratch
each time the global situation changes.

Adaptive communications: Since bandwidth communications are assumed to
vary, allocation algorithms should be able to adapt to limits imposed by
the communications medium.

Fault tolerant: Any solution should be fault tolerant in the sense that it should
be adaptable to resource loss during execution, as opposed to requiring that
the allocation be re-started from scratch.

Scalable: Any solution should be scalable to very large agent and task settings.

Figure 1.1 is an example of realtime resource allocation involving multi-sensor
tracking. The figure shows an array of 9 doppler sensors. Each sensor has three
sectors associated with it, labeled � ���������	� . A sensor can turn on a sector and take

2

1

2

3

T1

n2 n3

n6n5n4

n7 n8 n9

n1

1

2

3

T2

1

2

3

4

4

Figure 1.1: Multi-sensor tracking.

3

both frequency and amplitude measurements in order to determine velocity and
distance. The more sectors that are on, the greater the power usage. The farther
away the target is from the sensor, the lower the quality of the measurement. At
least two sensors are necessary for estimating the location of an object; three
sensors are desirable for obtaining a good quality estimate. Sectors require a 2
second warm up time and two objects which appear in the same sector and at the
same time cannot be discriminated.

We conducted experiments on both a physical sensor suite and a simulation,
called RadSim, based on the sensor suite. RadSim is a simulation environment
developed by the Air Force Research Laboratory to support what will be referred
to as the ANTS distributed resource allocation challenge problem. RadSim pro-
vides a simulated environment containing moving targets that are to be tracked
(i.e. their positions determined over time) using simulated sensor nodes. Each
sensor node is modeled as a 3-head Doppler radar unit and an 8-channel commu-
nications transceiver. The sensors are controlled by external agents that allows
them to set sensor parameters, take measurements, and communicate with other
agents (For details, see Chapter 2 of [Lesser et al 2003]). Due to the partial state
of the ANTS program tracking software at the time of completion of this project,
this report focuses on results from the simulation.

1.2 Major elements of our approach

Our approach to the multi-sensor tracking problem involves three stages: (1) ini-
tial coalition formation; (2) formation of a future coalition based on a projected
object path; and (3) refinement of an existing coalition. We use the term coalition
to refer to a group of agents who are joining together to perform some task; the
members of a coalition can change as circumstances change. The initial coalition
formation is a very quick process which assigns a group of three agents to a tar-
get. The initial coalition’s task is to determine the position, direction and velocity
of the target. In the second stage, one of the agents in the initial coalition takes
that information and projects the path of the target into the future and then runs
an auction or, as we will refer to its variants, a center-based algorithm on some
set of agents that neighbor the projected path. The projected path is represented
by a cone of uncertainty: the farther into the future, the greater the uncertainty in
the projected position. In the final stage, a coalition can be adapted to changes
that might occur in the path of a target: when a particular coalition, � , notices the
change, it informs the remaining agents in the original coalition of that change so

4

that they can drop their commitments; � then runs a new auction to allocate new
resources to the new path.

Given a projected track, � (l1,t1),(l2,t2),(l3,t3), (l4,t4) � , (for example, corre-
sponding to the points 1, 2, 3, and 4 in track T1 shown in the figure) of location-
time points, we have studied four allocation schemes: (1) a standard auction in
which each point is auctioned to some subset of nodes; (2) a combinatorial alloca-
tion scheme in which sets of location-time points are considered simultaneously;
(3) mediation, in which a mediator suggests allocations to some subset of nodes at
each round of negotiation; and (4) a variation in which a mediator allocates agents
to tasks through a hierarchical team organization.

1.3 Outline of report

The remainder of this document is organized in the following way. In Chap-
ter 2 we explore variations of center-based algorithms for resource allocation; in
particular, we focus on a variant which we call Dynamic Mediation that directly
addresses the dynamic and realtime aspects of distributed resource allocation. In
that chapter, we also present a combinatorial allocation algorithm as well as an
agent architecture that supports monitoring of team commitments. In Chapter 3
we present a system called the Distributed Dispatcher Manager (DDM) for man-
aging massive agent-based systems, on the order of thousands of agents and tasks.
DDM is the first system able to manage such large collections; it does so by orga-
nizing agents hierarchically into teams. In Chapter 4 we present a solution to the
problem of communications management in the context of the ANTS challenge
problem. Finally, Chapter 5 summarizes our contributions.

5

Chapter 2

Center-based negotiation

2.1 Introduction

This chapter introduces a class of negotiation protocols appropriate for problem
domains in which tasks can interact arbitrarily and in which agents must nego-
tiate over the assignment of resources to tasks in dynamically changing settings.
We use the term negotiation to simply refer to any distributed process through
which agents can agree on an efficient apportionment of tasks among themselves.
Our work has compelled us to reject various assumptions commonly made in the
negotiation literature: these include assumptions that (1) the context in which a
negotiation or bid is made is irrelevant to the negotiation and, consequently, that
task costs or utilities can be assumed to be additive: we allow instead for the
possibility of positive and negative task interactions; (2) the environment remains
static during a negotiation: we allow for the possibility that important changes can
occur during a negotiation that can affect the results of that negotiation; and (3) all
changes in the environment can be anticipated during negotiation: in any realistic
domain, the world may change in unexpected ways at execution time, requiring
that a solution be adapted to those changes. We restrict ourselves to problems in-
volving resource-bounded agents comprising cooperative teams. The requirement
for resource-boundedness means that negotiation protocols must be temporally
constrained in some way and that an optimal allocation will not always be possi-
ble. The restriction to cooperative teams corresponds to a restriction to agents that
can be assumed to be honest and non-competitive.

The focus on non-additive domains is an admission that tasks can interact in
interesting and significant ways and that such interactions should be kept in mind

6

during a negotiation. Therefore a decision to allocate a task to a particular agent
cannot necessarily be made independently of a task allocation to another (or even
the same) agent. For example, in the sensor challenge problem, if a deactivated
emitter is activated, the beam is unstable and will not give reliable measurements
for 2 seconds; therefore, if one task is immediately followed by another in the
same sector, the beam will not require the 2 second warmup; this corresponds to a
positive task interaction. As another example, consider that only one of the three
detectors on a sensor can be scanned at a given time and each scan takes between
0.6-1.8 seconds; therefore, two sequential tasks that are less than 0.6 seconds apart
and occur in separate sectors, will interact negatively. Consider another domain,
such as a delivery domain. When negotiating whether two tasks can be taken
on by the same agent (for example, a delivery to two different locations) agents
must consider whether those tasks interact in such a way that the joint cost of
performing both tasks might be greater or less than performing each separately
(for example, in the former case, if the delivery points are in opposite directions
entailing separate trips).

The rejection of the assumption that the world remains static during a negotia-
tion requires that one develop negotiation protocols that allow a negotiation to be
adapted to such changes, rather than requiring that the negotiation be re-started.
The rejection of the assumption that the world also remain static during execu-
tion requires that agents negotiating be architected to monitor the management
of deployed resources and flexibly respond to unexpected changes in a way that
respects team-centered concerns: that is, an agent’s commitments should not be
limited to those resulting just from the negotiation but should extend dynamically
to the team.

We shall, for the most part, use the distributed sensor domain to motivate our
design decisions; this has also served as an experimental testbed for validation.
However, our contributions toward the solution of these problems is not restricted
to the sensor domain. Consequently, we will describe the application of our ideas
to related domains when we see that as pedagogically helpful, while at the same
time drawing connections to problems in the sensor domain.

Our focus in this chapter is on one important class of negotiation algorithms
which we will refer to as center-based algorithms. Examples include sequential
auctions, combinatorial auctions, and contract nets. When the objects over which
agents negotiate correspond to tasks rather than physical objects (as in auctions),
contract nets are equivalent to auctions. Hence, we shall view them interchange-
ably. At the heart of such mechanisms is a center agent (for example, an auction-
eer or contractor) that collects bids on proposed allocations. Each bid is meant to

7

compactly encapsulate important local information (such as utility information)
that can subsequently be made use of by the center in its decision on the best allo-
cation. A center-based approach is very different from approaches in which some
central coordinator has access to up-to-date information regarding the local states
of agents and then uses that knowledge to compute optimal allocations. Further-
more, the amount of information contained in agents’ local states may be large,
thus rendering centralization infeasible, particularly in cases of communication
delays and system faults.

Combinatorial auctions have been suggested as a promising method for ex-
ploring allocation of items that interact: agents have the freedom to choose par-
ticular bundles of items. However, as we shall see, they leave unanswered the
question of how best to choose the bundles on which to bid and also assume that
an agent’s value does not interact or depend on the bids of other agents. Within
the broad notion of a center-based negotiation mechanism, many variations are
possible; those variations are not restricted to auctions. In fact, we will present
one variation, which we call mediation, that usefully allows considerations about
the context in which a bid is made.

2.2 Center-based task assignment

We define a center-based task assignment problem in the following way. We de-
scribe a system in terms of a set of possible “runs” or system executions, in the
form of state transitions for each agent, including a distinguished run representing
the actual execution. Formally, we have:

Definition 2.2.1 Let � stand for the set of real numbers. A task allocation system,�
, is represented as a five-tuple,

� ��� � ��� ��� ��	�
 , where,
1. � � �
��� ������� �����	� is a set of � agents with some agent designated as the the
mediator,
2. � � ����� ������� ����� � is a set of � tasks,
3. ��� � � �
� � �"! �$# � is a value function that returns the value which an
agent associates with a particular subset of tasks,
4. An assignment, 	 , or partition, of size � on the set of tasks � such that 	 ��&% � � %(' ���)�*� � % �+
 , where

%-,
contains the set of items assigned to agent � , .

We refer to each element of 	 as a proposal. We will sometimes represent a
proposal as an ordered � -tuple of agents, the . -th element of which corresponds to
the agent assigned to perform task . . The special proposal / will represent the null

8

proposal, which corresponds to the situation in which no assignment of tasks is
possible. For example,

%�� � � � � ��� � ����� ��� ��
 corresponds to the allocation in which
��� is assigned to agent � � , � ' to agent � � , ��� to agent ��� , and so on. The level of
detail encoded by each proposal is domain dependent. The algorithms described
in this paper assume that each proposal encodes sufficient detail to enable each
agent to evaluate its cost function.

The value function can represent, for example, the utility or cost attached to
a task, or perhaps some multi-objective utility function. In the experiments de-
scribed in this chapter, we associate either cost or utility to the value function,
depending on the particular focus of the experiment. Where the value function
ranges over a set of tasks consisting of only one element, we use the same nota-
tion and refer only to the single element; we assume throughout that this secondary
use is clear from the context. There is some globally defined objective function,�

, that determines the desirability of an assignment based on the value that each
agent ascribes to the items to which it is assigned.

We assume the group objective is social welfare maximization and thus the
objective function is given by:���
	 � ��� ��
����� � � � � 	 �
where

	�� 	 .1

The negotiation problem is that of choosing an element
	��

of 	 that maximizes
the objective function: 	 � ��������� �"!# �%$ ���
	 � �&� �
The proposal chosen is called the outcome of the negotiation.

The amount of time available may or may not be known to the agents in ad-
vance. For instance, agents may need to end their negotiation and begin acting
in a given number of milliseconds, or they may need to begin acting when some
event occurs at an unspecified time in the future.

Both Mediation and combinatorial auctions are examples of algorithms that
can be used to solve the assignment problem. They are both members of a class
of algorithms we will call center-based assignment (CBA) algorithms. In a CBA

1A common alternative objective is Pareto efficiency where the objective function can be de-
fined as: ')(+*-,/.�0214345

if 687:9<; such that =?>@9 .A,CB)(> , 7 0ED BF(> ,G*?0H
otherwise

9

let ��� /
loop

construct an announcement � � � �
send � � � � to each agent
incorporate � � � � into �
receive “bid” � , � � ��� � from each agent
incorporate � , � � ��� � into �
compute

% � � �
UNTIL terminate(H) or receive terminate signal

send final assignment
% � � � to agents

Figure 2.1: Center-based Assignment Algorithm

algorithm, one agent � is designated as the center. This agent may be a member of
� ; it implements the algorithm provided in Figure 2.1. First, it initializes a history
variable that keeps track of agents’ responses. It then loops though a series of
cycles; each cycle involves constructing an announcement, communicating that
announcement, and receiving a bid from the agents.

Definition. [Announcement] An announcement is a pair
�&% ���
 where

%
is

an assignment of the tasks in �	� where �
����� and � � � ��
 �
�
� is the set of tasks
not contained in that assignment.

The announcement contains both an assignment of items and a set of items.
Based on this announcement message, each agent generates a message, which we
call a bid that is specified as follows.

Definition. [Bid] After agent � , receives an announcement message � � � � ��&% ���
 , a bid � � ��� � ��� ' ���)�*� ����� � is a set of pairs where ��� � � ��� ���
 . The first
element of each pair is a set of items �	� � % , ! ��� � where ��� ����� and the second
element is the agent’s value for that set of items � � � � � , ��� � � .

At each iteration of the CBA algorithm’s loop, the center uses the bid history
to determine the next announcement. The loop may terminate as a results of a
decision made by the center based on the history or because of an external termi-
nate signal. When the loop terminates, the center sends an announcement of the
chosen assignment to the agents.

Mediation and combinatorial auctions differ in the algorithm that the center
uses to determine the number of iterations allowed, the announcement made at
each iteration, and the bids that agents may make. The differences are summarized
in Figure 2.2. In a combinatorial auction, the auctioneer’s announcement contains

10

CBA Announcement Bids Iterations
Combinatorial Auction � � � / � ����� � � usually one
Mediation �
� � � � ��� � � many
Hybrid � ��� � � ����� ��� �	� ��
 � some

Figure 2.2: Overview of CBA algorithms

no assignments, thus
% � / and � � � . Agents may bid on zero or more

subsets of tasks in � . In a one-shot combinatorial auction, only one iteration
of the algorithm takes place before winners are announced. In Mediation, the
mediator announces one possible assignment

%
. The agents bid on the value of

only that one assignment, and the procedure repeats. When time runs out, the
mediator announces the best assignment found so far.

Combinatorial auctions give more flexibility to agents as they bid. For exam-
ple, agents may bid on a certain number of subsets of items that they value the
most, or they may bid on each subset of items. There is an exponentially large
space (size � �) of subsets on which an agent may base its bid. After the auction-
eer receives bids, it runs a winner determination [[Sandholm 1999a]] algorithm
to find the best assignment based on the bids it has received. In Mediation, the
flexibility lies with the mediator and not the agents. The Mediator determines the
order in which assignments are announced. Agents have a simple rule for bid-
ding: report the value for the assignment encoded in the announcement that has
just been received.

In mediation the flexibility lies with the center; compared to one-shot com-
binatorial auctions, we claim that Mediation is better suited to real time envi-
ronments in which there is a limited amount of time to find an assignment. In
combinatorial auctions, agents can inform the center which subsets of items are
most valuable, thus eliminating time wasted on announcements that are likely to
be fruitless. CBA allows for a hybrid approach (see Figure 2.2), in which some
items may be assigned while others are open for agents to bid on as in a combina-
torial auction. This may allow for agents to achieve the benefits of both methods
where the center can fix assignments to a subset of items, and allow agents the
flexibility to bid on the rest of the items.

Definition 2.2.2 (Assumptions) In this chapter we assume (unless otherwise stated)
that:
1. No inter-agent interactions: that is, we restrict task interactions to those oc-
curring between a single agent’s tasks.

11

1

2

3

T1

n2 n3

n6n5n4

n7 n8 n9

n1

1

2

3

T2

1

2

3

4

4

Figure 2.3: Multisensor tracking.

2. Synchronous and guaranteed communication.
3. No faults to the mediator. We relax this assumption later.
4. Only pairwise task interactions.
5. Task type information is common knowledge to all agents.
6. Agents have complete and correct information to make both planning decisions
and compute costs.
7. The cost functions allow for inter-personal comparisons and can be summed to
determine social welfare.

The distributed sensor challenge problem revisited Figure 2.3 depicts an ar-
ray of nine doppler sensors. Each sensor has three sectors associated with it,
labeled � ���������	� . A sensor can turn on a sector and take both frequency and am-
plitude measurements to determine velocity and distance. A sensor can only have
one sector on at a time, however. The farther away the target is from the sensor,
the lower the quality of the measurement. At least two sensors are necessary for
estimating the location of an object; three or more sensors are desirable for ob-
taining a good-quality estimate. Tasks can interact: for example, sectors require a
2 second warm-up time; therefore, an agent can benefit from tracking two targets
in sequence because of the saved warm up time. Finally, two objects appearing in
the same sector and at the same time cannot be discriminated.

Tasks can appear dynamically; the figure shows projected paths — based on
initial localization, direction and velocity measurements — for two targets, � �
and � � . The problem is to allocate, in a distributed manner, a set of sensors along
the paths of both targets. Each path is discretized into a set of space-time points
along the path (indicated in the figure by small dark circles).

12

In the case of the challenge problem, the varieties of center-based algorithms
that we have discussed each have particular advantages and disadvantages. Se-
quential auctions are attractive because they specify simple bidding rules for agents.
Agents (sensors) bid on their expected contribution to a tracking task, which
amounts to communicating the agent’s current distance and angle from the task.
This suggests that auctions can be used as an allocation mechanism for sensors or
resources that need not remain stationary. However, one disadvantage of sequen-
tial auctions is that they provide no context — in the form of a list of other tasks
to which an agent will be assigned in later auctions — on which to base a bid. The
context can reflect important interactions that can take place between tasks. With
sequential or parallel auctions, agents are compelled to make assumptions about
the outcomes of other, related auctions when bidding – assumptions that may turn
out to be incorrect. For example, if two tasks that are in sequence are assigned to
the same sensor, and if the sensor has that information, it knows it can take advan-
tage of the fact that the sensor’s sector need not be warmed up in preparation for
the second task and bid accordingly.

Combinatorial auctions have the advantage of allowing an agent to pick certain
bundles of tasks which might interact in a favorable way, as in the example of
the previous paragraph. However, as already mentioned, they introduce a bid
generation problem. In addition, neither can handle task interactions that might
arise at the group level. For example, if two agents, � � and � ' are bidding on ��� and
� ' , respectively, as part of a group task, � , then � � might bid on ��� differently if it
knew that � ' was planning to bid on � ' . Consider a cooking scenario in which one
person is tasked with preparing a particular dish, part of which is to be prepared by
another agent. Knowledge of that other agent’s individual abilities (for example,
that the agent is particularly good at making a good dressing) can influence the
agent’s bid.

There are other issues that arise which will be discussed in this chapter having
to do with task re-allocation and providing information to a center that is more
informative than simply a single value.

2.3 Negotiation in context

The Mediation algorithm is given in Figure 2.4. Its inputs are 	 � , and an up-
date procedure, an example of which is called Allocation Improvement Mediation
(AIM) and is presented in Section 2.3.1. The Mediation algorithm supports mak-
ing group decisions in general settings. In this chapter we explore the properties

13

function ���������
	��
��� returns an outcome
inputs: 	 � � � UpdateProcedure

let �
� / , � val �����������
� /��

loop
�	� next value generated by UpdateProcedure
broadcast � to �
for each ��� in �

receive ����� � from ���
� val �����������

�
����� � � ����� ' ���)�*� � ����� � �

if (� val ! � val) then
�	� � , � val � � val

until (stop signal)
return �

Figure 2.4: Mediation Algorithm

of Mediation as it applies to the more specific problem of task assignment.
In Mediation, an agent is selected to act as mediator and implements a hill-

climbing search in the proposal space, while communicating with the distributed
group of agents through a communication channel. Use of the channels is costly
in terms of time and perhaps other resources, but it is assumed to be lossless.

The Mediation algorithm proceeds as follows. The mediator initializes a vari-
able � (which represents the best proposal found so far) with / , along with an
initial value denoted ���������

� /�� . Then, it calls an update procedure to generate
another proposal � (called the current proposal). That proposal is broadcast to the
group. Each agent then responds with a message that is based on the proposal
that was broadcast; ����� � denotes the message sent by agent . . The messages are
combined to form a value, denoted ���������

�
����� � � ����� ' ���)�*� � ����� � � 2. If that value

is preferred to the value for the current � (based on the preference relation !), � is
updated with the current proposal � .

The algorithm is anytime: it can be halted at any time and will return the
best proposal found so far. The proposal stored in variable � is returned as the
outcome when the procedure is terminated. Therefore, Mediation is applicable
even if agents do not know in advance how much time they will have to negotiate.

2 " #�$&%�' may return a real number (i.e., when objective is social welfare) or a vector (i.e., when
objective is Pareto efficiency).

14

With a choice of agent messages and ��������� function that satisfies the proper-
ties in Theorem 2.1, Mediation implements a hill-climbing search in the space of
proposals, with objective function

�
.

Theorem 2.1 Let ����� # denote the messages returned by agents in � after the
mediator broadcasts proposal

	
. Assume ���������

� ����� # � ! ���������
� ������� � if

and only if
��� 	 �	� ��
 ���
� �	� � , and ����� ���

� ����� # � ! ����� ���
� /�� if and only if���
	 �	� ��
 ��� / �	� � . Then after each iteration of the loop in the Mediation Algo-

rithm, � contains the best proposal (according to the objective function) generated
so far by the update procedure that is at least as good as / .

Proof. Assume that the update procedure generates a proposal � � such that��� � � �	� ��
 ��� � ��� � (i.e., it is the best proposal generated so far). Therefore,
����� ���

� ��������� � ! ���������
� ������� � by assumption, and � is updated with � � . ��� � �	� �

will never be lower than
��� / �	� � because for all ��� generated such that

��� / ��� ��
��� ��� �	� � , it is the case that � � ��������� � ����������� ! ���������
� /���� , by assumption, and

no update occurs.
The example described in Section 2.3.2 implements agent messages and ���������

function that is consistent with the assumptions of Theorem 2.1. It follows from
the theorem that if 	 is finite and the update procedure eventually returns every
proposal in 	 , given a sufficient number of iterations of the Mediation algorithm,
the final value for � will be a proposal that maximizes the objective function

�
.

Mediation does not impose a particular search order on the problem but rather
supports update rules that can be designed to search the space of proposals in a
variety of ways. A simple, uninformed update procedure returns a proposal ran-
domly selected with replacement from the set of all proposals. The mediation
algorithm with such an update procedure is called Random Mediation. The next
section provides an example of another update rule that can be used with Media-
tion.

2.3.1 Allocation Improvement

Allocation Improvement defines an update procedure for Mediation that supports
task allocation domains. The procedure is sketched in Figure 2.5. The first pro-
posal

	
is chosen randomly from 	 ; it provides a context, from which subsequent

proposals are generated. For example, it might return
� ��� ' � � ��� � ����� �$
 which corre-

sponds to the proposal where agent 0 is assigned to task 2, and agent 1 is assigned
to tasks 0 and 1. The advantage of this context is that it is common to all agents
and it ensures that each task is assigned to an agent.

15

Let
	 � a random element of 	�� � / � ; return

	
for . � � ����� � � �

for � � every set of tasks of size i
for � � every possible assignment of agents in � to tasks in �� � substitute � in

	
; return

�
if
�

val !
	

val in Mediation, then
	 � �

.

Figure 2.5: Sketch of the Allocation Improvement Update Procedure

In subsequent iterations, the procedure returns proposals that result from mak-
ing substitutions in

	
for . -tuples of tasks where . goes from 1 to � � � . Substitutions

for each . -tuple of tasks is made sequentially with each permutation of agents in
lexicographic order, while maintaining the allocations for the other tasks.

	
is

always maintained to correspond with the best proposal seen so far (� from the
mediation algorithm).

In the example, the next proposal chosen will involve substituting agent 0 as
the agent to perform task 0 (e.g.,

� ��� � ��� ' � � ����� �$
 will be returned). Then, agent 1
will be substituted as the agent to perform task 0, and so on. This procedure is then
repeated for each pair of tasks in lexicographic order (i.e.,

� � � ����� � � � � � ��� ' ��� � ��� ��� ' �).
Finally, every possible substitution (i.e., every element in 	�� � / �) is sequentially
returned.

Overhead The Allocation Improvement procedure runs in constant space, is
guaranteed to eventually return every element of 	 (in the last stage), but involves
an overhead cost in running time because it may return one proposal more than
once. In a task allocation problem, the size of 	 is � � � � � � . The Allocation Im-
provement procedure returns a total of

�
� � � � �+� � � � proposals. For example, with

20 agents and 10 tasks, the Allocation Improvement algorithm has an overhead of
62.9% because it returns 62.9% more proposals than there are elements of 	 be-
fore it terminates. By increasing memory bounds, the overhead can be eliminated
because each proposal can be checked for redundancy before it is returned.

2.3.2 Experimental Evaluation

We performed a preliminary evaluation of mediation in a simplified version of the
Challenge Problem in which we map groups of three sensors into a single entity, so
that a proposal is of the standard form discussed earlier. An equivalent alternative
is to allow for more complex proposals. For example,

� �
� � ����� ����� � � �
� ' ��� � � �������

16

in which sets of agents are allocated to a single task. Agents represent � such
hidden sensors of varying quality that are randomly distributed within a 100-meter
by 100-meter square. An object appears at a point at the top edge of the square
and makes a 10-second trip at constant velocity through the square, exiting at the
bottom edge. One sensor is required to track the object every two seconds during
its journey.

Each agent’s value function is derived from encoding the knowledge that ben-
efits to the group are higher when each measurement is taken from as close as
possible to the object with the highest quality sensor. The agents also incur costs
when taking the measurement because there is assumed to be a 2-second warm-up
time, but once warmed up, the sensor can take a measurement every two seconds.
The cost function exhibits task interaction as a result of this warm up time: costs
will be lower if the same sensor takes consecutive measurements. Benefits and
costs are quantified by a local utility function known to each agent. Agents do not
know the utility or even the location of other agents.

The experiments were designed to test the hypothesis that the Allocation Im-
provement procedure is an effective strategy for task allocation in the tracking
domain. AIM is expected to perform well in the early stages of Mediation in this
domain because it searches for gains that come from assigning the best agent to
each task (which requires a relatively small number of iterations) before it tries to
find improvements based on assignments for pairs of tasks, triples of tasks, and so
on.

The Mediation algorithm was implemented with agent message and value
functions that adhere to the assumptions presented in Proposition 2.1. In ����� � ,
agent � � reports the value associated with its quality and expected distance from
the object, less the warm-up costs, for the set of tasks to which it has been allo-
cated in the latest proposal. ���������

� ����� # � is chosen to be the sum of the values
reported in each agent’s message.

AIM was compared to other instances of the Mediation algorithm using two
different types of update rules. Full Search simply returns successive elements of
	 as they would be explored in a depth-first search. Random Mediation returns a
random element of 	 at each iteration. In Section 2.5 we discuss ways to make
Mediation’s search smarter.

Results: Each negotiation method was run on 100 problem instances. The first
experiment was run with a group of 4 agents, which implies � 	�� � ��� ��� (includ-
ing /). Figure 2.6 shows the social welfare of proposal � after each iteration of the

17

60

80

100

120

140

160

180

200

220

240

0 200 400 600 800 1000

so
ci

al
 w

el
fa

re

iteration

Full Search
Random Mediation

Allocation Improvement Mediation

Figure 2.6: Comparison of Mediation algorithms in the 4-agent sensor domain

Mediation Algorithm, using the three different update rules, along with 95% con-
fidence intervals. The maximum average social welfare attainable differed slightly
for the three algorithms since each method was run on 100 different sets of prob-
lem data. The results strengthen the hypothesis that Allocation Improvement is an
effective strategy in this domain, especially when agents may search through only
a small number of proposals before they require an outcome and must act.

After just 30 iterations, the average social welfare of the group is 219.3 using
AIM versus 181.0 using Random Mediation. The highest average social wel-
fare attainable by exhaustive search is approximately 228. AIM allows agents to
quickly capture the gains in increased social welfare that results from assigning
each task to the closest agent by delaying the search for gains based on task inter-
action. As expected, after a large number of iterations, any update procedure will
have exhausted the search space, and all procedures will have found outcomes of
similarly high quality.

The results shown in Figure 2.7 is for groups of 20 agents. With 20 agents, 	 is
of size 3.2 million, and a full search of the space is prohibitively costly for agents
that must act quickly. The graph shows the average social welfare after the first
1000 iterations of each Mediation algorithm across the 100 problem instances.
The focus is on the first 1000 problem instances because the negotiation must
be short due to the real time nature of the problem. Random Mediation and full
search perform fairly well in the very early stages of the algorithm. However, after
about 65 iterations or 0.002% of the search space, AIM performs significantly
better than either of the other two methods (

	��
��� � �). The superior performance

of AIM is more pronounced in the figure that that shows the results of this larger

18

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

so
ci

al
 w

el
fa

re

iteration

Full Search
Random Mediation

Allocation Improvement Mediation

Figure 2.7: Comparison of mediation algorithms in the 20-agent sensor domain

problem because only a very small percentage of the search space is shown. The
gains of AIM come very early in the negotiation, as expected.

The Random and Full Search update rules outperform Allocation Improve-
ment at the very early stages of the search. This effect may be due to the sequen-
tial update procedure of Allocation Improvement (i.e., all agents are considered
for a given task before the allocations to the other tasks are searched).

2.4 Combinatorial task allocation

To study the impact of general task interaction on the task allocation problem
we consider a set of synthetic multi-agent domains. The simplification of the
challenge problem presents a specific type of task interaction, namely subadditive
cost functions that result from savings in warm-up time. A particular domain is
associated with a certain interaction probability, denoted by ��� . This probability
quantifies the extent to which the tasks interact in an agent’s cost function.

A domain in which ��� =0 describes a situation in which there is no task inter-
action. A domain in which ��� =1 describes a scenario where tasks have arbitrary
interaction.

The following algorithm is used to determine each agent’s cost function. First,
construct an undirected graph with � vertices; each vertex corresponds to a task.
Second, assign a set of edges to the graph. Each pair of vertices is connected by
an edge with probability ��� . A set of tasks interacts if and only if the subgraph
containing only the vertices that correspond to the tasks is connected.

19

B � � � �
� � 0
��� � � 0.2
��� ' � 0.5
��� ��� ' � 0.7
��� � � 0.9
��� ��� � � 1.1
��� ' � � � 1.2
��� ��� ' � � � 1.4

Figure 2.8: Task interaction graph and cost function for Agent 1

For the purposes of experimentation, the cost to an agent of performing a set
of interacting tasks ��� is assigned randomly, according to a uniform distribution
on real values from 0 to � ��� � . The cost of performing a set of tasks in which some
of the tasks do not interact is the sum of the cost of performing each interacting
set of tasks.

Figure 2.8 provides an example task interaction graph and cost function, where
� ' and � � interact. As a result, execution of both tasks has a different cost than
the sum of costs of the individual tasks (i.e., �+� ���� ��� � � �����). In this case, � ' and
� � exhibit a positive interaction because the cost of performing both is lower than
the sum of the costs of performing each task alone.

When a given task is being awarded under sequential or parallel auctions, out-
comes of other task auctions may be unknown. When tasks interact, this can result
in task allocations that are inefficient. That is, there may be another task allocation
that has lower cost.

Ideally,a combinatorial auction would solve this inefficiency by allowing all
task assignments to be made as a package. Combinatorial auctions for task allo-
cation pose two new problems for a group of agents to consider. First, an agent
must decide which bundles to bid on, called the bid generation problem. Second,
based on those bids, the auctioneer must determine which set of task allocations
corresponds to the minimum total cost for the group of agents.

The second problem has been studied extensively in the AI literature [Sandholm 1999a,
inter alia]. Although winner determination is NP-complete, Sandholm and Suri
[Sandholm and Suri 2000] have developed an anytime search algorithm that uses
the set of bids to focus the search on fruitful areas of the search space and can
provide approximate solutions. They also point out that typical combinatorial
auctions do not allow agents to express bids for tasks with negative interaction

20

(subadditive preferences). The winner determination algorithm is significantly
complicated by the inclusion of methods for allowing such bids.

Bid Generation: The problem of bid generation has not received much atten-
tion, and is not trivial. We define a relevant bid as one that cannot be inferred as
an additive combination of an agent’s other bids. For example, if an agent bids a
cost of 0.3 units for ���-� � and 0.4 units for ��� ' � , an addition would imply a bid
of 0.7 units for tasks ���-� � � ' � . A bid of say, 0.5 units for tasks ��� � � � ' � would be
a relevant bid. To achieve a minimum cost allocation, is important to generate all
relevant bids (Theorem 2.2). However, it may be infeasible for an agent to gen-
erate all of its relevant bids (Theorem 2.3). Thus, implementing a combinatorial
auction for task allocation that presupposes bid generation may be infeasible.

Theorem 2.2 If all relevant bids are not generated, then the optimal task allo-
cation solution computed by combinatorial auction winner determination may be
suboptimal.

Proof. (by counterexample). Assume a 2-agent group action that decomposes
into two tasks and the cost functions are given by: ��� � ��� � ��� � ��� � , ��� � ��� ' ��� �
� � � , ��� � ��� � � � ' ��� � ��� � and ��� � ��� � ��� � � � � , ��� � ��� ' ��� � ��� � , � � � ��� � ��� ' ��� � � � � .
Assume the relevant bid by Agent 1 of 0.6 units for ��� � � � ' � is not generated. The
outcome of a combinatorial auction would be the allocation of � � to Agent 1 and
� ' to Agent 2 for a total cost of 1.0. However, the optimal allocation would be to
assign both tasks to Agent 1, for a total cost of 0.6.

Theorem 2.3 If ��� =1, the number of relevant bids for each agent is � � � � .
Proof. The cost of a task set that is not fully connected can be determined

by the sum of its connected parts. Therefore, a bid is relevant if and only if its
tasks are fully connected. The task interaction graph is fully connected (���

�
�).

Therefore, the number of fully connected sets is � � � � � , which has size � � , less
the bid on the empty set which is defined as 0.

2.4.1 Incremental Task Allocation Improvement Algorithm

In this section, we present an anytime algorithm, called Incremental Task Allo-
cation Improvement (ITAI), that does not require a bid generation phase as input.
Agents incrementally reveal their costs for bundles of tasks.

21

1. Generate an initial allocation (e.g., by sequential auction)

2. Initialize ��� , an unconnected graph with � vertices, each corresponding
to a task

3. Iteratively improve the allocation as follows:

� Add an edge that connects two unconnected subgraphs
� Optimally allocate the tasks that correspond to the edges in the newly

connected subgraph

Figure 2.9: Anytime Algorithm for Task Allocation

The algorithm is summarized in Figure 2.9. One way of performing the initial
allocation step of Step 1 quickly is by sequential auction. As discussed above,
task interaction may cause this allocation to be suboptimal.

The task connection graph initialized in Step 2 directs the improvement phase
of Step 3. At each iteration of the improvement phase, one edge is added to
connect two unconnected subgraphs. For example, on the first iteration, an edge
is added between any two of the vertices. On the second iteration, an edge may be
added between two other vertices, or between one other vertex and one of the two
previously connected vertices (thus creating a connected 3-vertex subgraph).

On each iteration, an optimal allocation (e.g., by a combinatorial auction
with optimal winner determination) is made for the tasks corresponding to the
newly connected subgraph. The procedure terminates when ��� is connected
(i.e., adding an edge cannot connect two unconnected subgraphs). The algorithm
is anytime because it can be stopped at any point during the improvement phase
and can return the lowest cost allocation attained so far.

To generate the initial allocation, an agent need reveal only � costs, one for
each initial task allocation. In the improvement phase, even if a combinatorial
auction algorithm is used, an agent is initially faced with a much simpler bid gen-
eration problem, because the algorithm is run over a small number of tasks. If
an exhaustive enumeration of task allocations is used instead of a combinatorial
auction in that phase, the bid generation problem is replaced by incremental reve-
lation of costs for sets of tasks.

Theorem 2.4 The algorithm is guaranteed to find the optimal task allocation.

22

Proof. In the final iteration, ��� is connected. If the algorithm then optimally
allocates all � tasks corresponding to edges in ��� , then the allocation will be
optimal.

Time Complexity: Similar to the general iterative deepening search algorithm,
ITAI incrementally expands the scope of its search for the optimal task alloca-
tion. The time spent on task allocation is the sum of the time spent generating the
initial allocation, plus the time spent improving the allocation. As Theorem 2.5
illustrates, the complexity of the algorithm is the same as an algorithm that per-
formed optimal allocation of all tasks in a single step.

Theorem 2.5 Assuming an iteration of the improvement phase that allocates .
tasks takes � � ��� � � � time, the running time of the improvement phase is � � ��� � � � .

Proof. The maximum number of improvement steps results if a single vertex
is connected to the subgraph at each iteration of Step 3. In this case, there are
. � � � � steps, with the numbers of connected vertices running from � to � .
The total running time of the improvement phase is:

� � �

��� ' ��� �

� � � � � �$� � � � � �?� �
which is � � ��� � � � .
2.4.2 Empirical Evaluation

The generalized task interaction domain described earlier is used to generate re-
sults of ITAI. Figure 2.10 illustrates the movement of the total cost attained by the
successive sequence of allocations generated by the algorithm. The experiment
was run in a 2-agent, 10-task domain. Therefore, there were � �

� �
��� ��� total

possible task allocations.
The three separate experiments correspond to domains with ��� =0, 0.5, and 1

and results shown are averages over 20 instantiations of each domain. Due to
slight variations in assigned cost functions in the three cases, the costs have been
normalized, with the cost of the initial allocation corresponding to a value of 1 on
the y-axis. The initial allocation was made by sequential auction, with no look-
ahead (agents computed their bid for a task assuming they would execute only
those tasks already allocated to them). The optimal allocation algorithm used

23

Figure 2.10: Improvement of task allocation cost under ITAI.

in the improvement phase iterated over all possible task allocations, collecting a
bid for each from each agent, and updating the allocation with that which has the
minimum sum of bids. The generation and evaluation of bids for each hypothetical
allocation is referred to as an improvement step.

Since the choice of the edge to add in Step 3 is nondeterministic, the number
of steps required for the improvement phase of the algorithm to complete varied.
The mean was 1765; the maximum was 2035, at which point the allocation was
guaranteed to be optimal (by Theorem 2.4).

As expected, for ��� =0, the improvement phase did not lower the cost of the
allocation because all tasks were independent for both agents. When task interac-
tion was introduced, the improvement phase of the algorithm performed well. For
��� =0.5, after 196 steps, the improvement phase had generated an average of 25%
in cost savings, which corresponds to over 64% of the potential total cost savings
of 61%. For ��� =1, after only 93 steps, the improvement phase had generated an
average of 25% in cost savings, which corresponds to over 53% of the potential
total cost savings of 53%.

24

2.5 Dynamic negotiation

The development of negotiation protocols to support the distributed allocation of
tasks or resources within a multiagent system has assumed that the set of issues
over which agents negotiate are defined in advance. Most realistic problem do-
mains, however, are dynamic: while agents are negotiating over the distribution
of a set of tasks, for example, new tasks or resources might appear or dissapear.
Existing protocols either require that the allocation of a new task be postponed
until the current negotiation is complete or require that the negotiation be inter-
rupted and re-started in the context of the augmented set of tasks. Adopting the
first option neglects the potential for exploiting possible positive interactions be-
tween the old set of tasks and the new task, since they are allocated separately. In
the second option, all of the work performed in the first negotiation is lost and,
in fact, there can be no guarantee that the process will ever converge since new
tasks could continue to appear. Ideally, it should be possible to adapt the ongoing
negotiated allocation to the new task. Similarly, agents not currently involved in
a negotiation might become free to offer their services on the task being negoti-
ated. If an agent becomes disabled, it should also be possible to repair the current
allocation as reflected by the current state of the negotiation rather than restart the
negotiation from scratch.

The problem of dynamic negotiation is reminiscent of that faced by conven-
tional single-agent planning systems in the 1980’s: then it was assumed that com-
plete executable plans could be generated before execution commenced; the intro-
duction of new goals during the planning process required a complete replanning.
It was discovered that such a view was unrealistic for any but simple toy domains.

In this section, we examine negotiation in team-based settings where tasks are
not necessarily limited to primitive actions but are instead richly described entities
[[Tambe 1997, Rauenbusch 2003, Ortiz and Hsu 2002]]. As before, our concern
is in domains where full exchange of information among agents is not feasible;
hence, mediators will have to operate in the face of incomplete information. In
addition, we assume that the agents participating in such teams will be concerned
with the means for executing only their individual tasks; hence, the mediator will
normally not concern itself over local planning decisions of any one agent. The
main idea behind our solution involves the exchange of local information in the
form of a description of positive and negative interactions between task types. By
focusing on task types, mediators can use prior bids in a predictive fashion to
prune the search space of possible future proposals.

Examples of domains for which the approach we describe in this paper are

25

applicable include distributed transportation scheduling and distributed sensor
scheduling. For generality we present our results within the first domain: the set
of tasks might include delivery and pickup tasks, each with parameters for source,
destination, time, object to deliver, truck for delivery, and path to destination. The
chosen path and the identity of the truck correspond to planning decisions made
at the local agent level. Tasks in the sensor domain map almost directly to tasks in
the transportation domain. In the sensor domain, multiple sensors are necessary
for estimating the location of an object. As we have already discussed, tasks can
interact: for example, if sectors require a warm-up time, an agent can benefit from
tracking two targets in sequence because of the saved warm up time. Correspond-
ing to a ����� . ������� � �	�
��� �����
����� .&�-��� .�� � � � ����� � �����	� ����� ��� .&���"� task description in
the transportation domain might be a task in the sensor domain represented as
��� � ��� ��� ��������� ��� � � .�� � .&����� � ����� � ��� � � � ����� ��� .&���"� .

Each executable task description has one or more associated types taken from
the set � � 	 ��� . We assume a function ��� 	 � � � � � ��! ##"%$, where � is the
set of tasks. For example, an executable task description might be of the form
� � ����� . ����� � �	�
��� � ����� % �&� 	 � �'���)(���*��+,� �-���"� , where type information is speci-
ficed by ��� 	 � � � � � ������� . �����*� ��� (���&��+,�
�-�����.�
��� . �
����� � � % �*� 	 � �/� � . Bidders
use such information to communicate task interactions to the mediator (see next
section). We add the notion of agent capacity to the problem statement: let
� � � �10 �32 , an agent’s current capacity, e.g., � � � � ��� � � � means the agent � �
can take on 3 more tasks.

In this section, we imagine that each agent’s state (from the set
�

of states) is
structured in some way. For example, the agent might store information regarding
its current location, past proposals that it has received, a cost/utility function, and
its current capacity. The mediator, in turn, has only partial knowledge of any in-
dividual agent; the mediator records task preference information of non-mediator
agents in what we call an interaction table, 4 , and capacity status information sup-
plied to it by way of rich bids by a bidder. The task interaction table is built up by
the mediator for each agent and records interactions between task types. For ex-
ample, agent ��� might report the following interactions ����� � � � ����� � � ��� ����� � � � ��� �65
��7 � , where � , � � � 	 ��� , indicating that types ��� and � � interact positively, ��� and ���
are independent (that is, their costs are additive), � � and � � interact negatively and
� � and ��7 conflict (cannot be executed together). In a delivery domain, � � might cor-
respond to a 8:9�;:<*=:9�>�?A@CBDBE;
F�G�G/F&HI;�9DJI@�@C8IK task type and ��7 to a 8:9�;,<�=:9�>�?
@&BL9�MON,;:@
K
<�=:9PG-FOQ:9O>R<CF
;:K task type. The stated task information constrains
task assignments involving delivery of both types of materials. The alternative
involving the comparison of fully specific executable tasks would be less useful.

26

For example, if the actual task allocations were: 8:9�;:<*=:9�>�? @CB � >,@*N,F��,9����	��

QI@
�R@&JEF�� FCQ��CNCG and 8E9
;:<*=:9O>
?A@CBDBI<*>:9��R@&>��/KPQR@
�I@&J:F�� FOQ��������&NOG , re-
porting a negative interaction between the two would have little value in helping
to prune the space of future proposals, because of their specificity.

The capacity information might indicate that a particular agent (e.g., truck)
can fit one more crate. However, the cost for delivery of that crate might depend
on the type of task with which it is associated (e.g., the destination, the crate’s
weight, or path).

Definition 2.5.1 (A Dynamic Negotiation) Let � �� � refer to the set of tasks, � ,
assigned to agent � in proposal

% � . We augment the definition of a task allocation
system,

�
, to include capacity status:

� � � � ��� � � ��� ��� � ��
 . A dynamic medi-
ated negotiation, � , is a sequence of messages:

�&% ����� ' ����������� , ��������� % �������� ��

such that each

% � � � for . � � and each � � � � � .�� � ��� .�� ' ������� ��� .�� � � cor-
responds to a set of rich bids from each agent in

% � . Each pair of indices for%
and � correspond to a round in the mediation. Each � , represents a pair,� , � � � � ""! � � � ""!
 of new tasks and agents; more than one � can appear in any

sequence. The social welfare, (, for some proposal,
% � , is defined as:

(� % � � �
� � #%$ � � ��� ��� �� �-�
2.5.1 Rich bids

Rather than reducing a bid for some task to a single value, Dynamic Mediation
makes use of a richer bid format which allows a bidder to compactly exchange
relevant information about its local state to the mediator. The mediator can then
use that information during its search. We refer to the set of resources (agents) and
tasks collectively as the negotiation space. The negotiation space might change
because of either a negotiation event (the mediator considers a new resource) or a
domain event (a new task appears).

The format of a bid for ��� at time � for proposal
%

is:&

"
� # $' � � � � ���"� ��4 ��� � � ��� ��(

where the first argument represents the agent’s bid for each task in the proposal,
4 represents a list of relevant task interactions from � � ’s point of view for a subset

27

of the tasks covered in
%

, and � � � � ��� � reflects agent ��� ’s current capacity. This
is by no means the only alternative possible. One could also consider providing
counterfactual values for each task that is reported to interact in a negative way
with another task. Another alternative is to communicate a qualitative preference
to some other task [[Doyle et al 1991]]. Such information, however, does not cap-
ture the reason for the preference: this is captured compactly in task interaction
statements. Since we were most interested in minimizing the amount of informa-
tion shared with the mediator, we chose the format shown above.

Task interaction semantics and bid generation

A positive interaction between tasks, ��� and � ' reflects task complementarity in
terms of an underlying cost function, � , with the a superadditive property for
some agent � , � � � � ����� ��� ' ��� � � � � � ����� ��� � � � � � ��� ' ��� , for example, common
delivery destinations. A negative interaction corresponds to task substitutability
(subadditivity), � � � � ����� ��� ' ���
 � � � � ����� ��� � � � � � ��� ' ��� , for example, a delivery
requiring two separate trips.

The framework we have described introduces the following bid generation
problem: how should the agent decide on which potential interactions to commu-
nicate to the mediator? The difficulty is that a statement by agent ��� of ��� � � ' might
hold under context, � (i.e., under some collection of other task assignments for �
�
under the current proposal), while under another context, � � , the interaction ����� � '
might instead hold. We are currently exploring a general approach to handle this
problem by making use of a task abstraction hierarchy and the observation that a
task � , in context, � , can be captured as a separate task type itself [[Ortiz 1999]].
The abstraction hierarchy represents individual tasks and tasks performed while
performing other tasks. The bidder picks the most abstract task descriptions which
stand in the indicated positive or negative interaction. In this way, the task interac-
tion table is always consistent. In our actual algorithm, we use less detailed type
information and use task interactions as heuristics to increase the probability of
finding a solution.

Dynamic mediation algorithm

Figure 2.11 presents the dynamic mediation algorithm. Recall that the algorithm
implements an iterative hill climbing search through the proposal space, keeping
track of the best proposal, � , found so far. At each step the mediator selects and
communicates the current proposal, � , to the agents in the group. This section ex-

28

function ��� ����� ��� � � �����
	 �
��� returns an outcome
inputs a set of tasks � , set of agents �
let �
� / , ���
	
��� ���������

� /��
let Interaction Table . � � /
loop
�	�
� ��	�� ����	���� ��� ��� ���

� � � � ��. � �
broadcast � to �
for each ��� in �

receive bid � from ���
store interactions in bid � in . �

���
	
��� ���������
�
����� � � ����� ' ���)�)� � ����� � �

if (���
	
� ! ���
	
�) then
�	� � , ���
	
� � ���
	
�

until (stop signal)
return �

Figure 2.11: Dynamic Mediation Algorithm

tends the algorithm to support dynamics by adding maintenance of an interaction
table to leverage information received from bidders and to focus the search.

Each agent then responds with a bid that is based on the proposal that was
broadcast; � .���� denotes the bid sent by agent . . The information about interaction
among task types that is provided in the bid is stored in the Interaction Table. The
mediator uses the information contained in the interaction table to focus its search.
In each round of mediation, the interaction table is used to construct a probability
distribution over the set of agents for each task in the proposal. The mediator
focuses the search by using the interaction information previously provided to it

function � ��	�� ����	���� ��� ��� ��� returns a proposal
inputs set of tasks � , set of agents � , Interaction Table . �
let
% � /

for each task � in �	 � ��� ��	���� ��� ��� ������	���� ��� 	�� ��� ��	��
��� (��� % � � ��. �)
�! � agent chosen randomly according to

	 �% � % ! � assign
� �����" /���

return
%

Figure 2.12: Update procedure for Dynamic Mediation.

29

function � ��	���� ��� ��� ������	���� ��� 	 � ��� ��	 �
���
inputs task � , proposal

%
, set of agents � , InteractionTable . �

returns a probability distribution over �
for each agent � in �

for each task � in �
� �
�
����.�� � � � ���-� � % �� � � ! getInteraction(����� ��. �)
if ��. � � ��. � �C5 � then � � ���*�

�
� ��� �

else if � . � � ��. � � � ��� � then � �����&�
�
� � � �

else if � . � � ��. � � � � ��� � then � �����*�
�
� ��� �

else � �����&�
�
� � � �

for each agent � in �	 � � �-� � � � ���*�
�
���

�

�%�
� � ���*� �

return
	 �

by some agent to adjust the likelihood that the agent will be assigned a given task.
For example, if the mediator expects a positive interaction between two tasks for
some agent, those two tasks should be more likely to be assigned to that agent.
If the mediator knows that two tasks conflict for a given agent, that agent should
not be assigned to both tasks. An example of an algorithm for the generation of
probability distributions is given in Figure 2.12. This algorithm implements a
stochastic, heuristic-based search that weights task assignments according to the
information contained in the variable, it.

The mediation algorithm supports dynamic adjustments to the set of tasks to
be negotiated. Since the interaction table stores information about task types,
that information may be used to determine probability information for new tasks
that arrive after a negotiation begins. The mediation algorithm has the following
anytime property which makes it applicable even if agents do not know in advance
how much time they will have to negotiate.

Note that without the capacity parameter, as the system tries to respond to new
tasks, it can eventually become saturated and thrash. By using capacity informa-
tion the mediator can signal that execution should begin while certain new tasks
are postponed. This can be accomplished by simply adding a line to the getProb-
abilityDistribution function that assigns 0 probability for agents over capacity.

We assume that the mediator stores all of the interaction information from
each bidder in a separate table. The memory required for this table grows linearly
in the number of interactions reported. In the algorithm, the search space is either
expanded by adding a new task or a new resource/agent or narrowed (deleting a

30

function � ��	�� ��	 ��� ����	 �
���
inputs task � , task � , InteractionTable . �
returns one of � � � � ��5 ��� �
interaction � ?
for each � � ��� 	 � � � �

for each �� � ��� 	 � � �E�
if (
� ����� ��5 � � . �) then return 5

if (interaction
�

none)
if (
� � ���� � � � � . �) then interaction � +

if (
� � ���� � �<� � . �) then interaction � -

if (interaction
�

+)
if (
� � ���� � �<� � . �) then return �

if (interaction
�

-)
if (
� � ���� � � � � . �) then return �

return interaction

Figure 2.13: Example Construction of Probability Distribution

task or resource). The mediator can combine steps (for example, removing a task
while adding a resource).

Task contention, team composition and fault tolerance

The notion of task contention in the challenge problem is essentially that of a
task conflict, as described above. Consider Figure 2.3. We will use the notation� � � � to refer to sector � of sensor � and the notation ���# to refer to the point

	
on projected path � and ��� to refer collectively to the tasks on path � . Suppose a
negotiation involving task � � has been ongoing for � rounds with the current best
proposal,

%
�
� ��� � � ��� � � � ��� � � � � � ��� � � � . Target �

'
then appears and is pro-

jected to follow the path shown. Suppose that the best allocation for �
'
, assuming

that there were no conflicts, would be
% � � ����� � � � �	� � � � � � � ��� � � � �?� . However,

if tasks � �� and �
'� occur at the same time, a conflict involving sensor

�
� will result.

We refer to this as an instance of task contention. There are two cases to deal with.
In the first case, if we assume that the same mediator is coordinating the negotia-
tion for both targets, then the mediator will be aware of the commitment of

�
� to

task � �� . If it is aware of the contention between tasks � �� and �
'� , then it can adjust

its proposal to the group accordingly to avoid a conflict. However, if some other
agent is acting as mediator for �

'
, or is not aware of the task contention, then that

31

mediator might very well propose
% � , the allocation resulting in task contention.

In very large domains, with hundreds or even thousands of nodes, it is infeasible to
have a single agent that will centrally coordinate all negotiation. Therefore, agent�
� might respond to

% � with the bid,
�
� # ��� �� � � '�
 indicating the conflict and its

source. To resolve this conflict, the mediator may add an option (i.e., enlarge the
group of agents) and propose

����� �
� � �	� � � � � � � � � � � � �?� .3 The key point is that

the contention cannot be resolved on the basis of local information alone (such as
a bid involving a single value); hence the the richer bid format we have proposed.

Problems having to do with forming teams with the proper mix of sensors are
also dealt with at the mediator level, using rich bids. For example, if 3 agents are
associated with a task in a proposal and one of the agents, ��� , bids a low value
(such as a short duration measurement) because it is committed to serving on
another tracking team consisting of 5 agents, during an overlapping interval, then
agent ��� can relay that information to the mediator (this assumes there are multiple
mediators) who can then make the determination to perhaps have the agent drop
the original commitment, since the new task is of higher priority (the marginal
gain from the agent’s contribution on the committed task is lower than that on the
new task involving a smaller team).

In response to a system fault, such as the loss of an agent (some �), the medi-
ator will look for substitute agents. The Mediation algorithm has also been made
tolerant to faults to the mediator agent; this extension is not shown in the figure,
however. The solution is simple: instead of communicating only with the medi-
ator, agents broadcast their bids to the entire group. If the mediator is disabled,
a new one can be chosen; it will have a current record of the negotiation and can
proceed where the disabled mediator left off.

2.5.2 Experimental results and evaluation

The value of rich bids and the interaction table as well as the effectiveness of
mediation in dynamic environments were evaluated with simulations. We were
primarily concerned with studying the effectiveness and feasibility of commu-
nicating rich bids, and the incorporation of task interaction information into the
interaction table. The domain that we developed had instances of the three types

3In the actual multisensor domain we have described, there are also instances in which the
contention can only be resolved if a node switches from one sector to another, halfway between
two points on the projected target path, thereby lowering the quality of the measurement for both
targets. This complication can be dealt with by partitioning the projected track in a more fine
grained way.

32

of interactions that we defined in our model: positive, negative, and conflict. It
is a simplified delivery problem in which agents are assigned tasks of delivering
goods to their destinations. Each task was defined by two attributes: type of good
and destination. Goods can be one of three types: N:>,@�NIF��I9 , 9�;
9��*Q
>I<��CF
; , or
B,@
@&8 . There were two possible destinations for each task.

The cost incurred by an agent in executing a set of tasks was determined in
advance and remained constant throughout the experiments. First, the cost of de-
livering one package to a single destination was chosen randomly from a uniform
distribution from 0 to 20. The cost of performing each subsequent task was cho-
sen from a uniform distribution from 0 to the cost of performing the previous
task. Thus, as more tasks were given to an agent, the additional cost of delivery
decreased monotonically. Second, the cost to an agent that is responsible for de-
livering packages to both locations is double its cost for delivering to one location.
Third, no agent can be responsible for delivering both NE>,@*N,F��,9 and 9�;�9���Q-<��CF
;
goods.

Agents’ rich bids report the interaction among tasks that an agent is assigned.
In our experiments, an agent reports all interaction information for each pair of
tasks in the set of all tasks to which it is assigned at each iteration. Conflict in-
teraction is reported for each pair of N:>,@�NIF��I9 and 9�;
9��*Q
>I<��CF
; tasks. Positive
interaction is reported for each pair of tasks delivered to the same location. Nega-
tive interaction is reported for each pair of tasks delivered to different locations.

Figure 2.13 illustrates the probability distribution generation procedure used
for the experiments. Tasks that are known to conflict are never given to the same
agent. Tasks that have positive interaction are more likely to be given to the same
agent; tasks that have negative interaction are less likely.

The getProbabilityDistribution function creates a probability distribution over
the agents to assign to a given task. The probability of assigning an agent to
any given task is affected by the tasks to which it is already assigned and by the
information stored by the mediator in the interaction table. The function uses a
system for scoring agents’ likelihood of assignment to the task. If the task to be
assigned is known to conflict with a task type that is already assigned to an agent,
assignment of that agent to the task is given a score of zero. Agents assigned to
tasks with types that interact positively with the current task are given a score of
2. Agents assigned to tasks with types that interact negatively are given a score
of 0.5. Other agents are given a score of 1. The scores are normalized to create a
probability distribution over the agents.

Since each task can be associated with more than one task type (e.g., deliv-
ery location and type of good), there may be inconsistent interaction information

33

60

70

80

90

100

110

120

130

140

150

0 200 400 600 800 1000

iteration

random
conflict

interaction

Figure 2.14: Results for static mediation.

stored in the interaction table for interaction between tasks. In this experiment,
when inconsistent information is present for a pair of tasks, the function proceeds
as though no useful interaction information exists in the getInteraction function.
Another source of inconsistency arises because an agent may have been assigned
to several tasks, which interact in different ways with the current task. Again,
the mediator in these experiments assumes that no useful interaction information
exists.

The goal of the first simulation was to evaluate the effectiveness of using the
task interaction table for making task assignments. The experimental data was
generated with the delivery domain described above using four agents and ten
delivery tasks. Thus, the search space of all possible proposals was of size � �

�
, or

approximately ��� 7 .
Figure 2.14 illustrates the average lowest cost attained in 15 trials by each of

the first 1000 rounds of mediation using three separate update procedures: ran-
dom, conflict and interaction. Random ignores the interaction table and generates
a random sequence of proposals. Conflict uses the interaction table to eliminate
assignment of tasks to agents where known conflicts exist. Interaction is the up-
date procedure described above that makes a probability distribution based on
reported positive, negative and conflict interaction.

The results verify our hypothesis that interaction information and rich bids
have significant benefit. For instance, after just 200 rounds, the average low-
est cost attained using the interaction table is 69.2 while the average lowest cost
without using the interaction table is 93.9. Interaction produces a cost savings of
approximately 26%. Some of this benefit is realized from eliminating conflict-

34

50

100

150

200

250

300

350

400

800 850 900 950 1000 1050 1100 1150 1200

iteration

random update
interaction

random restart

Figure 2.15: Results for dynamic mediation.

ing proposals (9%); the remainder comes from the probability distribution that
weighs positive and negative interactions when assigning agents to tasks in a pro-
posal. The results confirm our intuition that in certain domains rich bids and the
interaction table benefit task assignment.

The goal of the second set of simulations was to validate the use of rich bids
and the interaction table dynamic changes occur in the environment. The expec-
tation was that since interaction information was stored for task types, using that
information when a new task appeared would allow better task assignments to be
made.

Figure 2.5.2 illustrates the average lowest cost assignment found before and
after two new tasks are introduced at round 1000 of the mediation. Three differ-
ent update procedures were compared: random update, interaction, and random
restart. Interaction and random update proceed similarly to interaction and ran-
dom in the first simulation for the first 1000 runs. When new tasks appear, these
procedures use the best assignment found so far for the old tasks and assign new
agents to the new tasks. Random update assigns agent randomly for the new tasks;
interaction uses the task type interaction information previously reported to assign
the new tasks. Random restart ignores the best task found so far and randomly
assigns agent to all of the tasks.

As expected, there is a benefit in average lowest cost to starting with the best
assignment found so far, as random update and interaction perform better than
random restart for all of the 200 runs shown after the new tasks appear. In addition,
interaction performs better than random update which indicates that information
from rich bids recorded before the new tasks appear is useful when assigning the

35

50

100

150

200

250

300

350

400

450

500

800 1000 1200 1400 1600 1800 2000

iteration

random update
interaction

random restart

Figure 2.16: Results for many task appearances.

new tasks. The results shown in Figure 2.16 further strengthen this finding: the
interaction continues to perform well when a single new task appears after every
100 rounds in negotiation after the first 1000 rounds.

2.6 System architecture: interleaving negotiation and
execution

The implementation of the ideas described in this chapter within the context of
the challenge problem requires agents that do more than just bid on tasks and take
measurements. The system was architected so that agents would normally take on
what we will refer to as background team commitments. These are commitments
that are not related to the result of an award from a negotiation. We found that
establishing and honoring such team level commitments played a central role in
producing responsive behavior. In the sensor problem domain, the background
commitments can involve, for example, opportunistically responding to measure-
ments taken while scanning an area. An agent should work for the good of the
team and if it accidentally takes a measurement in an area that is part of an ongo-
ing task, it should contribute that measurement to the mediator rather than discard
it. We discuss this further below.

In addition, the system was designed to compute expectations or projections
of likely future tasks and also to monitor task assignments for progress. Figure
2.17 illustrates the system architecture. The process begins at the top of the figure
with groups of agents systematically scanning areas to detect movements. At that

36

stage, the following actions are performed:

1. All sensors turn sectors on in sequence (no assumptions are made about
possible starting points)

2. Each sensor that detects a target broadcasts to the group

3. A tracker agent (either pre-designated or the agent with the lowest id) esti-
mates location based on knowledge of other known targets

4. The tracker agent outputs likely sectors based on scanning geometry (See
the next section)

Once a target is detected, the sector,
�

, associated with it is output to a process
which forms an initial team tasked to triangulate and estimate the target’s loca-
tion and velocity. The sector,

�
, represents a crude measurement of its general

location. The input to that stage is an estimated location in terms of
�

. The steps
performed at this stage are:

1. Compute sectors,
� � , that overlap with

�

2. Assign nodes associated with
� � to aim sensors at

�
and take frequency and

amplitude measurements

3. Compute and output location and velocity estimates

One of the agents in the team is then chosen as the mediator and projects that
target forward in time. The projected path is then segmented into a set of tasks,	 �*� ��� � ����� ���$� ��� � � ��� � ��� � ��� ��� ' ��� ' ��������� � , where each task is represented as a
pair

���
� ��� � � of location and time, respectively. A candidate team is then cho-

sen based on its proximity to
	 �*����� � ����� ���$� ��� . The project path is then input to

the allocation process (mediation or auction) which computes an initial allocation
and, if there is more time, conducts additional rounds of mediation to improve
that allocation. At that time, background commitments are also identified. Once
it becomes time to act, the allocation or set of commitments is communicated to
the tracker (in our system, some distinguished agent(s) responsible for this task)
which then begins collecting measurements from the allocated team members and
computing a track for the target. Finally, the monitor process compares the pro-
jected and the actual tracks and re-starts the entire process depending on the result.

37

Ok?

Commitments

Track

Tasks

Location velocity

Target partially lost

Target lost

Change in expected path

Sectors

Refine

 Monitor

Track

Allocate

Project

Detect

 Team
 Initial

Form

Figure 2.17: Architecture

a) UMass visualization b) Time line showing sensor activation

Figure 2.18: The UMass visualization tool

38

2.6.1 Visualization tools and geometric reasoning

One aspect of the evaluation that we conducted of our system took place during
development time. We made extensive use of a visualization tool developed by
the University of Massachusetts (UMASS) (See Figure 2.18). Using this tool, we
were able to ascertain whether the sequences of measurements taken by agents
were synchronized; the knowledge gained often enabled us to more easily locate
problems with the algorithms we had developed. For example, if the visualiza-
tion tool detected that an agent was taking less than one measurement per second
during tracking, it was likely that there was a problem with the algorithms that
implemented the system architecture.

To help distinguish those problems that were associated with the tracker and
those that were associated with the negotiation algorithms, we developed a geo-
metric tracker. This tracker combines a conservative sensor coverage model to-
gether with information it receives indicating that an object is moving somewhere
in a sector. By overlapping several zones that represent the areas sensed by the
sensors (see Figures 2.19 a,b), one can determine the general area in which the
target is located. By adding more sensors and more measurements, the area of
uncertainty becomes smaller. The purpose of the geometric tracker was to deter-
mine if the tracker’s result was actually plausible. For example, in Figures 2.20
e and f, the tracker is reporting an incorrect position for the the target. Without
the geometry tracking, the agents would have redirected their sectors to the new
position where there was in fact no target, thus causing inefficiency by wasting
resources.

This tracker was effective for two reasons. First, the sensors did an excel-
lent job in detecting movement; the number of false-positives (i.e., the number of
detect movements when they was actually none) was almost zero. Second, the
placement of the sensors was done intelligently to maximize coverage making the
overlapping area small.

In Figure 2.19-d, the four vertically aligned small dots within the box are
the segments that were actually auctioned off during the next ten second period.
Those segments were based on the projection (darker line in Figure 2.19-d just
above those dots) of the target direction.

As an example of the sorts of background commitments that were enforced
by the system, Figure 2.21 shows a screen capture where node 5 is not part of
the team of nodes involved in the current tracking activity; however, it turns out
that node 5 happens to “illuminate” the sector where the target is located as part
of its normal scanning activity. Rather than discard the resulting measurement, it

39

a) Simulator view b) Geometry tracker

c) Simulator view d) Geometry tracker with auctioned points

Figure 2.19: The geometry tracker in action.

40

e) Bad tracker estimate f) Bad tracker estimate

Figure 2.20: Identifying bad tracker estimates.

is instead integrated opportunistically to improve the target estimate. In this way,
agents would not discard data that could prove useful to the team, even if they
were not explicitly asked to collect such data. In some cases, we obtained up to
13% more data points for a track as a result of this addition.

2.6.2 Experimental results

Data was collected from a set of 18 experiments, where each experiment repre-
sented an average of three trials, for a total of 54 runs of Radsim using different
settings. Each run lasted 240 simulated seconds, while varying various parame-
ters. The purpose of the experiments was to gather data regarding the performance
of the system in terms of various parameters such as projection length, number of
targets and communication overhead.

2.6.3 Auction results

The first set of experiments involved sequential auctioning in a 16-node sensor
arrangement, tracking varying numbers of targets traveling at 0.5 feet/second. The
values in each column of the table in Figure 2.22 represent average Root-Mean-
Square (RMS) for the given number of targets, and then the average number of
messages received by each node for the given number of targets.

41

TRACKER

TRACKER

TRACKER

SCAN

SCAN SCAN

SCAN

SCAN

Node 5 scans and
sees the currently tracked

integrated into the track.
target; the data is then

Figure 2.21: Opportunism

RMS Projection 1 target 2 targets 3 targets Msgs/Node Msgs/node
1 target 2 targets

(reactive) 0 sec. 1.94 3.91 24.53 392.4
5 sec. 1.25 3.24 26.59 180.01

(standard) 10 sec. 1.17 3.2 21.45 82.7 192.26
15 sec. 4.22 7.62 23.82 34.81

Figure 2.22: Auctioning, 16 nodes, .5 feet per second, 240-second run.

Each row represents a variation in the length of the track projection governed
by each auction. The “standard” length during design of the system was 10 sec-
onds, meaning that the auctioneer projected the area to be covered by the target
during the ten seconds prior to auctioning tasks in that area. In addition to 5 and
15 second entries, there are also entries corresponding to experiments involving
projections of length 0, which would constitute a purely reactive auctioneer. That
is, such an auctioneer would continuously instruct the other nodes to immediately
fire at the current point.

The second set of experiments utilized the same target speed of 0.5 feet/second,
and focused solely on a 10-second projection length. The system consisted of a
24-node configuration. The results are shown in Table 2.23.

42

Projection 1 target 2 targets 3 targets
10 sec. 1.24 3.12 24.58

Figure 2.23: Auctioning, 24 nodes, .5 feet per second, 240-second run.

RMS by Projection Length Figure 2.24 illustrates a fairly uniform degrada-
tion in track quality as the number of targets increased, regardless of the chosen
projection length (using sequential auctions). That is, RMS error increased as the
nodes must track more targets, making the largest jump with the addition of a third
target. Specific values are shown in Figures 2.26 through 2.29.

Figure 2.24 indicates that a 10-second projection was ideal for the given auc-
tioning system, always resulting in less error than other settings. As the projection
became shorter, to 5 or 0 seconds, slightly more error arose. We found the largest
error at a 15 second projection, in all but the three target cases.

When the projection area was too small, agents became overly reactive; we
found that there was not enough latency and agents were slightly more likely to
turn away from the correct firing sector whenever there was such a momentary
fluctuation in the track synthesizer. However, for the same reason, they were also
able to recover fairly quickly from a momentary error, as they did not commit to
such a reading for as long a period of time.

We found that a long projection length of 15 seconds was better at insulating
the system from fluctuations; however, when the system received a bad reading
from the tracker, it was more likely to incorrectly maintain its focus on the wrong
sector. Specifically, unless the target later deviated by such a margin that the
auction correction mechanism would override the current assignment, the nodes
would fire upon the incorrect position for a full 15 seconds. This resulted in
longer stretches of lost tracks and hence a sharp increase in error in all cases but
the three-target one, which was so difficult to track that RMS was less statistically
significant.

Messages by Projection Length Figure 2.25 illustrates another consequence of
varying projection length, conservation of messages. Here the average number
of messages received by a node was compared for each of the four experimental
projection settings, during tracking of a single target.

When a projection covers a longer span of time, auctions will be less frequent,
resulting in fewer messages within the same 240-second trial. The reason the
curve appears more logarithmic than linear is that slowing the frequency of auc-

43

Figure 2.24: RMS by projection length.

Figure 2.25: Messages by projection length.

44

tions additionally mitigates the need for re-sends and overrides, which resulted in
disproportionately higher message traffic.

The given measurements do not include messages containing measurement
reports to the track synthesizer, which varied arbitrarily across projection length
settings.

Track Quality Figures 2.26 through 2.29 report results on track quality for 0, 5,
10, and 15 second projections. Figure 2.26 show the performance of the 0-second
projection, giving specific values for RMS. Track quality degraded with the ad-
dition of targets, especially with the addition of the third target. The track qual-
ity degradation resulted from a disproportionate increase in target-differentiation
problems: the results were very poor RMS scores.

In particular, the introduction of a third target makes it especially likely that
two targets will pass through the same sector for a given node, resulting in a
composite reading that is not well-handled by the tracker. In addition, when the
two targets exit the area and then diverge, there is no way to match the subsequent
tracks with the tracks for the targets as they entered the area. Such a problem exists
even if the paths do not include sharp turns, so long as the point of intersection
does not fall right on a sector boundary.

Track Quality by Number of Nodes Figure 2.30 compares track quality for
various numbers of targets when the number of nodes was increased; these ex-
periments were limited to 10 second projections. In particular, the same target
paths were tracked by 24 nodes rather than 16 nodes, resulting in comparable
track quality.

This was not surprising in the case of one or two targets, as they were already
well-covered by 16 nodes. Significantly, though, there was no improvement in
any of the trials for three targets, where the 16 nodes often were not able to de-
vote more than three sectors to a given target. Once again this was attributed to
problems with target differentiation.

2.6.4 Mediation experiments

The purpose of the second set of experiments was to evaluate the effect of the
choice of group decision-making procedure on the track quality achieved by a
group of sensors. We compared auctions to mediation in an environment consist-
ing of 16 nodes using a 10-second projection length. As shown in Figure 2.31,

45

Figure 2.26: Track quality: 0 second projections.

Figure 2.27: Track quality: 5 second projections.

46

Figure 2.28: Track quality: 10 second projections.

Figure 2.29: Track quality: 15 second projections.

47

the RMS error achieved by auctions was similar to that achieved by mediation for
both the one- and two-target environments.

The main difference observed between the two approaches involved the num-
ber of messages passed. The auction used less inter-agent communication mes-
sages to achieve its task allocation. In the system, it was the number of messages
passed, rather than the length of those messages, that most affected performance.
Due to the higher number of messages required by mediation, and the large over-
head associated with message passing in the system, mediation was unable to find
feasible allocations when targets traveled at the usual 0.5 feet second. As a result,
the experiments for mediation were conducted with a target speed of 0.1 feet per
second.

As illustrated in Figure 2.32, the number of messages required for auctions
grows with the number of targets (or, group decisions) that must be made. It
shows that mediation is able to find an allocation that is as effective as auctions
with a constant number of messages. In this domain, auctions are able to find the
best allocation with a small number of messages because of both the small size of
the search space and the small size of the information set that must be communi-
cated to the auctioneer: there is only a small degree of interaction between tasks,
and the suitability of tasks to agents is based on distance from the target which is
easy to communicate. The advantage of mediation lies in its simplicity and scala-
bility: the mediator needs no prior information about the domain, and the agents
respond to fully specified proposed outcomes. As a result, mediation would ex-
tend well to problems with a larger number of targets in this domain. Mediation
could allocate tasks in a constant number of messages, while with auctions the
number of messages required would increase. Practical limitations in our tracking
technology prohibit us from exploring results of experiments with more than two
targets.

The last graph compares the number of messages per node utilized by the
two approaches. While the auctioning system must send more messages for more
auctions with the addition of each target, the mediation system importantly uses a
virtually constant amount of communication.

While auctioning better conserves communicative resources for one or two
targets, after that it will far surpass mediation in generating messages. Message
count is almost constant for mediation because each allocation message governs
all targets at once.

48

Figure 2.30: Track quality by number of nodes.

Figure 2.31: Auctioning versus mediation: quality.

49

Figure 2.32: Auctioning versus mediation: messages.

2.7 Summary and related work

Research in auction algorithms has generally assumed that agents are self-centered.
Such an assumption is appropriate for allocation of items such as tobacco or flow-
ers, where an agent’s well-being is only affected by those items that it is or is not
allocated. However, as we have discussed, in multi-agent task allocation situations
one agent may feel strongly about task allocations to other agents in the group.

Historically, task interaction has been cited as an additional problem with
using auctions for task allocation. Combinatorial auctions [[Sandholm 1999a,
Hunsberger and Grosz 2000, inter alia]] provide a solution to this problem by al-
lowing agents to place “exclusive or” bids on bundles of tasks: an agent can bid
accurately on sets of tasks that exhibit positive or negative interaction. In addition,
each agent may have relevant information as to which other agents are best suited
to perform which tasks. In auctions, an agent is assumed to be concerned with
only the items it expects to win.

Still, there are challenges in applying combinatorial auctions to problems in
which the amount of time available for negotiation is not known in advance. Tra-
ditional combinatorial auctions require a two step process where first agents gen-

50

erate and submit bids, and then apply a winner determination algorithm to deter-
mine the best outcome. While the winner determination phase may be anytime,
the bid generation and group context problems that we have discussed still re-
main. A related problem with combinatorial auctions is completeness: all tasks
need to be allocated. A complete allocation may not be possible when each agent
is generating bids independently.

Iterative combinatorial auctions [[Parkes 1001]] have been proposed as an al-
ternative that simplifies the bid generation phase by allowing agents to reveal their
bids incrementally. Agents with complex utility functions in environments with
high costs of communicating them may substantially benefit from such a mecha-
nism.

Task re-allocation has been addressed by the literature in contract net proto-
cols [[Smith and Davis 1983, Sandholm 1998]]; in mediation, task re-allocations
are considered during each new cycle. Sandholm [[Sandholm 1998]] proves that
the optimal allocation may only be found by allowing arbitrarily complex con-
tracts (of type OCSM) to be made; these contract can be so complex that they
may involve all the agents in the group, thereby eliminating the advantage of a de-
centralized approach. The Allocation Improvement algorithm described in Figure
2.5 extends this work to provide a concrete implementation of an algorithm for the
ordering successive OCSM contract exchanges. In addition, the work described in
[[Sandholm 1998]] does not address the problem of dynamic response to changes
in the environment.

The major difference in the assumptions made in work on contract nets and in
the work reported in this chapter is in the incentives of agents. Sandholm’s work
assumes that an agent’s decision making is based on myopic best response and
requires inter-agent monetary payments to induce task reallocation. The agents
described in this chapter are assumed to be interested in maximizing the objective
function, and as a result do not require monetary payments as an incentive to
exchange tasks.

Game theoretic models involve analysis and development of systems for multi-
agent interaction. That work focuses on ways that agents in a group make deci-
sions when the results of those decisions co-depend on the decisions of others
in the group. Mechanism design [[Parkes 1001, inter alia]] involves developing
algorithms aimed at ensuring agents truthfully reveal relevant information about
their preferences. Under our assumption that the goal of the agents is to maximize
the objective function, agents will not be willing to incur a cost to ensure truthful
revelation.

Work in contract nets does not fall squarely into the area of game theory be-

51

cause agents are assumed to exhibit myopic best response strategies rather than
omniscient self-interest. The assumption made in this chapter of an incentive to
maximize the group objective function is yet another approach. The decision of
which approach is more appropriate depends on the domain and on the quali-
ties of the agents that are negotiating. Study of agents with bounded rationality
[[Sandholm 1999b, inter alia]] promises to provide insight into making this deci-
sion.

Research in Constraint Satisfaction Problems (CSPs) has addressed issues re-
lated to those we have discussed with respect to dynamic mediation (see, for
example, Chapter 10 of [Lesser et al 2003]. These include adapting a CSP so-
lution to changes in the environment when those changes are expressed as new
constraints[[Dechter 1988, Verfaillie and Schiex 1994]]. Algorithms for Distribut-
ed CSP (DCSP) [[Yokoo and Ishida 1999]] distribute relevant constraint informa-
tion among several agents. Heuristic CSP repair methods have been explored in
the context of dynamic rescheduling [[Minton et al 1992]]. One important differ-
ence with dynamic mediation is that in CSPs any variable assignment that satisfies
the problem’s constraints is a solution; there is no welfare function to be opti-
mized.4 In addition, DCSPs only support communication of negative interactions
in terms of nogoods.

The MARS system [[Fischer et al 1995]] addresses dynamic multi-agent rene-
gotiation focusing on replanning within a single agent and requiring communica-
tion with other agents only when a new single-agent plan cannot be found. Dy-
namic mediation supports negotiation among all agents.

The focused D* algorithm is a real-time replanning algorithm that has been
applied to robot path planning in partially known environments [[Stentz 1995]];
the arc costs in the search graph can change during the search process. It has
been suggested that negotiation can be viewed as a form of distributed search
[[Durfee 1999, Ephrati and Rosenschein 1993]], it would be interestinqg to cast
negotiation first as a distributed search problem and then apply an algorithm such
as focused D*. Research in self-stabilizing algorithms focuses on algorithms that
adapt to transitions to any arbitrary state [[Dolev 2000]]; instead, we have focused
on particular types of faults.

In summary, we have explored the class of center-based algorithms and, in
particular, introduced a new algorithm, called Dynamic Mediation, through which
teams of cooperative agents can negotiate over the distribution of tasks while al-
lowing solutions to be adapted to a dynamically changing environment in which

4However, see the work described in Chapters 10, 11 and 13 of [Lesser et al 2003].

52

new tasks and agents can appear or faults can occur. The algorithm makes use of
prior progress without requiring that the entire negotiation be restarted. In Dy-
namic Mediation an agent’s bid need not be restricted to a single value for a task
but can include additional useful information in the form of potential positive and
negative interactions with other tasks. Rather than communicate such interaction
information in terms of fully specified and executable tasks, agents maintain task
type information which is more general and can be used by the mediator to prune
the negotiation space. We have also presented a new algorithm, together with
promising results in a synthetic domain, that addresses the combinatorial bid gen-
eration problem. Finally, we have presented a system architecture that addresses
execution-time issues involving monitoring, re-negotiating and establishing back-
ground team commitments.

We have described experimental results in various domains including the dis-
tributed sensor challenge problem. The experimental results suggest that dynamic
negotiation methods have significant promise. Based on our experiments, we con-
clude that it is best to use dynamic mediation when time is an important resource
and negotiations must end quickly. If negotiation time was unlimited, the quality
of outcomes attained by static methods would eventually catch up to those attained
by dynamic methods. We are currently experimenting with extensions that relax
the restriction to non inter-agent dependencies in proposals and that involve the
use of a general task abstraction hierarchy to the bid generation problem.

53

Chapter 3

Resource allocation in very
large-scale environments

3.1 The Distributed Dispatcher Manager

In this chapter we consider the complexities that arise when one scales up dis-
tributed agent networks to thousands of sensor agents and thousands of objects.
We describe a system for effectively managing such networks, called the Dis-
tributed Dispatcher Manager (DDM). DDM differs in a number of important ways
from other systems.

Mobility: We focus on mobile sensor agents; agents remain relatively simple and
lightweight.

Organization: The complexity of the distributed control problem for such mas-
sive agent systems is managed through a hierarchical organization in which
teams of agents are associated with sectors; teams themselves can represent
elements of other teams.

Tracking: We have extended the tracking algorithms discussed so far in this book
so that a single agent can track an object by taking multiple sequential mea-
surements and combining them. We assume that multiple objects can be
discriminated within the field of a sensor. Finally, we do not focus on the
tracking of a particular object, but rather on adequate coverage of given
areas.

Task synchronization: One consequence of the above extensions to the tracking

54

algorithm is that the communication requirements between agents are less-
ened and, in particular, synchronization between agents is not necessary.

Sensors: DDM, in its current state, does not manage the usage of certain re-
sources, such as sensor power utilization. In addition, our treatment of sen-
sor noise is a bit different from the systems described so far in that, in DDM,
some measurements are lost, but the ones that are not lost are accurate.

Simulation: In order to experiment with DDM in domains of the above sort,
we have developed a simulation which reflects the above assumptions. In
some cases, the set of environments constructed for testing the system have
been complicated to reflect such complexities; in other cases, a number of
simplifying assumptions have been made so as to be able to focus on the
scale-up issues (for example, we focus on objects which move in a straight
lines).

DDM organizes the Dopplers in teams, each with a distinguished team leader.
A team is assigned a specific geographic sector of interest. Each Doppler can
act autonomously within its assigned area while processing local data. Teams are
themselves grouped into larger teams. Communication is restricted to flow only
between an agent (or team) and its team leader. Each team leader is provided with
an algorithm to integrate information obtained from its team members.

We present results from experiments that involved hundreds of agents and
more than a thousand objects. These results support our hypothesis that DDM is
successful in large-scale environments. The experiments also allow us to examine
the question of how to determine the number of levels of the DDM hierarchy
in a large-scale system. Our results show that as the number of levels of the
hierarchy increases the quality of the results slightly decreases. However, the time
complexity of the system decreases exponentially. Consequently, we found that
using too few levels may not suffice to solve the global problem.

In the next section we describe the large scale ANTS problem and present
the main elements of DDM. Subsequently, we detail the comprehensive study we
conducted to evaluate the hierarchical solution. We conclude by discussing the
major contribution of our solution to the large-scale agent system challenges in
terms of capability, accuracy, efficiency, cost-effectiveness, robustness and fault
tolerance.

55

3.2 The large scale ANTS challenge problem and
the DDM

We consider a large-scale environment where there are many mobile targets and
many mobile Dopplers moving in a specified geographic area. The goal of the
DDM system is to track the targets. Each target moves at a steady velocity along
a straight line. Targets differ from each other by their motion properties. Motion
properties define the target state, location and velocity, at any given time. Both
location and velocity are vectors. The location vector is referred to in the physics
literature as the radius vector, the vector from the axis origin (0,0) to a target. The
velocity vector describes the change in a target’s location every second. A steady
motion equation may look like the following [[Feynman 1963]]:��� � � � � � � � � ����� ��

where � � is the location of the target at time � � � and � is the velocity vector.
The goal of the DDM system is to identify the motion equation of each target in
the area.

DDM uses agents to find the set of motion equations that represent the tar-
gets. We will refer to this set as the global information map, denoted by InfoMap.
The base level of the DDM consists of mobile sampling agents. Mobile sampling
agents are agents that use simple Doppler sensors to sense targets. Each of these
sampling agents moves autonomously according to a predefined movement algo-
rithm. Each agent periodically stops briefly to take measurements. When an agent
takes measurements we refer to its state as the viewpoint from which a particular
object state was measured. The measurements alone are not sufficient to identify
the exact state of the observed target. The sampler agent can only determine two
possible states of the observed target based on four consecutive measurements.
Only one of them is the correct state of the target at the observation time. Using
such estimates, a sampler agent then produces what we call a capsule. A capsule
consists of (a) two possible states of a target, (b) the time associated with the mea-
surements that were used to infer the possible target states, and (c) the state of the
agent, i.e., its location and orientation during the measurements. Later on we will
show how sampling agents transform measurements into capsules.

The DDM’s goal is to estimate the motion equations of the targets using cap-
sules. The equations can be deduced from a sequence of target states. The main
problem faced by the DDM with respect to a capsule is how to choose the correct
state. To resolve this problem, the DDM makes use of the fact that two states

56

may be the correct states of the same target if they are instances of the same mo-
tion equation. We introduce a relation called ResBy that holds if the state of one
target comes about from another. DDM tries to match states of capsules using
this relation and makes linked lists of target states. Each linked list represents a
potential target movement. We refer to this linked list of target states as a path.
DDM also attempts to determine the accuracy of potential paths. It assumes that
if two or more target states in a path were recorded by different agents, then the
path represents target motion accurately.

In a large-scale environment, DDM would have to link many capsules from the
entire area of interest. Applying the relation ResBy many times is time consuming.
However, there is a low probability that capsules created based on measurements
taken far away from one another will fit. Therefore, the solution is distributed.
The DDM uses hierarchical structures to construct a global infoMap distributively.
The lower level of the hierarchy consists of the sampling agents. These agents
are grouped according to their location. Each group has a leader. The sampling
agents create capsules and send them to their group leaders. The second level of
the hierarchy consists of the sampler group leaders. Each sampler group leader
obtains capsules only from the sampling agents in its group. This limits the time
that it needs to process the capsules, but may reduce its ability to link between
states since it obtains only a portion of the capsules.

The sampler leaders are also grouped according to their areas of responsibil-
ity. Each such group of sampler leaders is associated with a zone group leader. A
sampler leader sends its zone leader its estimates of target motion equations in its
area and capsules that it was not able to use in the estimation process. The third
and higher levels of the hierarchy consist of zone group leaders, which in turn, are
also grouped according to their areas of interest. Zone leader agents are respon-
sible for retrieving and combining information from their group of agents. That
is, they try to estimate the motion equations based on the estimates they received
from agents in their zone. All communication is restricted to exchanges between a
group member and its leader. The information unit sent by leaders to their higher-
level leaders is called a local information map. A local information map, which
we refer to as localInfo, is a triple consisting of: (i) an accurate solution compo-
nent consisting of a set of motion equations that with a high probability represent
targets; (ii) a semi-accurate solution component consisting of a set of paths; and
(iii) a set of capsules that were not used for the formation of any motion equation
of (i) or any path of (ii). That is, each zone leader obtains local information maps
of all its agents and combines them into an information map of its area. Thus, the
top-level leader agent forms a local information map of the entire area.

57

To conclude, the formation of a global information map integrates the follow-
ing processes:

� Each sampling agent gathers raw sensed data and generates capsules.

� Every dT seconds each sampler group leader obtains from all its sampling
agents their capsules and integrates them into its localInfo.

� Every dT seconds each zone group leader obtains from all its subordinate
group leaders their localInfo and integrates them into its own localInfo.

� As a result, the top-level group leader localInfo contains a global informa-
tion map.

We have developed several algorithms to implement each process. In the next
section we present those algorithms.

3.3 Descriptions of algorithms

The first algorithm describes the method for constructing a capsule from raw
sensed data. This algorithm is activated by each sampler agent and uses con-
secutive raw sensed data. The second and the third algorithms describe the way
in which every group leader processes incoming local information maps of the
sub-areas of its zone to generate a more comprehensive local information map of
its entire area.

First, we will describe the main data structures that the agents use. In these
data structures specifications and in the algorithm descriptions, we will use a dot
notation to describe a field in a structure, e.g., c.sa is the sampling agent field of
the capsule c.

Target state: � � � � � �
 where � is the location of the target and � is its ve-
locity at a given time. For example:

���
��� � ����� �
 � � ��� � �

�
 is a target state

where the target was at location � � ��� � and � � ��� � and its velocity was
��� � � and � !

�
� � .

Sensing agent state: ��� ��� � � �
 where � is the location of the sensor and O is
the orientation of the sensor. For example:

���
� � � ��� � ��
 ��� � �
 is an agent’s

state where the sensing agent was at location � � � � � and � � � � � and
had an orientation of �

� � .

58

Figure 3.1: DDM hierarchy information flow diagram.

59

Capsule: � � � ���#��� � �*� � �)� ' �$
 where � is the time of the sampling, sa is the sens-
ing agent’s state during the time the measurements that were used for the
formation of the capsule’s target states were taken, and �+� �)� ' are two possi-
ble target states computed by the sampler agent. An example is,� � � � ��� � � � ��� � ��
 ��� � �
 � � ��� ��� �	����� �+
 � � � � � ��
�
 � ��� � � �	��� � �+
 � � � ��� � ��
�
��$

where the time of the sampling was 30 and the sensing agent state was���
� � � � � � ��
 � � � �
 where the two possible target states were���
��� � � ��� ��
 � � ��� � �

�
 , and

��� � � � ��� � ��
 � � � ��� � ��
�
 .
Path point: � � � � � � �#����� �)� �
 where � � is the time of the point, ����� is the sensing

agent’s state during the time the measurements that were used to compute
the point’s state were taken, and � � is the target state of the point. For ex-
ample:

� � � � ��� � � � � � � ��
 � � � �
 � ��� ��� ������� �
 � � �	� � ��
�
�
 where while the time
of the path point was 30, the sensing agent state was

���
� � � ��� � ��
 ��� � �
 and

the target state was
���
��� � ����� �
 � � ��� � �

�
 .

That is, while in a capsule there are two possible states associated with
measurements, in a path point there is only one. The goal of the agents is to
choose the correct one.

Path:
	 � � �-� ����� � �
 where �-� and � � are the first and the last path points. Every

pair of path points in a path satisfies the ResBy relation.

Target state function:
�
����� ���

� � � � � � $ � � $ � � � � $ � � $ � ��� � � � � $ � ����� � ��� $ � � $ � �
 valid
in the range � $ � � �*� � " � � . For example: if

� $ � � � � � ��� � � ����� � ��
 � � 	 . � �
 � ��� ��� � � ��� ��
 � � ��� � �

�
�
 and

� " ��� � � � ��� � � �������
 � � 	 . � �
 � ��� � � � � � ��
 � � ��� � �

�
�
 then
�
����� ���

� � � ����
��� � � ��� ��
 � � ��� � �

 � � � � � � � � � ��� � �

�
 and at t=30 we have that�
����� ���

� � � � � ��� ��� ������� ��
 � � ��� � �

�
 and at t=40 we will have that,�
����� ���

� � � � � ��� � � � � � �
 � � ��� � �

�
 . For simplicity, we will refer to this func-
tion as

��� � � � � � � � � � �
 and to its properties:
� � � � � � � � � � � � ��� � � � $ and

� � � " .
Local information map:

��� � � ������� � �	�
 � � 	 � ������� � 	 �
 � � � � ������� ��� �
�
 . To form a lo-
cal information map out of raw sensed data agents should follow a set of
steps corresponding to the following stages of data evolution: (i) measure-
ments, (ii) capsules, (iii) path, (iv) target state function and (v) local infor-
mation map.

60

3.3.1 The raw data transformation and capsule generation al-
gorithm

The process proceeds as follows. A sampling agent deduces a set of possible tar-
get states at a given time to form a capsule. A sampling agent accomplishes this
by first taking four consecutive measurements and then creating a new capsule, c,
such that the time associated with that capsule corresponds to the time of the last
measurement. The state of the sampling agent while taking the measurements is
given by c.sa. The target states resulting from the application of the function raw-
DataTransformation to the four consecutive measurements is assigned to c.states.
The agent stores the capsules until it is time to send them to its group leader. Af-
ter delivering the capsules to the group leader the sampler agent deletes them. We
will now show now how an agent transforms four consecutive measurements into
a capsule.

A measurement is a pair of amplitude, � , and radial velocity, � � , values for each
sensed target. A radial velocity is the velocity of a target towards the measuring
Doppler. Given a measurement from a Doppler radar the target location can be
computed using the following equation:

0
'
�
� ��� "������ $ �
	��
�

� $ (3.1)

where, for each sensed target, i, 0 � is the distance between the sensor and . ; �
�

is the angle between the sensor and . ; � � is the measured amplitude of . ; � is the
sensor beam angle; and � and � are characteristics of the sensors and influence
the shape of the sensor detecting area. It is possible to infer the exact location
of a target by intersecting three different measurements taken at the same time
by three different Dopplers. Using the intersection method is very problematic
in large scale systems as it requires full synchronization and cooperation between
groups of three Dopplers. Thus, the DDM uses measurements from only one
Doppler to deduce a possible target state.

It is known that if the location of an object at time 0 is ��� and its velocity is
� then the next location, � � , at time 1 of the object is given by:

� � � � � ��� ��
 � � ��� (3.2)

where � is the displacement of the object in time t. If we consider the distance
from the center of the Doppler we have that

0 � � 0 � � � ��
 � � � ��� (3.3)

61

Figure 3.2: Target sampling by one Doppler.

where 0� is the displacement from the center of the sensor at time � and � � is
the relative velocity between the Doppler and the target in the direction of the
Doppler’s center. We assume that the acceleration of a target over a short period
of time is zero. The next target location is therefore:

0 � � 0 � � � � �
� ��� � � � � (3.4)

We denote
� ��� � � � � by ��� � � . From the relation between 0 � � and � , given by

equation 3.1, we can find the next angle as a function of the former.
In Figure 3.2 the dark arrow represents a target movement vector, the small

circles along the target movement represent target locations,
� 0 � � � � � , � 0 � � � � � and� 0 ' � � ' � , at time � � ����� , and � ' , respectively, as sensed by the Doppler. Following

the projection of 0 � and 0 ' over 0 � , and 0 � � � � and 0 ' � � � respectively, as shown
by the dotted line, we have the following:

0 � � ��� � 0 �
0 � ����.&� � � � � � � � � 0 ' � � � � 0

�

0 ' ����.&� � � ' � � � � (3.5)

Trigonometrically, we may write 0 � � � � and 0 ' � � � as

0 � � � �
� 0 � � ���*� � � � � � � �

62

and
0 ' � � �

� 0 ' � ���*� � � ' � � � �
by equation 3.1,

�
� can be written as

�
�
� � ��� � � ��� � � � �� ��0 '� � (3.6)

By substituting 0 � as given by equation 3.4 into equation 3.6 we can deduce that
the location,

� 0 � � � � � , at ��� of a sensed target may be written as a function of
� �

as
specified in the next proposition.

Theorem 3.1 Assuming that the acceleration of a target in a short time period,
��� � � , is zero, the next location of the target is then given by

� � � � � � � � ��� � � ��� � � � �� � � 0 � � � �
� ����� � � � ' � (3.7)

while

0 � � � ��� � � � � � 	 �

�
�
�

and

0 � ��� � � " ��� � � � 	 �
�
� � (3.8)

Where 0 � � � � � � � � � �
�

represent values of the target at time � � � and
� � � ��� repre-

sent values of the target at time � � � . The same holds for the next angle,
� '

.

An agent can use the relationship given by equation 3.7 for
� � � � � and

� '
to-

gether with equation 3.5 to find
� � and

� '
from

� �
. However, the value of

� �
is not

known and thus can’t be used in equations 3.7 and 3.5. Therefore the algorithm
examines the range of � ���*�)� ��� � to determine which value of

� �
solves these two

equations.
Note that, given a specific value of

���
, the result of equation 3.7 may lead to

two valid solutions. This is the reason for the use of capsules: the sampling agent
will leave the decision of determining the correct target states to the higher levels.

Equation 3.5 cannot be solved symbolically and therefore the sampler agent
uses computational methods. The sampler agent explores the range of

� �
and

looks for suitable locations corresponding to
���

. Only certain angles will fit the
above equation. To be more precise, the sampler agent uses one more sample and

63

Find
� �

function
Input: sa, ��� � 	 � � � �#��� � 	 ���
� �)��� � 	 � � '
Output:

� �

minimum diff= �

min
� �

=-1

For
� � �

� to � � in
�

steps
calculate

� � using
� �

by equation 3.7
calculate

� '
using

� �
by equation 3.7

diff = the difference between the left side the right side of
equation 3.5 using

� � and
� '

if (diff < minimum diff)
minimium diff=diff
min

� �
=
� �

Return min
� �

Figure 3.3: Finding a value of
� �

.

applies the same mechanism to
� � � � ' and

� � . Comparing the results from both
cases improves the accuracy of the results. The calculated angles are used to form
a set of possible pairs of location and velocity of a target (i.e., a capsule). In the
algorithms of figures 3.3, 3.4 and 3.5 we will use the notation ��� � 	 � � � to represent
a measurement

�
� � � �
 at � � . .

Theorem 3.2 The time complexity of the capsule generation algorithm is O(1).

Proof: While generating a capsule, the rawDataTransformation function uses the
Find function twice. The time complexity of considering the range of all angles
from 0 to � � in Find is O(1) as it does the same simple assignments � � /

�
times.

Therefore, the time complexity of the whole algorithm is O(1).
However, despite the low order, this algorithm can be CPU intensive. A sam-

pler agent applies this algorithm every four consecutive measurements. Thus, it
may have to apply it many times if it acquired many measurements or if many tar-
gets passed through its sector. A sampler agent may sometimes not have sufficient
resources to execute this algorithm many times in real time. In such cases, one
can consider using simpler sampling agents, i.e., with smaller detection sectors,

64

rawDataTransformation function
Input: sa, ��� � 	 � � � �#��� � 	 ���
� �)��� � 	 � � ' �#��� � 	 � ���
Output: target states� � �

Find
� � � ��� �#��� � 	 � � � �#��� � 	 � �
� �#��� � 	 ��� ' �� � � Find
� � � ��� �#��� � 	 � �
� �#��� � 	 � � ' �#��� � 	 ����� �

if
� � � �� � � &&

� � �� � �8�� � � calculate
� � using

� �
by equation 3.7� �� � calculate

� �� using
� � by equation 3.7

if (the difference between
� � and

� �� � epsilon)
Return

� � � � � ��� � � � � ��
 � � � � � � � � � � � � � � ��

else

Return null

Figure 3.4: The rawDataTransformation function

Capsule generation algorithm
Input: sa, ��� � 	 � � � �#��� � 	 ���
� �)��� � 	 � � ' �#��� � 	 � ���
Output: capsule

targetStateSet=rawDataTransformation(sa, ��� � 	 ��� � �#��� � 	 � �
� �#��� � 	 ��� ' �)��� � 	 � ���)
If (targetStateSet �� null)

capsule=new Capsule()
capsule.sa=sa
capsule.states = targetStateSet

else
capsule= null

Return capsule

Figure 3.5: Capsule generation algorithm.

65

which will reduce the computation load on a single agent. One may also consider
taking fewer samples.

Example: We will now present an example of how a sampler agent forms a
capsule from four consecutive measurements. Consider a case of a sampler agent
located at the coordinates �

� � � � � � ��� � ��
 with orientation of 0 degrees. The
sampler uses a Doppler with the characteristic � � � and �

�
� and maximum

detection range of 100 meters (see Figure 3.1). Consider the following measure-
ments taken by the Doppler.

Time � � �
0 1.08E-04 0.014141
1 1.11E-04 0.042405
2 1.15E-04 0.070619
3 1.18E-04 0.098748

Scanning the range of � ���*�)� ��� � for the value of
���

in Find
� �

function, the al-
gorithm computes

� � � � � � and
� ' � � � � using equation 3.7. At the end of the scanning

loop the algorithm finds out that while
���

had the value of � � � � � � � the difference
between the left side and the right side of equation 3.5 was minimal. Doing the
same in the case of

� � , the algorithm finds that when
� � was � ��� � � ��� the differ-

ence between the left side and the right side of equation 3.5 was minimal.
The algorithm then uses equation 3.5 to find that

� � � � � � is � ��� � ��� � � and
that

� �� � � ��� is also � ��� � ����� � . Realizing that the values of the calculated
� � � � � �

and
� �� � � ��� are equal, the algorithm constructs two targets states. The first is� � � � � ��� � � � � ��
 and the second is

� � � � � � � � � � � � � ��
 . The values of � � � � �%� and
�
�
�
� �%� are given by the following equations:

� � � � � � � � 0 � � � ����. � � � � � � � ��� �)0 � � � � � �*� � � � � � � � ��

� �

� � � ��� � � ����.&� � � � � � � � ���*� � � ��

where 0 � � � is given by equation 3.8 and, in our case, 0 � � � � � �

��� � � � � . Accord-
ing to our example the two target states will be

���
� � � ����� ��
 � ��� �

�
 and

��� � � � ����� �
 � � �����

�
 .

3.3.2 Leader localInfo generation algorithm

Every dT seconds each group leader performs the localInfo generation algorithm.
Each group leader holds its own localInfo. The leader starts by purging data older
than a predefined � seconds before processing new data to avoid data overloading.

66

Updating localInfo involves three steps: (i) obtaining new information from the
leader’s subordinates; (ii) finding new paths; and (iii) merging the new paths into
localInfo.

Figure 3.6 describes the algorithm for (i) in which every leader obtains infor-
mation from its subordinates. The sampler group leader obtains information from
all of its sampling agents for their unusedCapsules and adds them to its unused-
Capsules set. The zone group leader obtains from its subordinates their localInfo.
It adds the unusedCapsules to its unusedCapsules and merges the infoMap of that
localInfo to its own localInfo.

Merging of functions is performed both in steps (i) and (iii): this is needed
since, as we noted earlier, target state functions that a leader has inserted into the
information map are accepted by the system as correct and will not be removed.
However, different agents may sense the same target and therefore it may be that
different functions coming from different agents will refer to the same target. The
agents should recognize such cases and keep only one of these functions in the
infoMap. We use the next lemma to find and merge identical functions.

Lemma 3.1 Let
	 � � � � �$ ������� ��� �"
 � 	 ' � � � '$ ������� � � '"
 be two paths, where � �, �� � �, �#��� �, �#� �,
 and� �

� �� � � ��
� � � � � � �$ � � $ � � � � �$ � � $ � � � � � � � �$ � � � � � �$ � � $ � ��
� '

�
� � �
�
� � � � � � '$ � � $ � � � �

'
$ � � $ � � � � � � �

'
$ � � � � � '$ � � $ � ��

If 0 ��� � � � � � �$ �#� �$
 � � � ' $ �#� ' $
 � then for any
� �
� �� � � ��

� � ��� � '�
� � �
� � � � ,� �
� �� � � ��

� � � � � '�
 � �
� � � �
The mergeFunctions algorithm shown in Figure 3.6 is based on lemma 3.1.

In that algorithm, the leader uses the ResBy relation to check whether the first
state of the target state function results from the first state of a different target
state function. If one of the states results from the other, the leader changes the
minimum and the maximum triplets of the target state function. The minimum
triplet is the starting triplet that has the lowest time. The maximum triplet is the
ending triplet that has the higher time. Intuitively, the two state functions are
merged and the new function corresponds to the largest range given the found
points. In case that a leader cannot find any target state function to meet the
subordinate’s function, the leader will add it as a new function to its infoMap.

Proposition 3.1 The time complexity of the obtaining new information algorithm
is � � � ' � where T is the number of targets in the � seconds window of time in
which target information is kept by an agent.

67

Step 1 - Obtaining new information algorithm
In: LocalInfo
Out: updated localInfo

if activated as Samplergroup leader
for each subordinate sampler, sampler

additionalCapsules =obtain set of capsules from each sampler
localInfo.unusedCapsules= localInfo.unusedCapsules !

additionalCapsules
else % activated in Zone group leader

for each subordinate leader, leader
%in this part we identify identical functions and leave only one of them
additionalLocalInfo = ask each leader for its local info
additionalCapsules=additionalLocalInfo.unusedCapsules
additionalInfoMap=additionalLocalInfo.infoMap
localInfo.unusedCapsules=localInfo.unusedCapsules !

additionalCapsules
mergedFunctions(localInfo.infoMap,additionalInfoMap);

return infoMap, unusedCapsules

Figure 3.6: Obtaining new information algorithm.

68

mergeFunctions algorithm
In: target function sets: F, F’
Out: updated target function: F

for eachstatefunction,
� � , in F’

merged = false
for each state function,

� ,
,
� � �� � , , in F && not merged

if
�/� � � � � � � � � , � � � � � � � � &&

� � � ��� � , � � � � � �� , � � $ � � .&� � � � � � $ � � , � � $ �� , � � " � � � � � � � � � " � � , � � " �
merged=true

if (not merged)
� ��� ! � � � �

Return
�

Figure 3.7: mergeFunctions algorithm.

Proof: While obtaining new information, agents implementing the algorithm
query each subordinate agent for information. The number of subordinate agents
is predefined and therefore constant. In the case of the sampler leader the algo-
rithm combines all capsules. The number of capsules depends on the number of
targets up to a constant factor. The constant factor depends on predefined constant
values, such as, the number of agents and time period for sampling. Therefore
the time complexity for the sampler leader component is O(T). However, for each
subordinate leader, the zone group leader also performs the mergeFunctions algo-
rithm. The time complexity of the mergeFunctions algorithm is � � � ' � as it runs
over a set of task state functions for every other task state function in another set.

The second step, as shown in Figure 3.10 is conducted by every leader to find
paths and extend current paths given a set of capsules. In order to form paths of
capsules, the agent should choose only one target state out of each capsule. This
constraint is based on the following lemma. According to this lemma one state
of one capsule cannot be in a ResBy relation with two different states in another
capsule, with respect to the capsule’s time.

Lemma 3.2 Let � � � � � � �#��� � � � � �� �#� �'
�
 � �
' � � �

'
�#���
'
� � �
'
� �#�
''
�
 then if

69

Sensing Agent State Target State A Target State B
Capsule Time Location Orientation Location Velocity Location Velocity

0 0 0,0 0 100,100 5,5 60,60 3,-1
1 0 0,0 0 50,50 2,3 30,40 -2,-2
2 1 0,0 0 105,105 5,5 63,59 3,-1
3 1 0,0 0 70,80 2,3 52,53 2,3
4 2 0,0 0 66,58 -1,3 110,110 5,5
5 3 10,10 0 56,59 2,3 30,30 3,3

Figure 3.8: Example of a set of unusedCapsules received by the Find-
ing new paths algorithm.

0 ��� � � � � � � �#� ��
 � � � ' �#� ' �
 � then

� (i) 0 ��� � � � � � � �#� ��
 � � � ' �#� ''
�� is false and

� (ii) 0 ��� � � � � � � �#� �'
 � � � ' �#� ' �
 � is false.

Proof: If a capsule could be in such a relationship with both target states, the
two targets states would stand in a ResBy relation between themselves. Given that
the two target states have the same creation time and that a target cannot be at the
same time in two places, that is not possible.

For the algorithm in Figure 3.10 that creates new paths we add two temporary
fields to two of the structures only for the purposes of the algorithm. The first
is a boolean flag named mark that will be added to the capsule structure. The
second is a pointer to the original capsule that will be added to every triple stored
in a path. In the first phase, every agent tries to fit every state in unused capsules
to an existing path. If the state does not fit, a new path will be created, starting
at that state. The second phase the agent separates the paths into accurate and
semi-accurate paths according to the number of sampling agents generating them.

Example: Consider a case in which Finding new paths algorithm receives the
following set of capsules as unusedCapsules:

Let us assume that at the beginning of the algorithm shown in Figure 3.10,
allPaths does not contain a path (line 2). Considering each target state in each
capsule (lines 3 to 5), we start with TargetStateA of capsule 0. Because allPaths
does not contain a path, a new path will be created with TargetStateA of capsule
0 at its head (lines 16 to 18). The next state, TargetStateB of capsule 0, will

70

Figure 3.9: An example of an outcome of phase 1

be tested to see if it is in a ResBy relation with any of the tails of the paths,
stored in allPaths (line 10). It does not stand in a ResBy relation with the only
tail that exists: TargetStateA of capsule 0. Therefore, a new path will be created
with TargetStateB of capsule 0 at its head (lines 16 to 18). TargetStateA and
TargetStateB of capsule 1 will result in a new path as well. However, TargetStateA
of capsule 2 is in a ResBy relation with TargetStateA of capsule 0 and will join
its path as a new tail (line 14). TargetStateB of capsule 2 will do the same with
TargetStateB of capsule 0. At the end of the first phase 6 paths will be formed, 3
of them are made from more than one capsule.

In Figure 3.9 we summarize the outcome of phase 1. Each arrow corresponds
to a ResBy relation between two path points. Every capsule contains the original
sampler state, which is not shown in the figure due to space limitations.

In phase 2, the algorithm finds that one of the paths in allPaths is formed by
capsules generated by agents with different states. This path is an accurate path
and will be added to the accurate paths set. The algorithm removes all target states
that share the same capsule with accurate paths’ target states. At the end of the
second path, the algorithm looks for semi-accurate paths. A semi-accurate path is
a path of target states sensed by the same agent at the same agent state.

The function pathToFunc receives a path and returns a function based on it. In

71

our case it will receive the paths shown in the left side of the figure and return:�
� � � � �

� � � � ��� � � � � ��
 � � �����
 � ��� � ������
�
 with respect to the first and the last
path points: � $ � � � � ��� � � ��
 � ��
 � ��� � � � � ��
 � � �	� ��
�
�
 and � " ��� � � ��� � �����
 � ��
 ����
� � � � �
 � � ��� ��
�
�
 .

Proposition 3.2 The finding new paths algorithm time complexity is � � � ' � where
T is the number of targets in the � seconds window of time passing through the
controlled area.

Proof: In this algorithm, every leader runs over a set of paths for every capsule
in its set of capsules. The paths and the capsule sets are correlated with the number
of targets in the time period of � , and therefore results in a time complexity of
� � � ' � .
3.3.3 The movement of a sampler agent

While the integration algorithms play an important role in producing an accurate
infoMap, ultimately, the accuracy of the infoMap fundamentally depends on the
accuracy of the observations made by the sampling agents. There are several de-
grees of freedom associated with the movements of sampler agents. At this point
in our research we wanted the sampler agents to move autonomously according to
a predefined algorithm without making any assumptions regarding target location.
We hypothesize that the following criteria should be considered when determining
the sampler agent’s behavior: (i) the union of all the sensed area at time t should
be maximized and (ii) the intersection of the areas sensed by sampling agent s at
time t and at t+1 should be minimized. One of the ways to achieve this is to move
in the pattern demonstrated in figure 3.11 (page 74). We refer to this pattern as the
Patrol movement pattern.

We compared the patrol movement pattern with a steady random movement
that was used by the agents in [[Yadgar 2002, Yadgar 2003]]. A steady random
movement is defined as a movement in a random direction and velocity. Upon
reaching the end of the controlled zone, the velocity and the direction is changed
and re-directed into the zone. We found out that most of the time the patrol move-
ment pattern is more efficient than the random one. Hence, we will present our
simulation results using the former.

72

Step 2 - Finding new paths algorithm
In: unusedCapsules
Out: updated unusedCapsules, accurateFunctions, mediocrePaths
% phase 1: make links
(1) sort(unusedCapsules) % by time stamp
(2) allPaths = ���

(3) for each capsule, �����	��

����
���� �

� ' ��� , in unusedCapsules
(4) cap.mark=false % marking for phase 2
(5) for each target state, si, in cap states
(6) linked=false
(7) % because of the above assumption and given that the path
(8) % elements came from capsules there will be only one suitable
(9) %path. Therefore, we exit the loop after finding such a path
(10) for every last triplet, �	� ��������

��� ��������

� ��������� , in each path, p,
(11) in allPaths && not linked
(12) if �������� "!#���	� ��������

� �������$��
��	��

��%&��'
(13) or �	� �������(�)�+*,*���� �������.-�/����'�'
(14) 01�20435���	��

����

��%&���
(15) linked = true
(16) if (not linked)
(17) 01�����	��

����

��%&���
(18) allPaths=allPaths 67� p �
(19)% phase 2: collect target representing paths that has no common capsules
(20)% when giving a greater priority to paths with more viewpoints
(21) sort(�8����9��8�+:��) % by number of viewpoints
(22) paths= ���
(23)for each path, p, in allPaths
(24) if (not isAnyCapsuleMarked(p) & & numberOfViewpoint(p) > 1)
(25) markAllCapsules(p)
(26) unusedCapsules.=unusedCapsules - allCapsules(p)
(27) accurateFunction=accurateFunction
(28) accurateFunctions= accurateFunctions 6 pathToFunc(p)
(29)if activated as top-level leader
(30) mediocrePaths=collectMediocrePaths(allPaths)
(31)else
(32) mediocrePaths= ���
(33) Return unusedCapsules, accurateFunctions, mediocrePaths

Figure 3.10: Finding new paths algorithm.

73

Figure 3.11: Patrol movement pattern.

3.4 Simulation, experiments and results

3.4.1 Simulation environment

For this work, we did not make use of the RadSim simulator. We instead devel-
oped a separate simulation to study the problems associated with the application
of the DDM in a large-scale, mobile agent environment. The simulation consists
of an area of a fixed size in which Dopplers attempt to extract the object state
functions of moving targets. Each target has an initial random location along the
border of the area and an initial random velocity of up to 50 km. per hour in a
direction that leads inwards. Targets leave the area when reaching the boundaries
of the zone. Each target that leaves the area causes a new target to appear at a
random location along the border and with a random velocity in a direction that
leads inwards. Therefore, each target may remain in the area for a random time
period. Figures 3.12 and 3.13 are screendumps of a simulation in progress.

To run our simulations we used a Pentium 4 computer with Windows 2000 as
an operating system and 1GB RAM.

3.4.2 Evaluation methods

We collected the state functions produced by agents during a simulation. We used
two evaluation criteria in our simulations: (1) target tracking percentage and (2)
average tracking time. We counted a target as tracked if the path identified by the
agent satisfied the following: (a) the maximum distance between the calculated
location and the real location of the target did not exceed 1 centimeter, and (b) the
maximum difference between the calculated v(t) vector and the real v(t) vector
was less than 1 centimeter per second.

74

Figure 3.12: Simulating 2 Doppler radars tracking 30 targets. The dots represent
sampled target states. The shades of lines represent 100% and 50% tracked targets.

75

Figure 3.13: Simulating 20 Doppler radars tracking 30 targets. The dots represent
sampled target states and the lines represent tracked targets.

76

In addition, the identified object state functions were divided into two cate-
gories. One category involves the association of only a single function with a
particular target, chosen to be part of the infoMap; those functions were assigned
a probability of 100% and corresponded to the actual object state function (we
refer to this as the case of accurate tracking). The other category involves the
association of two possible object state functions with a particular target. In that
case, each state function was assigned a 50% probability of corresponding to the
actual state function. We refer to those functions as semi-accurate. We will say
that one set of agents did better than another if it reached a higher tracking per-
centage and a lower tracking time with respect to the accurate functions and the
total tracking percentage was at least the same.

The averages reported in the graphs below were computed for one hour of
simulated time. The target tracking percentage time was calculated by dividing
the number of targets that the agents succeeded in tracking, according to the above
definitions, by the actual number of targets during the simulated hour. We consid-
ered only targets that exited the controlled zone. The tracking time was defined
as the time that the agents needed to find the object state function of the target
from the time the target entered the simulation. Tracking average time was calcu-
lated by dividing the sum of tracking time of the tracked targets by the number of
tracked targets.

Basic settings: The basic setting for the environment corresponded to an area
of 10,000 by 10,000 meters. In each experiment, we varied one of the parameters
of the environment, keeping the other values of the environment parameters as in
the basic settings.

Each Doppler moved one second and stopped for 5 seconds to take 5 measure-
ments. The maximum detection range of a Doppler in the basic setting was 100
meters; the number of Dopplers was 1,000. The controlled area was divided into
1,000 equal rectangles, each 400x250 squared meters. Each patrolling Doppler
was assigned to such an area and executed the patrol movement pattern. 1,000
Dopplers with a detection range of 100 meters each, can cover together up to
approximately 8,000,000 squared meters, which is 8% of the controlled area.

The number of targets at a given time point was 1,500. In total, during one
hour 5,700 targets entered the controlled area and 4,200 of them exited the area.

In the basic setting we used a hierarchy of 4 levels: three levels of zone group
leaders and one of sampler group leaders. Each of the zone group leaders divided
its zone into 4 areas and assigned a sub-leader to each one of them. Therefore

77

Figure 3.14: Tracking percentage by time in zone (Sec.).

there was one leader at the top level, 4 at the second level, 16 at the third and
64 at the fourth. Each Doppler sensor communicated with one of the fourth-level
leaders.

3.4.3 Results

We conducted three sets of tests: (i) evaluating the basic settings, (ii) investigating
the influences of the number of levels in the hierarchy, and (iii) studying the tol-
erance towards faulty sensing agents, leaders and sensing noises. At this state of
our research, samplers and leaders do not react to the changes in the functioning
agent community.

Basic settings results: Our hypothesis was that by applying the DDM hierarchy
model we would be able to very quickly track many targets. We also hypothesized
that the tracking period for each target would be significant. We ran the simulation
using the basic settings and evaluated the results.

Figure 3.14 shows the percentage of tracked targets as a function of the time
each target remained in a zone. To put this histogram in context we added the gray
graph that corresponds to the right legend. This graph reflects target distribution
with respect to the time spent in the zone.

78

Figure 3.15: Time to track distribution (Sec.).

We can see that the system accurately tracked 83% of the targets. This was
achieved with Dopplers covering only 8% of the area. A little more than 50% of
the targets that stayed in the controlled zone less than 360 seconds were tracked.
Note that most of the targets passing through the simulated area remained in the
area less than 720 seconds. During that time the patrol method tracked many
targets and therefore achieved rapid tracking.

Figure 3.15 shows the number of targets that were tracked upon entering a
zone. Most of the tracking was achieved in less than 2 minutes from the time of
a target’s entrance into the zone. The system tracked 71% of its tracked targets in
this period.

Figure 3.16 plots the tracking duration, which is the period of time between
the first and the last time a target was detected. The figure indicates that the system
tracks more targets for less duration. However, it tracks most of the tracked targets
for more than 6 minutes.

Level comparison: We investigated the influence of the number of levels in
the hierarchy. Our hypothesis was that too few levels would overload the leader
agents so they would not have enough time to process the information. We also
anticipated that, as more leader agents were involved in generating the global
solution, a less accurate solution would result.

Figure 3.17 presents the tracking performance of the system as a function of

79

Figure 3.16: Tracking duration distribution (Sec.).

Figure 3.17: Accurate tracked target percentage as a function of the number of
levels.

80

Figure 3.18: Accurate tracking time (Sec.) as a function of the number of levels.

the number of levels in the hierarchy. As we hypothesized, the system tracked
less targets as the number of levels increased. This can be explained by a greater
fragmentation of the zone, i.e. 4 quarters in 2 levels versus 64 in 4 levels. The
figure shows that the decrement is narrow.

As shown in Figure 3.18, the average time to track a target increases as the
number of levels increases. However, it increases only from 100 seconds to 106
seconds while the number of levels increases from 1 to 4.

Figure 3.19 presents the duration it took an agent to perform its task. In this
figure we present the maximum time when using the computer capabilities as
detailed above. The maximum time is very close to the average time; therefore
we do not present the latter here. As we predicted, while using only one level the
agent will need more time than it has. In our case an agent needed 16,000 seconds
(about 5 hours) to process data gathered during 1 hour. That means that in the
case of one level the system will not converge. Using 2 levels enabled the system
to solve the problem in only 35 minutes. Using 4 levels decreased the maximum
time that an agent needed to process data collected in an hour to only 10 minutes.

In Figure 3.20 we show the total number of bytes transferred between agents
during one hour, relative to the number of levels in the hierarchy. The capsules
generated by samplers and sent to sampler group leaders resulted in a transfer
of 4Mb. Having a massive communication load may cause a bottleneck in the

81

Figure 3.19: Maximum agent process time (Sec.) as a function of the number of
levels.

receiving agent that may lead to delays. Moreover, such a bottleneck may result
in a loss of important information in case of agents’ faults. When adding more
levels to the hierarchy, more agents transfer information upwards and therefore
the total number of bytes transferred is increased. On the other hand, adding more
levels decreases the average number of bytes every agent receives. In figure 3.21
we can see the significance of the reduction of the average communication load
on the receiving agent when increasing the number of the levels.

We used a hierarchy formation such that every level has four times more agents
then its leader’s level. Therefore, the total number of leader agents receiving
information in the hierarchy is 1, 5, 21 and 85 when using hierarchy of 1,2,3
and 4 levels. Figure 3.21 show the number of bytes transferred according to the
number of agents.

Dysfunctional sampling agents: To investigate the fault tolerance property
of the hierarchy model in a large-scale environment we disabled some of the sam-
pling agents. We increased the number of disabled sampling agents from 0% as
in the basic settings to 90%, leaving only 10% active agents. We hypothesized
that by increasing the number of faulty sampling agents the system would not
perform as well as in the basic settings. Our goal was to place a bound on the
number of dysfunctional sampling agents that the system could tolerate while still

82

Figure 3.20: Bytes transferred as a function of number of levels.

performing well.
Figure 3.22 shows the accurate tracked targets percentage as a function of

the number of samplers which stopped functioning. We found that increasing
the number of disabled sampling agents also increases the time it takes to track
targets. By increasing the number of disabled sampling agents by 5% the average
time it takes to track a target increased by 6%.

Dysfunctional leader agents: A second aspect of the system’s fault tolerance
is its response to dysfunctional leaders. In contrast to dysfunctional samplers, a
dysfunctional leader will result in a difference in the coverage of the system. For
example, consider a case in which a leader responsible for half of the controlled
area stops functioning. Using the patrol Doppler movement pattern will result in a
loss of information from half of the samplers. We hypothesized that performance
would be significantly influenced by this factor. To validate this hypothesis we
conducted several simulations in which we varied the number of dysfunctional
sampler leaders.

Figure 3.23 confirms our hypothesis. It shows that the system could tolerate
a reduction of up to 13% in the number of functioning sampler leaders. A reduc-
tion of 18% or more resulted in a very low performance level. However, despite
the fact that the system demonstrated poor tracking percentage for high-rate dys-
functional sampler leaders, we discovered that it still tracked targets quickly. We

83

Figure 3.21: Average number of bytes received by a single agent as a function of
the number of levels.

Figure 3.22: Accurate tracked target percentage as a function of dysfunctional
samplers.

84

Figure 3.23: Accurate tracked target percentage as a function of dysfunctional
first level leaders.

hypothesize that adopting a reactive approach that will enforce division of the area
among the active agents will overcome this problem. We plan to report the results
of our investigation of this hypothesis in a future document.

Noisy communication: As we stated, we would like to show that using sim-
ple and cheap sensors may be beneficial even if they tend to malfunction or if
communication with their leaders degrades. We conducted a thoughtful simula-
tion testing the system while using faulty communication between samplers and
leaders. We predicted that the system would be tolerant towards such noise.

We found, as shown in Figure 3.24, that even if 50% of the messages did
not reach their destination (either because of faulty communication or faulty sam-
plers), the system still performed well. Losing 50% of the messages resulted in a
reduction of only 5% of the tracked targets and increased the tracking time by 20
seconds.

3.4.4 Small Scale Results

We also tested the DDM in a small-scale environment to compare various prop-
erties of the suggested solution. We tested the need for hierarchical structure and
sensor mobility.

85

Figure 3.24: Accurate tracked target percentage of patrol as a function of lost
communication messages between samplers and leaders.

Figure 3.25: Target tracking percentage and average time by the settings.

86

Basic Settings: The basic setting of the environment was 1200 by 900 meters.
In the experiments, we varied one of the parameters of the environment, keep-
ing the other values of the environment parameters as in the basic settings. The
Dopplers were mobile and moved randomly as before. Each Doppler stopped ev-
ery 10 seconds, varied its active sensor randomly, and took 10 measurements. The
maximum detection range of a Doppler in the basic setting was 200 meters; the
number of Dopplers was 20 and the number of targets at any given time was 30.
The DDM hierarchy consisted of only one level. That is, there was one sampler-
leader that was responsible for the entire area.

We first varied several settings of both the hierarchy model and the sampling
agents. Each setting corresponded to (1) whether a hierarchy model (H) or a flat
model (F) was employed; (2) whether the sampler-agents were mobile (M) or
static (S); and (3) whether Dopplers varied their active sectors from time to time
(V) or used a constant one all the time (C). In the flat model the sampler agents
used their local capsules to produce task state functions locally. We refer to a
particular combination of settings by combining the labels corresponding to each
setting; for example, the label “FSC” would correspond to a flat, static model in
which Dopplers kept their active sensor constant.

Mobile and dynamic vs. static Dopplers: In preliminary simulations we ex-
perimented with all combinations of parameters (1)-(3) above. In each setting,
keeping the other two variables fixed and varying only the mobility variable, the
mobile agents did better than the static ones (with respect to the evaluation defini-
tion above).

Hierarchy vs. flat models: We examined the characteristics of 4 different set-
tings: (1) FSC that involves static Dopplers with a constant active sector using a
non-hierarchical model; (2) HSC as in (A) but using the hierarchical model; (3)
FMV with mobile Dopplers that vary their active sectors from time to time, but
with no hierarchy; (4) HMV as in (3) but using the hierarchical model. We tested
FSC in two experimental settings: one in which Dopplers were located randomly
and one in which Dopplers were arranged in a grid formation to achieve better
coverage. There was no significant difference between these two FSC formations.
Our hypothesis was that the agents in HMV would do better than in all the other
settings.

The first finding is presented in the left part of Figure 3.25 This finding in-
dicates that the setting does not affect the overall tracking percentage (i.e., the

87

tracking percentage of the 50% and 100% functions). The difference between
the settings is with respect to the division of the detected target between accu-
rate tracking and mediocre tracking. HMV performed significantly better than the
other settings. It found significantly more 100% functions and did it faster than the
others. This supports the hypothesis that a hierarchical organization leads to bet-
ter performance. Further support for a hierarchical organization comes from HSC
being significantly better than FMV even though, according to our preliminary
results, HSC uses Dopplers that are more primitive than the Dopplers FMV.

Another aspect of the performance of the models is the average tracking time
as shown in the right part of Figure 3.25. Once again, one can see that the hier-
archically based settings lead to better results. We found that by considering only
targets that stayed in the controlled zone at least 60 seconds, HMV reached 87%
tracking percentage and 83% were accurately detected.

We also studied the performance of hierarchies with two levels: one zone
leader leading four sampling leaders. The area was divided equally between the
four sampling leaders, and each obtains information from the many mobile sam-
pling agents located in its area. In that configuration Dopplers were able to move
from one zone to another; Dopplers changed their sampling leader every time they
moved from one zone to another. Comparing the results of the two level hierarchy
simulations, with the one level hierarchy simulations we found that there was no
significant difference in performance (with respect to the evaluation definition) of
a system composed of two levels with a system consisting of only a one level hi-
erarchy. However, consistent with theorem 1, the computation time of the system
was much lower.

Communication and noise: While the performance of the hierarchy-based mod-
els are significantly better than the non-hierarchy ones, the agents in the hierarchy
model must communicate with one another, while no communication is needed
for the flat models. Thus, if no communication is possible, FMV should be used.
However, with communication, messages may be lost or corrupted. Recall that the
data structure exchanged in messages is the capsule; in our simulations using a hi-
erarchy model, each sampling agent transmitted 168 bytes per minute. We studied
the influence of randomly corrupted capsules on the HMV’s behavior. Figure 3.26
shows that as the percentage of the lost capsules increases the number of tracked
targets decreases; however, up to a level of 10% noise, the detection percentages
decreased only from 74% to 65% and the accurate tracking time increased from 69
seconds to only 80 seconds. Noise of 5% results in a smaller decrease to a tracking

88

accuracy of 70% while the tracking time is slightly increased to 71. DDM could
even manage with noise of 30% and track 39% of targets with average tracking
time of 115 seconds. In the rest of experiments we used the HMV settings without
noise.

Varying the number of Dopplers and targets: We examined the effect of the
number of Dopplers on performance. We found that, when the number of tar-
gets is kept fixed, as the number of Dopplers increases the percentage of accurate
tracking increases. This result demonstrates that the system can make good use
of additional resources that it might be given. We also found out that as the num-
ber of Doppler sensors increases, the 50% probability paths decrease. That may
be explained by the fact that 100% paths result from taking into consideration
more than one point of view of samples. We also found that increasing the num-
ber of targets, while keeping the number of Dopplers fixed does not influence the
system’s performance. We speculate that this is because an active sector could
distinguish more than one target in that sector.

Maximum detection range comparison: We also tested the influence of the
detecting sector area on performance. The basic setting uses Dopplers with a
detection range of 200 meters. We compared the basic setting to similar ones
with detection ranges of 50, 100 and 150 meters. We found that as the maximum
range increases the tracking percentage increases up to the range of covering the
entire global area. As the maximum radius of detection increases the tracking
average time decreases. This is a beneficial property, since it suggests that better
equipment (i.e., sensors and other hardware) will lead to better performance.

3.5 Related work

The benefits of hierarchical organizations have been argued by many. So and
Durfee draw on contingency theory to examine the benefits of a variety of hierar-
chical organizations; they describe a hierarchically organized network monitoring
system for task decomposition and they also consider organizational self-design
[[So 1996]]. DDM differs in its organization use to dynamically balance compu-
tational load and also in its algorithms for support of mobile agents.

The idea of combining partial local solutions into a more complete global
solution goes back to early work on the Distributed Vehicle Monitoring Testbeds
(DVMT) [[Lesser 1987]]. DVMT also operated in a domain of distributed sensors

89

Figure 3.26: Target detection percentage and average time as function of the com-
munication noise.

Figure 3.27: Tracking percentage and average time as a function of the number of
Dopplers.

90

that tracked objects. However, the algorithms for support of mobile sensors and
for the actual specifics of the Doppler sensors themselves is novel to the DDM
system. Within the DVMT, Corkill and Lesser investigated various team orga-
nizations in terms of interest areas [[Corkill 1983]] which partitioned problem
solving nodes according to roles and communication, but they were not initially
hierarchically organized [[Ishida 1992, Scott 1992]]. Wagner and Lesser exam-
ined the role that knowledge of organizational structure can play in control deci-
sions [[Wagner 2000]].

All of the other approaches discussed in this volume assume that agents are
stationary. Those approaches make use of measurements from three Doppler sen-
sors, taken at the same time, and intersect the arcs corresponding to each sensor.
The intersection method depends on the coordinated action of three Doppler sen-
sors to simultaneously sample the target. Such coordination requires good syn-
chronization of the clocks of the sensors and therefore communication among the
Doppler agents to gain that synchronization. In addition, communication is re-
quired for scheduling agent measurements. We have described an alternative that
can make use of uncertain measurements; we focus on the combination of partial
and local information. Note, that even though our agents associate a time stamp
with each capsules, DDM does not require that the sensors are fully time synchro-
nized. The ResBy relation may allow small deviation of the time. For example:
0 ��� � � ��� � ���)� ��
 � � � ���)� �+
�
 may be � �+� � � � � � � ��� � � �+� � ��� ��� � � � �-� � � � � � � �
� ���	� � � �-� � � Using a large � may indicate high tolerance towards non synchro-
nized clocks. However, increasing the value of epsilon increases the probability
to identify two different targets as the same one.

In their work, Yu and Cysneiros [[Yu 2002]] describe challenges related to
large-scale information systems. They claim that large-scale systems have the
potential to support greater diversity, offering more flexibility and better robust-
ness as well as more powerful functionalities compared to traditional software
technologies. In our work we address these challenges and propose an efficient
solution.

Silva et al, have developed the Reflective Blackboard architectural pattern for
large-scale systems [[Silva 2002]]. This is the result of the composition of two
other well-known architectural patterns: the Blackboard pattern and the Reflection
pattern. They separate control strategies from the logic and data. In our work we
use independent agents that act autonomously. Such a loose coupling is beneficial
in terms of simplicity, robustness and fault tolerance.

Tel has studied the performance of a network tree with n processors providing
communication between every pair of processors with a minimal number of links

91

(n-1) [[Tel 1991]]. The communication complexity in a tree topology is influenced
by the diameter of the number of levels in the tree. Therefore a tree with fewer
levels will have a better communication complexity. However each node has more
computations to perform and can therefore become a bottleneck. A failure of a
node will split the tree into a larger number of unconnected subsets. In the work
we have described, we have investigated the relation between the number of levels
in a hierarchical structure and performance; we have presented suggestions of how
to choose the right number of levels.

3.6 Conclusions

We have shown that problems involving hundreds and thousands of Dopplers and
targets cannot be solved using a traditional flat architecture. Our approach was
based on distributing the solution into smaller problems that could be solved par-
tially by simple agents; agents are, in addition, organized hierarchically. Using
many simple and cheap agents instead of a much smaller number of sophisticated
and expensive ones may also be cost-effective: it is often more affordable to re-
place and maintain many simple agents than to depend on a few sophisticated
ones. Our approach incorporated methods for combining partial solutions to form
a global solution, and involved an autonomous movement algorithm that could be
executed by each sampling agent.

The number of levels in a hierarchy was shown to influence accuracy. As the
number of levels increased the number of tracked targets dropped, even though
this drop was moderate. However, as the number of levels increased, the time
needed by every agent to complete its mission dropped exponentially. By com-
bining these two results we were able to balance both properties. Choosing the
right number of levels should also take into consideration the time it takes to track
targets. As we have shown, it takes more time to track targets as the number of
levels in the hierarchy is increased.

To conclude, we have shown that a large-scale ANTs system can perform well
even if agents are very simple and inaccurate. We have shown how partial infor-
mation can be combined and how the existence of dysfunctional participants can
be overcome.

92

Chapter 4

Multi-channel communications
scheduling

The ANTs challenge problem relies on wireless communication between a set
of sensors. Each sensor is equipped with a low bandwidth transceiver and eight
distinct radio channels are available for communication. Each sensor can be pro-
grammed to send and receive on any of the eight channels; the transmission and
reception channels of each can be different. A sensor cannot send and receive
at the same time. Efficient use of the bandwidth requires good synchronization
between sending and receiving nodes to ensure that they are tuned to the right
channel at the right time.

SRI researched scheduling algorithms based on graph coloring for schedul-
ing communication between sensors. This approach assumes that sensors have
a limited communication range so that transmissions from two sufficiently dis-
tant sensors do not interfere, even if they use the same band. Unfortunately, this
assumption is not valid for the hardware developed for the ANTS challenge prob-
lem.

In a second phase of the project, we investigated a different approach to shar-
ing the RF medium, by developing a channel reservation protocol for ANTs-like
networks. We experimented with a prototype implementation using the challenge
problem simulator. Unfortunately, performance was poor because of the impos-
sibility of asynchronously receiving and reacting to RF messages within a Java
virtual machine, and the limitations of the Java scheduling model.

93

4.1 Scheduling Access to Radio Channels

4.1.1 Model

A network of sensors that communicate via wireless links can be modeled natu-
rally as a graph � � � � ��� � :

� Each vertex � of � represents one of the sensors.

� There is an edge between two vertices � and � � if the two sensors � and � �
are within communication range of each other.

The set of neighbors of a node � , that is, the set of nodes within communication
range of � is denoted by �

� �-� .
This model assumes that communication links are symmetric: if � can send

to � � then � � can send to � . In the common case, the sensors are placed on a two
dimensional plane, and two sensors are within communication range of each other
if the distance between them is less than a bound � . This gives rise to a special
class of graphs called point graphs in [Sen and Luson 1997] or disk graphs.

We assume that a schedule is composed of a sequence of time slots. In each
time slot, a node is either idle, sending, or receiving a message on a specified
channel. The schedule must ensure that sender and recipients of a message are
synchronized and prevent message collisions. Such a schedule can be effective
only if the communication pattern between the sensors is sufficiently regular and
predictable. We assume that the communication pattern is periodic and can be
described as follows. During each period, a finite set

�
of messages must be

transmitted. Each message � has a unique sender � � � � � � and a set of recipients
� � � � � � . We assume that the nodes of � � � � are all neighbors of � � � � , that is,
� � � � ��� � � � � � � . In other words, we ignore multihop routing issues.

In this model, a communication schedule is defined by the number � of time
slots it contains and by the time slot � � � � and the band � � � � assigned to each
message � � �

. The time slot � � � � is an integer between 1 and � , and � � � �
is one channel. In time slot � � � � , node � � � � must be sending � on band � � � �
and all nodes in � � � � must be listening on band � � � � to receive the message. For
these mappings to define a valid schedule, the two following constraints must be
satisfied:

1. If � � �� � ' and � � � ��� � � � � ' � then the two sets � � � � � � � � � � � !
�*� � � � ��� and � � � ' � � � � � ' � ! �*� � � ' ��� are disjoint.

94

2. If � � �� � ' , � � � ��� � � � � ' � , and � � � ��� � � � � ' � then � � � � ��� � � � � � ' ��� �
/ .

The first constraint guarantees that two messages sent in the same slot have no
recipient in common, that their senders are distinct, and that the sender of one is
not an intended recipient of the other. The second constraint prevents collision
between two messages. If � � and � ' are sent on the same band in the same slot,
then the recipients of � � must not be within communication range of � � � ' � , the
sender of � ' .

If the objective is to maximize throughput, one must construct two mappings,
� and � , that satisfy the above constraints, while minimizing the number of slots
� . Alternatively, a bound � (i.e., the communication period) may be specified a
priori, and one attempts to construct a schedule with � � � . Both problems can
be solved using general CSP algorithms.

4.1.2 Special Case: Broadcast

An interesting special case is when we have � � � � � � � � � � ��� for all the messages
� . In this case, the recipients of any message from � are all the neighbors of � ; any
message from � is broadcast to all nodes within communication range of � . This
mode of communication, based on broadcast, is very efficient as it maximizes
the number of nodes that a message reaches while minimizing the number of
transmissions. In this broadcast mode, it is easy to see that constraint (1) above
implies constraint (2), which means that the channel assigned to any message � is
irrelevant. Thus, if all messages from every node are broadcast to all its neighbors,
there is no advantage in using more than one channel. Two nodes that transmit in
the same time slot must have no neighbor in common and can then use the same
frequency band.

Given a graph � � � � ��� � representing a sensor network, let �
' � � � � � � �

be the square of � . There is an edge between two vertices � and � � of � in �
'

if and only if the distance between � and � � in � is at most two. In other words,
there is an edge between � and � � in �

'
if � and � � are adjacent or have a common

neighbor in � . Since the band assignment � is irrelevant, constructing a schedule
amounts to assigning a time slot to each message so that constraint (1) is satisfied:
if � � �� � ' and � � � ��� � � � � ' � then � � � ����� � � � ' � � / . By definition of �

'
,

we have � � � ����� � � � ' � �� / if and only if � � � � � and � � � ' � are adjacent in �
'
.

If the communication pattern
�

contains exactly one message from each node,
we can identify the message � and the node � � � � . In this case, the mapping �

95

is nothing other than a (proper) vertex coloring of �
'
. Constructing a schedule

amounts then to finding a minimal coloring of �
'
. Even if the message pattern

�
contains distinct messages with the same sender, one can transform the graph �
and the pattern

�
so that a coloring of �

'
gives a communication schedule.

Coloring the square of a graph, and several generalizations, has been ex-
tensively studied in a context related to ours, namely the assignment of non-
interfering radio channels to base stations of a cellular network. If � has max-
imal degree � , then obviously a coloring of �

'
requires at least � � � colors.

Conversely, it is easy to see that � ' colors are sufficient.
Given a graph � , finding a minimal coloring for �

'
is NP-hard for gen-

eral graphs [McCormick 1983]. The problem becomes polynomial for restricted
classes of graphs (for example, when � is a tree or is obtained by assuming all the
nodes are located on a straight line) [Sen and Luson 1997]. On the other hand, the
problem is known to be NP-hard for point graphs [Sen and Luson 1997], the class
of graphs that model ANTs-like sensor networks. It is also NP-hard for planar
graphs [Ramanathan and Lloyd 1992].

4.1.3 Algorithms and Experiments

We have implemented and experimented with two graph-coloring algorithms for
constructing communication schedules. These algorithms take as input a graph
� , compute its square, and attempt to construct a minimal coloring of �

'
. Our

first prototype uses the Chaff SAT solver [Moskewicz et al 2001]. It encodes the
coloring problem into a boolean satisfiability problem that is then solved by Chaff.
A main limitation of this approach is that the boolean solver does not take into
account the many symmetries present in the problem. A better branch and bound
coloring algorithm was then implemented. It uses a standard heuristic (DSATUR)
and starts from an initial partial coloring obtained from a maximal clique of �

'
.

Example results from these algorithms are given in Table 4.1. These results
were obtained for a fixed set of 100 sensors placed 10 units apart on a 10 � 10
square grid. Different graphs � were then obtained by varying the communication
range of the sensors. Each row of the table shows the maximal degree of � (that is,
the largest number of sensors within communication range of a single node), and
the minimal number of colors found and the search time for both algorithm. The
branch and bound algorithm always finds the minimal coloring on these examples,
but the SAT solver fails (after several hours of search) on the last example, where
the communication range is 31 units.

These examples and further experiments show that straightforward coloring

96

Range Max Degree Coloring SAT alg. Branch/Bound
12 4 5 0 0
15 8 9 0 0
21 12 13 0 0
23 20 23 11.18s 8.17s
29 24 25 0 0
31 28 33 - 81.42s

Table 4.1: Experiments on a ��� � ��� Sensor Grid

algorithms can find optimal communication schedules for sensor networks of up
to a few hundred nodes, provided the communication range (and thus the maximal
degree of the graph �) is relatively small. The branch and bound algorithm is
much more efficient than SAT encoding when the communication range increases.

Although these initial results showed the potential and feasibility of construct-
ing communication schedules for multichannel wireless sensor networks, we did
not pursue this direction further because of a mismatch between our assumptions
and the ANTs challenge-problem hardware. The sensors developed for ANTs
have a communication range that is very large compared with their sensing range.
As a result, in any practical configuration, all the sensors are within communica-
tion range of each other. The corresponding graph � is then a complete graph,
and communication scheduling in such a case reduces to a trivial round robin. A
second limitation is that scheduling requires an a priori knowledge of the com-
munication patterns in the network. Unfortunately, it is very difficult to predict or
bound how much communication will occur when sensors cooperate and negotiate
using complex algorithms.

4.2 A Channel Reservation Protocol

As an alternative to channel scheduling, we investigated an access control protocol
based on channel reservation. This protocol uses channel 0 as a control channel,
while the other channels are used for communicating application data between
sensors. The protocol allows a sensor to reserve one channel for communication
between itself and a set of other sensors. The intent of this protocol is primarily
for an ANTs tracker agent to select a channel on which it will receive data from a
set of sensing agents for tracking purposes.

97

Using this protocol, each node in the network maintains a table � that keeps
track of the current reception channel of all the other nodes. A network node
can be in one of two states: in the default idle state, a node is listening on the
control channel, namely channel 0. In the active state, a node has been allocated a
specific reception channel (other than 0) and is listening on this channel. Initially,
all nodes are idle.

When a node � becomes active, it first selects a free channel (if any), then re-
quests to be allocated that channel by broadcasting a control message on channel
0. If no message collision occurs, all currently idle nodes receive the request and
one of them sends an acknowledgment on the control channel. The reception of
this acknowledgment indicates to � that its request is granted: � moves to the ac-
tive state and switches to its new listening channels. Since both the request and the
acknowledgment are broadcast on channel 0, all the idle nodes receive them and
can determine that � has changed channel and update their table � accordingly.
The protocol attempts to maintain the tables � of all the idle nodes consistent and
up to date. All idle nodes can then determine locally the channel to use when they
need to send data to � . The common table � is also used to determine which node
should respond to requests on the control channel. A specific node � � is selected
from � and is in charge of responding to all requests sent on channel 0. A second
node � � is in charge of responding to requests that originate from � � itself. Both
� � and � � are selected using an arbitrary rule among the idle nodes of � (e.g., the
two idle nodes of smallest indices). An active node cannot keep its copy of � up
to date since it does not receive the control messages and acknowledgments. If
an active node needs to send data to � , it first requests an up-to-date copy of � on
channel 0, this fresh copy is broadcast by � � .

Message collisions may occur on channel 0 if two nodes send requests simul-
taneously. However the protocol attempts to minimize the probability of collisions
by limiting control traffic. Control messages (requests and responses from � � or
� �) are small to reduce the chance of collisions. In addition, all idle nodes listen
to the control traffic and can determine whether or not channel 0 is busy. If an
idle node observe that a request has been sent by another node and has not been
acknowledged, it will delay its own requests until the expected acknowledgment
is transmitted. These mechanisms reduce but do not eliminate message collisions
on the control channel. However, a node that has sent a request can determine via
a timeout mechanism that a request has not been received (when no acknowledg-
ment is received) and thus whether it has succeeded. A random backoff and retry
mechanism allows a node to resend a request in such a case.

We have experimented with a prototype implementation of this protocol in

98

Java for the challenge problem simulator (radsim). Unfortunately, performance
was disappointing. The main difficulty was that Java and the radsim simulator do
not give any means to quickly react and respond to messages received on the con-
trol channel. The Java implementation is multithreaded. An RF message is first
obtained by a Java listening thread that polls the hardware driver, it is then copied
and buffered for another Java thread to process it. Both threads compete with
each other, with other Java threads inside the JVM, and with non-Java processes
running on the same machine. The delay between a message being received by
the hardware and its processing by the software depends on how and when the
listening thread is active. The JVM and operating system do not provide ways
to accurately schedule the listening thread. As a result, we never managed to
reliably make the responder node � � receive all requests on channel 0 and send
acknowledgments in a timely manner. Delayed acknowledgments are disastrous
as they cause many requests to fail and can lead to distinct nodes having inconsis-
tent views of the table � . Furthermore, it is difficult to ensure that all idle nodes
have all processed the same messages as scheduling delays vary across machines,
which again causes inconsistencies.

4.3 Paper on Dynamic Scan Scheduling

A paper describing the results of our previous research in the ANTs program
was written and presented at the IEEE Real-Time Systems Symposium, at Austin
Texas, in December 2002.

99

Chapter 5

Summary and conclusions

The table in Figure 5.1 summarizes our contributions to the solution of the prob-
lems posed in Chapter 1. We repeat here the desiderata set forth in Chapter 1.

Distributed: Any resource allocation algorithm should be distributed in the sense
that it should not depend on some centralized repository of global informa-
tion where allocation decisions must be made. Such an assumption would
be overly restrictive given the constraints imposed within real world settings
in which inter-agent communications may be limited.

Incremental and realtime: The time-stressed nature of realworld problem do-
mains precludes the possibility of computing optimal resource allocations
before execution. Instead, agents should negotiate partial, good-enough al-
locations which can later be refined if time permits.

Flexible task allocation: Task allocation mechanisms should be flexible in the
sense that potential allocations can be explored either sequentially, in terms
of possible task-resource pairs, or combinatorially in the form of sets of
multiple tasks and resources. In the latter case, mechanisms should be able
to deal with tasks that can interact: that is, in which the cost of doing several
tasks is not simply the sum of the individual costs of each task.

Adaptive resource allocation: Dynamic problem settings in which new tasks or
resources can appear (or disappear) during the allocation process require
that it not be necessary for allocation processes to be re-started from scratch
each time the global situation changes.

100

Adaptive Communications: Since bandwidth communications are assumed to
vary, allocation algorithms should be able to adapt to limits imposed by the
communications medium.

Fault tolerant: Any solution should be fault tolerant in the sense that it should
be adaptable to resource loss during execution, as opposed to requiring that
the allocation be re-started from scratch.

Scalable: Any solution should be scalable to very large agent and task settings.

The left-most column of Figure 5.1 refers to the above requirements. The
columns summarize the various algorithms and approaches we have explored. As
shown, the best results were obtained with either the dynamic mediation algorithm
and a combination of a team commitment architecture and monitoring process; or
the DDM system with hierarchical team structure. In the case of mediation, we
did not run any experiments on large scale systems. DDM is less flexible than
mediation since the “negotiation” is kept to an absolute minimum.

101

auction combi-
natorial
auction

combi-
natorial
alloca-
tion

team
commit-
ments

dynamic
media-
tion

monitor-
ing

organi-
zational
structure

Distributed X X X X X
Incremental
and real-
time

X X X X X

Adaptive
resource
allocation

X X X

Flexible
task
allocation

X X X

Adaptive
communi-
cation

X X X X X X X

Fault tol-
erant

X X X X

Scalable X ? X

Figure 5.1: Meeting the desiderata: note that this table highlights the major ele-
ments (left-hand column) addressed by each approach (top row) examined in this
report. The column “combinatorial allocation” refers to the algorithm described
in Chapter 2.

102

Bibliography

[Corkill 1983] D. Corkill and V. Lesser “The use of meta-level control for co-
ordination in a distributed problem solving network,” in proceedings of the
International Joint Conference on Artificial Intelligence, 1983, pages 748–
756.

[Dechter 1988] R. Dechter and A. Dechter. Belief maintenance in dynamic con-
straint networks. In Proc. of AAAI, pages 37–42, 1988.

[Dolev 2000] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[Doyle et al 1991] Jon Doyle, Yoav Shoham, and Michael Wellman. A logic of
relative desire. In Symposium Methodologies for Intelligent Systems, pages
16–31, 1991.

[Durfee 1999] Edmund H. Durfee. Distributed problem solving and planning,
pages 121–164. MIT Press, 1999.

[Ephrati and Rosenschein 1993] E. Ephrati and J. Rosenschein. Multi-agent plan-
ning as a dynamic search for social consensus. In IJCAI, pages 423–429,
1993.

[Feynman 1963] R.P. Feynman. The Feynman Lectures on Physics. Addison-
Wesley Publishing Company, chapters 12-14, Bombay, India, 1963.

[Fischer et al 1995] Klaus Fischer, J �� rg P. Muller, Markus Pischel, and Darius
Schier. A model for cooperative transportation scheduling. In ICMAS, pages
109–116, 1995.

[Hunsberger and Grosz 2000] Luke Hunsberger and Barbara J. Grosz. A combi-
natorial auction for collaborative planning. In ICMAS, 2000.

103

[Ishida 1992] T. Ishida, L. Gasser, and M. Yokoo, “Organization self design of
production systems,” in IEEE Transactions on Knowledge and Data Engi-
neering, 4(2):
123-134, 1992.

[Lesser 1987] V. R. Lesser, D. D. Corkill and E. H. Durfee, “An update on the
Distributed Vehicle Monitoring Testbed”, Computer Science Technical Re-
port, University of Massachusetts, Amherst,1987, 87-111.

[Lesser et al 2003] Lesser, V. and Ortiz, C. and Tambe, M. Distributed Sensor
Networks: a multiagent perspective Kluwer Publishing 2003.

[McCormick 1983] McCormick, S. Optimal approximation of sparse Hessians
and its equivalence to a graph coloring problem. Mathematical Program-
ming, pages 26:153–171, 1983.

[Minton et al 1992] Steven Minton, Mark D. Johnston, Andrew B. Philips, and
Philip Laird. Minimizing conflicts: a heuristic repair method for csps. Arti-
ficial Intelligence, pages 161–205, 1992.

[Moskewicz et al 2001] Moskewicz, M. and Madigan, C. and Zhao, Y. and
Zhang, L. and Malik, S. Chaff: Engineering and Efficient SAT Solver. In
Proceedings of the 39th Design Automation Conference 2001.

[Ortiz 1999] Charles L. Ortiz. A commonsense language for reasoning about
causation and rational action. Artificial Intelligence, 111:73–130, 1999.

[Ortiz 2001] C. L. Ortiz, E. Hsu, M. desJardins, T. Rauenbusch, B. Grosz, O.
Yadgar, and S. Kraus. “Incremental negotiation and coalition formation for
resource-bounded agents,” in Proceedings of the AAAI Fall Symposium,
2001.

[Ortiz and Hsu 2002] Charles L. Ortiz and Eric Hsu. Structured negotiation. In
ICMAS 2002, 2002.

[Parkes 1001] David C. Parkes. Iterative Combinatorial Auctions: Achieving
Economic and Computational Efficiency. PhD thesis, University of Penn-
sylvania, May 2001.

[Poss 1992] Pöss, Christian Doppler in Banska Stiavnica, in The Phenomenon of
Doppler, Prague, 1992.

104

[Ramanathan and Lloyd 1992] Ramanathan, S. and Lloyd, E. On the complexity
of distance-2 coloring. In Proceedings of the 4th International Conference
on Computing and Information pages 71–74,1992.

[Rauenbusch 2003] Timothy Rauenbusch. A decision making procedure for col-
laborative planning. In AAAI 2003, 2003.

[Sandholm 1998] Thomas W. Sandholm. Contract types for satisficing task allo-
cation. In AAAI Spring Symposium, 1998.

[Sandholm 1999a] Thomas W. Sandholm. An algorithm for optimal winner de-
termination in combinatorial auctions. In Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial Intelligence, 1999.

[Sandholm 1999b] Tuomas W. Sandholm. Distributed rational decision making.
In Multiagent Systems, pages 201–258. MIT Press, 1999.

[Sandholm and Suri 2000] T. Sandholm and S. Suri. Improved algorithms for
optimal winner determination in combinatorial auctions and generalizations.
In National Conference on Artificial Intelligence (AAAI), pages 90–97, 2000.

[Scott 1992] W. Richard Scott, Organizations: Rational, Natural and Open,
Prentice-Hall, 1992.

[Sen and Luson 1997] Sen, A. and Luson, M. A new model for scheduling packet
radio networks. In Wireless Networks, 3:71–82, 1997.

[Silva 2002] Silva, O.; Garcia, A; Lucena, C. J. “The Reflective Blackboard Ar-
chitectural Pattern for Developing Large Scale Multi-Agent Systems”. To
appear in the Proceedings of the 1st International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems (SELMAS 2002) at ICSE
2002, Orlando, USA, May 2002.

[Smith and Davis 1983] R.G. Smith and R. Davis. Negotiation as a metaphor for
distributed problem solving. Artificial Intelligence, pages 63–109, 1983.

[So 1996] Y. So and E. Durfee, “Designing Tree-Structured Organizations for
Computational Agents,” Computational and Mathematical Organization
Theory, 2(3), 1996, 219-246.

[Stentz 1995] Anthony Stentz. The focused D* algorithm for real-time replan-
ning. In Proceedings of the IJCAI, 1995.

105

[Tambe 1997] Milind Tambe. Towards flexible teamwork. Journal of Artificial
Intelligence Research, 7:83–124, 1997.

[Tel 1991] G. Tel, Topics in distributed algorithms. Cambridge University press,
pp. 27-31, 1991.

[Verfaillie and Schiex 1994] Gerard Verfaillie and Thomas Schiex. Solution
reuse in dcsps. In AAAI94, pages 307–312, 1994.

[Wagner 2000] T. Wagner and V. Lesser. “Relating Quantified Motivations for
Organizationally Situated Agents.” in Proceedings of ATAL 2000.

[Yadgar 2002] O. Yadgar, S. Kraus and C. L. Ortiz, “Hierarchical organizations
for real-time large-scale task and team environments”, in Proceedings of
AAMAS, 2002.

[Yadgar 2003] O. Yadgar, S. Kraus and C. L. Ortiz, “Information Integration Ap-
proach for Large-Scale Multiagent R.M.”, in Communication in Multiagent
Systems (to appear), 2003.

[Yokoo and Ishida 1999] Makoto Yokoo and Toru Ishida. Multiagent Systems,
chapter 4. MIT Press, 1999.

[Young-pa 1992] Y. So and E. H. Durfee, “A Distributed Problem-Solving In-
frastructure for Computer Network Management.” International Journal of
Intelligent and Cooperative Information Systems, 1(2):363-392,1992.

[Yu 2002] E. Yu and L. M. Cysneiros, “Large-Scale Agent Systems: A World
Modeling Perspective,” in SELMAS02, 2002.

106

