NUWC-NPT Technical Report 11,437
1 July 2003

Simulation Optimization by Genetic Search:
A Comprehensive Study with Applications to
Production Management

James M. Yunker
NUWC Division Newport

Jeffrey D. Tew
General Motors Global R&D Center

Undersea Warfare Center Division

Naval Undersea Warfare Center Division
Newport, Rhode Island

Approved for public release; distribution is unlimited.

20060317 190

PREFACE
This report was prepared under Code 22 internal funding.

The technical reviewer for this report was David J.
Ferkinhoff (Code 2213).

Reviewed and Approved: 1 July 2003

2

Philip A. La Brecque
Head, Combat Systems Department

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Publlc reporting for this collection of information is esti d to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
ining Ihe data ded, and pleti and revi g the collection of informati Send regarding this burden estimate or any other aspect of this collection of
informati: luding suggesti for red: g this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,

Suite 1204, Arlington VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1 July 2003

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Simulation Optimization by Genetic Search: A Comprehensive Study with
Applications to Production Management

6. AUTHOR(S)

James M. Junker
Jeffrey D. Tew

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Undersea Warfare Center Division
1176 Howell Street TR 11,437
Newport, RI 02841-1708

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

In this report, a relatively new simulation optimization technique, the genetic search, is compared to two more established simulation
techniques—the pattern search and the response surface methodology search. The pattern search uses the Hooke-Jeeves algorithm, and
the response surface methodology search uses the computer code of Dennis Smith. The three algorithms are compared for both
accuracy and stability. Accuracy is evaluated in terms of how close each algorithm comes to the optimum, the optimum having been
previously determined from exhaustive testing. Stability is evaluated using the variance of the response function determined from
sample searches—the lower the variance, the more stable the response. The examples tested are an inventory system with integer
decision variables, a university time-sharing computer system with two real decision variables, and a job-shop with five decision
variables (the number of machines located at each station). The response of interest for each system is the cost of operating the system.
The genetic algorithm is shown to be a superior optimization method compared to the two other search techniques.

14. SUBJECT TERMS 15. NUMBER OF PAGES
40

Simulation Simulation Optimization

Genetic Algorithms Artificial Intelligence 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

TABLE OF CONTENTS

Section Page

LIST OF ILLUSTRATIONS ...ttt sttt et e saesesse et ssasssse st ssessesesassnsas i

LIST OF TABLES ..ottt sieetsiete et et esessesesse e ssessssesssae s s se e se s esessesesn ii
1 INTRODUCTION ...ttt seetese st stssesssse e ssessesassasessasassssessesssassesessessesssnnnns 1
2 NON-DERIVATIVE-BASED SEARCHccecenrmiinnrncetreririnnteesereess e seseessessssessssesens 3
2.1 Hooke-Jeeves AIZOTItIMccoeomeiervirieirieiteeereeee ettt sa bt eseae e s ss s esesensons 3
2.2 Pedgen-Gately AIGOTIAMcccoeiriiiiiiriecetrccc ettt rs b 7
3 DERIVATIVE-BASED SEARCHoooieeeiiietssrriersetitesssssssssssssesesesesesesesesesssesesns 9
4 GENETIC ALGORITHMS.......cctieteenteeeteeseesieeiees st ssesessssese s e s ss st ssenasasens 11
5 EXAMPLE 1 — INVENTORY SYSTEM.....cocecteirtrrriicnrenierieeninesissenseseesessessssessssssseses 13
5.1 EXample 1 RESUIS ..ottt ettt as e bs s e sanens 14
5.2 Example 1 Pattern SEarchccocovcirervireieiienicnenrctecteee et sense e esesssenessesessesessanenns 14
5.3 Example 1 Response Surface Searchccoovivvieniicinieninereicirciereeceineeeene s sseseesenenne 16
5.4 Example 1 Genetic SEarchcocovverriniiveeriiiieciecteie e cteeete s st tes e sesessesrones 16
6 EXAMPLE 2 — UNIVERSITY TIME-SHARED COMPUTER SYSTEMorveuennnn. 19
6.1 EXample 2 RESUIScuiiuiriiciiieietetrtctsectectete sttt see e ern s st s s e ss e sreseesesasensseens 19
6.2 Example 2 Pattern SEArchcccvevrevenniiiieiiiceececeeesert et sr e e 19
6.3 Example 2 Response Surface SEarch ...t sesesseseseasssenees 21
6.4 Example 2 Genetic SEarchcoueviviiiieinieiierieieciee ettt seess s se e nns 21
7 EXAMPLE 3 — JOB-SHOP MODELccocvetntreeenietnsneseenesssssesssssessesesssesessssens 23
7.1 EXamPIe 3 RESUILS....covtreieierieiiriieeeieieetertee et s sttt te e ese s sa s eae b sb e e s s enbensens 23
7.2 Example 3 Pattern SEarchc.cccoccvrinininiirieeee ettt ere sae s 24
7.3 Example 3 Response Surface Searchccvieecineicieinineicineeeceeeeesvceeeseseessenseneneens 24
7.4 Example 3 Genetic SEarchcocevuveeireceeeiicteiieiereceeesreeeese st sr s ess et ssenis 24
8 DISCUSSION OF RESULTScoueotreirertnereeineneserteresessesesestessssesessesessesssesssesssnessssens 25
9 STATISTICAL TESTS ... itiiiteteteectrenteerteestesteresessesessestasesssssssesessesssesassessssssassenssess 31
10 SUMMARY ..ottt e it e st sas et st s s s se e sba s s sasesansesesssesssssssssnsasseessanes 33

REFERENCGES ...ttt sttt e et s sn e e sasseesaesaesse s ese b assense st essssesensenennens 35

LIST OF ILLUSTRATIONS
Figure Page
1 Hooke-Jeeves Algorithm Example L.......ccccccvueeineninveiinenncnincnenicniinens et neaeaens 4
2 Hooke-Jeeves Algorithm EXample 2......ccocuevervineciiiiniinniinninniiiiniiniieenneennessessnesenns 5
3 Hooke-Jeeves Algorithm EXample 3.......ccoccocninininininiininiinniiciiiniteetsiessessessessesnens 6
4 Hooke-Jeeves Algorithm EXample 4.......co.coriiniiiiiiiniiiiiiininiinnnesrenee e 7
5 Initial Points for Inventory System Searchcccocerverniiriiiiiiiniiniiinininecie e 15
6 Final Points for Inventory System — Pattern Searchcccccoovevrirvvvicciinnininnieninnnnne 15
7 Final Points for Inventory System — Response Surface Searchccccovvenivivercnneencnnne 16
8 Final Points for Inventory System — Genetic Searchcccovvvvenivniininiiinniininnnenne, 17
9 Initial Points for Computer System Search........c.cocoririiiimniinieiiiiiiiiniciineeeeseneneen, 20
10 Final Points for Computer System — Pattern Search.........couovvevveniniiiniiniiinniiciinnininn, 20
11 Final Points for Computer System — Response Surface Search........cccovvnevvirnncnennnn 21
12 Final Points for Computer System — Genetic Search.......cocceevrveevviiinnniniinieninenieenne 22
13 Average Costs for the Inventory System Searchesocceeeeiniciiiiinininnneieenenene 26
14 Average Number of Runs for the Inventory System Searches.........cccovveeviinreennnennnnenene. 26
15 Average Costs for the Computer System Searches.........cocoveevuinineneeininneeneninnienessesnenne. 27
16 Average Number of Runs for the Computer System Searchescccoeeevveninineneennennnnn. 28
17 Average Costs for the Job-Shop System Searches..........ccoccevviiiniiniinnniinieinineeieeee, 29
18 Average Number of Runs for the Job-Shop System Searches.........cccoceevvieeniinrircinnnninnnnnns 30
LIST OF TABLES
Table Page
1 RoULING OF JOD TYPES ..erviriicririinuiiiieinitcicitcts ittt s et e e e s b s e s s b e bae s 23
2 Inventory System Comparison of Pattern, Response Surface, and Genetic
SEArch MEthOdS ...ccvviiiiiriineeeiese ettt se s st e san e ssabsssass s n e sa s e anenns 25
3 Computer System Comparison of Pattern, Response Surface, and Genetic Search
1Y 531 1 To T LT OO OO USROS 27
4 Job-Shop Comparison of Pattern, Response Surface, and Genetic Search Methods............ 28
5 Statistical Tests for the Pattern Search and Response Surface Methods Versus the
Genetic Search Methodooeeeeireeviniiiniincniniinr et 31
6 Ratio of the Confidence Interval Half-Lengths for the Pattern and Response Surface
Search Methods to Those for the Genetic Search Method..........cocovvinnieniniinniniininnnnn. 32
ii

SIMULATION OPTIMIZATION BY GENETIC SEARCH: A COMPREHENSIVE
STUDY WITH APPLICATIONS TO PRODUCTION MANAGEMENT

1. INTRODUCTION

The field of mathematical modeling is divided into two areas: (1) generative techniques such
as linear programming; and (2) evaluative techniques such as simulation.! A generative
technique shows the optimum given specific parameters and constraints. However, its
application requires certain (sometimes unrealistic) assumptions. The solutions derived from
generative techniques like linear programming are a set of recommended operating parameters
for a system that is now optimized. Generative techniques remove the analyst from the decision-
making process. In addition, with such techniques it is difficult to get a feel for the system, and
the methods suffer from being a “black box”.! Evaluative techniques like simulation are quite
different. They only determine the outcome of an operation given certain variables (or factors)
that are put into the model. Simulation models are often more reflective of the actual systems
they are modeling than are generative techniques. However, very few optimization algorithms
allow for effective application to simulation models, and little is known of their relative
performance. Thus, a lot of simulation optimization in practice is done by undirected, trial-and-
error comparisons, leading to suboptimal results.

The objective of the research described in this report was to develop meaningful
comparisons of leading candidate simulation optimization algorithms through careful evaluation
and optimization of simulations using genetic algorithms (GAs). Specifically, this study
compares the search techniques of the relatively new and promising GAs with those of pattern
search and response surface methodologies, the traditional search techniques in simulation
optimization.

For each example considered in this report, the criterion for comparison is proximity to a
known optimum. The three search techniques were benchmarked on three example problems
common.in simulation, with each optimum previously determined through exhaustive trial
searches. It is important to emphasize that the uniqueness of this study is the linking of GAs to
simulation optimization. The result is a very practical method of simulation model optimization.

Since the cost of central processing unit (CPU) time is of little concern in today’s personal
computer (PC) environment, CPU time was not a test criterion. The attainment of sample points
in a simulation run is usually a time-consuming process, and a genetic search is no exception.
Typically, a genetic search will consume more CPU time than a pattern or a response surface
search. However, a genetic search attains something for its additional simulation time, a more
desirable optimum.

This report discusses three search techniques, starting with the non-derivative-based search,
followed by the derivative-based search, and the genetic search. The three examples of the
methodologies are then discussed with an emphasis on how each search technique’s algorithm
was adapted to that example. Following each example is a discussion of the results using the
three search methods.

1 (2 blank)

2. NON-DERIVATIVE-BASED SEARCH

Historically, there have been two basic approaches to the development techniques of
simulation optimization. The first has been to employ search techniques that do not need
mathematical information, such as the derivative of the gradient of the response surface
information. Examples of techmques that do not require such information are the Hooke-Jeeves
pattern search Rosenbrock’s® method of rotatmg coordinates, and the simplex method of Nelder
and Mead.* Although these methods are unique, they share the traits of a derivative-free search.

2.1 HOOKE-JEEVES ALGORITHM

The Hooke-Jeeves? pattern search method was selected as the non-derivative method for the
comparison test. The main reason for 1ts selection is the extensive literature available on previous
attempts to optimize using this method.” The Hooke-Jeeves method is also a good representative
of a non-derivative algorithm for comparison to the genetic search algorithm. The Hooke-Jeeves
algorithm has been combined with GAs to form a hybrid algorithm designed to improve the
search over the use of either algorithm alone.®

Wilde and Beightler’ provide the following analysis of the method. Consider a univariate
function with independent variables x; (i =1, 2, ..., N) to be maximized. The pattern is
established during the execution of the search itself since the algorithm consists of a series of
conditional statements that determine future search directions and magnitudes. This is done by
stepping &; for variable x; and checking whether or not the function has improved. This new step
is designated t; (1 =1, 2, ..., N), which is a temporary location that is tested to determine if the
optimization move was successful. To begin the search, choose a base point by and a step size J,.
Let & be a vector with its ith component being 8,. All other components are zero. All criteria are
measured at b; (i.e., in simulation optimization, the simulation is run with b;’s decision variables
input and then again at by + 8;, with decision variables by + 8; input). If at this new point the
function is greater than at by, b; + 8, is the temporary head ty; and there was a successful step. If
at by + 8, the function is less than at by, try b, - 8;, and if the function is greater than at by, then
make by - 8; the temporary head t;; and consider this a successful step. If neither point gives a
greater function value than by, then the optimum is kept for that independent variable at by and
there are no successful steps. This analysis can be stated formally as

b, +8, if y(b, +8,)>y(b,)
u=1b, =8, if y(b,-8,)>y(b,)> y(b, +8,) s (1)
b, if y(b,)>max[y(b, +9,), y(b, —6,)]

where t;;, with its double subscript, denotes the first pattern and the first variable x; is being
perturbed. Note that ;g is b.. Adopting the convention, then t;o = by. This is shown in figure 1.

O = step size
X2
.
5 _p=b
) l
~6, ho= b
X1

Figure 1. Hooke-Jeeves Algorithm Example 1

The next perturbation is for x, and is the same as that shown in equation (1) except that the
perturbation begins around ty;, not by. Putting these instructions into a formula,

t, 8, ify(t,, +8,)>¥(t,,)
ty =t 0 =8 iyt =8)>y(t, ;)> (8 +5,) ’ @
b if p(ty,; 1) >max[y(t, ; +8,), y(t, ;. =8,)]

which explains how the jth temporary head is obtained from the preceding one t; ;. When all the
variables have been perturbed (and there has been at least one successful step), then the last
temporary head point t;y is the second base point by, or formally stated t;y = b,. This is shown
in figure 2.

0 = step size

%) l

m -8, tho=b,

X1

Figure 2. Hooke-Jeeves Algorithm Example 2

The original base point by and the newly determined base point b, establish the first pattern
move. Looking at figure 1 it might be helpful to think of a pattern as an arrow with its base at
one end and its origin at the other end. If a similar path of exploration were conducted from b,,
the results would probably be the same, so the search can be expanded by the equation

ty=b,+y*(b,-b,),

where the expansion factor is y, and t;9 shows that while the second pattern has begun it has yet
to perturb the variables. If all the points are moved to y * (b, — by), and each variable is
perturbed as before, the step sizes are larger after being multiplied by the expansion factor y(i.e.,
if the expansion factor y = 2, then the new steps in the pattern move are twice as large as before).
When all of the steps are completed in the sequence and at least one step improves the function,
then

ty,=b, +y*(b;—-b,).

This sequence continues as long as at least one perturbation out of the N independent variable
perturbations improves the function under consideration (see figure 3).

0= step size

X1

Figure 3. Hooke-Jeeves Algorithm Example 3

When there are no successful moves out of the N moves of the independent variables, the
step size & is reduced by dividing the current steps by the expansion factor. The search
concludes when a sequence of variable perturbations is carried out and none are successful, and
the algorithm is at the minimum step size. The optimum of the univariate function
xi(I=1,2,...,N)is assumed to lie at the last base point attained in the algorithm. For example,
if the algorithm is on perturbation t4 and no moves are successful, the base point by is then taken

to be the optimum of the function.

As an illustration, consider figure 4, which shows the steps just discussed. The broken line
shows the optimal path delineated, the solid line shows the test steps or the exploration state
(horizontal or vertical), and the solid line with an arrowhead is the pattern move.

0= step size

hy —6, ho= b,

X1

Figure 4. Hooke-Jeeves Algorithm Example 4

The first two sets of solid lines at right angles to each other in figure 4 are steps for variables
x; and x», respectively (for this case N = 2). Equation (2) holds when calculating t;; and,
similarly, when calculating t3;. Also notice in the third test (attaining t49) that there is no
improvement in stepping in the x, direction, only in stepping in the x; direction; hence, the move
is only horizontal. (In the first two sets, the move is horizontal and vertical.) The pattern search
thus veers to the left. A Hooke-Jeeves pattern search works well when it finds a ridge on the
surface and follows that ridge up the response surface when maximizing the model or down the
response surface when minimizing the model.

2.2 PEGDEN-GATELY ALGORITHM

This section explains the function and use of the Pegden-Gately algorithm as applied to
simulation optimization.

Because of the difficulty in obtaining simulation points, Pegden and Gately have modified
the algorithm named for them.” When a set of N pattern moves fail to find at least one
improvement, the algorithm sets the step sizes to a user-defined minimum, rather than reducing
the steps by a pre-selected expansion factor in graduated reductions.

Pegden and Gately use two other modifications to the Hooke-Jeeves search technique.” The
first modification allows the algorithm to save old points and their values; then, if the pattern
search returns to a previously evaluated point (a finite possibility), the algorithm uses that
previous point and makes no simulation run. This creates some programming overhead, but the
modification is worth incorporating into the simulation program because of the potential number

of simulation runs it saves. The method was also used by Haupt as a time saver when the cost
function is expensive.® The second modification also incurs minimal overhead cost, but it is
quite effective in simulation execution: in a sequence of successful variable perturbations, the
direction of the successful search is retained and used in the subsequent search.

3. DERIVATIVE-BASED SEARCH

A derivative-based search employs more mathematical modeling information than a non-
derivative search. It can find an optimum by employing traditional mathematical techniques.
Each step in this type of search has two purposes: (1) to attain an improved value of the objective
function and (2) to give information useful for locating future points that have more desirable
values. The research in derivative optimization is extensive and thorough. For this discussion,
the response surface methodology (RSM) was chosen to represent the derivative-based search
technique.

In RSM, the algorithm works with a function of several variables, with the exact form of the
function unknown. This can be written in more formal terms as

y=f(X1,X2, "-axN)a (3)

which is in an N + 1 dimensional space. The difference between the number of variables and the
number of independent equations that describe the hyper plane is called the “degrees of
freedom.” In equation (3), there are N + 1 variables (xj, x2, ..., xy) linked by one equation.

In RSM, the algorithm is trying to approximate a surface. The optimum of the objective
function depends on N independent variables (xi, x2, ..., xn), but that objective function is
unknown. Experimentation determines the value of y for any set of values (xi, x, ..., xy). Thus,
the point in the (x1, x3, ..., xy) hyper plane corresponds to an experimental sample, and the point
above it on the response surface, the value of y, represents the experimental outcome. The
experimental points are confined to a bounded portion of the (x1, x3,..., xy) hyper plane that is
called the experimental region. Each experiment gives the elevation of the response surface
above a new point in the experimental region. The objective is to climb as high as possible on
the response surface, using historical information to guide the search toward the summit. This
information is derived from the theoretical mathematics of optimization. For example, the first
derivative of a function tells whether the function is increasing or decreasing and the second
derivative can determine whether the search has hit a maximum, a minimum, or an inflection
point. In simulation optimization, the goal is to find a proxy for the true response values, or a
response surface, and use the proxy instead of the simulation runs in optimization studies. The
objective function is analytically unobtainable and, hence, must be estimated from simulation
data in the manner described below.

Assuming that the true response surface can be expressed as a Taylor series, it can be written
as

P P P
y=p0+ Z B.x, +Z z B,x;x ; +(higher order terms), } 4)
i=1

i=1 j=1

where y is the dependent variable, x; represents the independent variables, f; is the coefficient,
and p is the number of independent variables. If first order or linear effects dominate, an
estimate of the response at (xi, x2, ..., Xy) is

y=ﬂ0+iﬁixi > ®)

where b,, obtained by least squares, is an estimate of £;. This allows the estimation of the
position of the optimum, which lies between experimental samples.

The assumptions a mathematical solution requires, such as continuity and existence of
derivatives, may not hold in complex real world examples, however. Thus, a derivative-based
solution may be suspect. Given these restrictions, a new methodology must be used to optimize
a complicated system.

10

4. GENETIC ALGORITHMS

Nature is an efficient optimizer. It can find acceptable solutions to intractable optimization
problems using efficient optimization mechanisms. Researchers have studied nature and applied
its precepts to system optimization. They copied the mechanisms of a natural phenomenon and
applied them to problems that seemed insolvable by traditional operations research methods.
One concept based on this premise that has shown promise is the use of GAs.

GAs are probabilistic search-optimizing algorithms that do not require mathematical
knowledge of the response surface of the system of interest. The method borrows the paradigms
of genetic evolution—specifically, reproduction, crossover, and mutation—in the search for an
optimum. Given a population at time ¢, called P(f), a simple pseudo-code outline of a GA can be
written as

t<« 0;

initialize P(?);

evaluate P(7);

while (termination condition not satisfied) do;
begin;

tet1r+1;

select P(1);

recombine P(7);

evaluate P(?);

end.

Only binary strings (representing genes) were used in the GAs in this study. The string
consists of the set V= {0, 1}.1° Consider, a seven-bit string (a chromosome) X that can be
symbolized as

X = X1X2X3x4X5X6X7,
and that has one realization
X=0111000.

Now, x; represents a single binary feature or detector that may take on a value of 0 or 1. In
keeping with the genetic analogy, x; is called a gene.

A meaningful genetic search requires a population of strings. Consider a population of
individual strings X}, j= 1, 2, ..., n contained in a population P(f) at time (or generation) z. The
interest is not in the strings alone, but in their similar templates or schema. A schema describes a
subset of strings that have similarities at certain positions.!! Schema are used to simplify the
analysis of GAs.

Each of the three defined GA operators—reproduction, crossover, and mutation—has a
respective parameter that must have an assigned value. They are: (1) population size; (2)
crossover rate; and (3) mutation rate.

11

Various studies have determined that the following values can be appropriate:g’12

1) Population size — 30 to 200,
2) Crossover rate — 0.60 to 1.00, and
3). Mutation rate — 0.001 to 0.003.

The decision variables in a simulation optimization may not always be integers; they can
also be real valued. In the case of real valued variables, the value must be converted from a
parameter x € [0,2’] to another interval [Uyin,Unax]. An appropriate formula (but certainly not the
only one) to map to a different variable interval is

Ui = U
= nin max , (6)

2 -1

where Uy is the specified maximum that the variable can be, U is the specified minimum that
the variable can be, and / is the length of the chromosome or number of bits.

Theoretically, GAs can be very efficient search mechanisms. To reinforce the point, several
examples are discussed below that test the strength of a GA. Both the decision variables and the
output variables are either integer or real (following several distributions). In each of the three
examples, the cost function is minimized. Finally, the basic concepts of a GA are adapted to a
problem, and existing solution methodologies are used whenever possible.

12

S. EXAMPLE 1 — INVENTORY SYSTEM

The first example to test the three search methodologies is an inventory system.'>'* Each
search methodology (pattern search, derivative-based search, and GAs) is applied with the results
displayed graphically. This approach enables direct comparison of the search capabilities of
each algorithm.

A company sells a single product and wants to know how many items to have on hand in the
next n months. The time between demands (when a customer places an order) are independent
identically distributed, or i.i.d., exponential random variables with a mean of 0.1 month. The
size of the demands D is an i.i.d. random variable with distribution of

(1wpi
J2wp§

D= .
3wpi

dwp i

Inventory review is conducted at the start of each month. The formula for the average
ordering cost (AOC) is

AOC =K + icZ, Q)

where X is the setup cost ($32.00), ic is the incremental ordering cost per item ($3.00), and Z is
the number of items ordered. The delivery lag is probabilistic with a uniform distribution of
0.5-1.0. The formula for the policy on ordering inventory is

Z= (8)

S-1 ifI<s

0 iflzs
where / is the inventory level at the beginning of each month before orders are placed, S is the
level of inventory to order up to, and s is the level of inventory that triggers the placement of an
order. Demand is immediately satisfied if inventory is available; if inventory is not available, the
excess demand is backlogged and satisfied by future deliveries. Each arrival satisfies
backlogged demand first with the remainder going into inventory.

Besides the costs outlined above, there are holding costs and shortage costs. The average
holding costs (AHC) can be calculated by

f1+(odz
AHC=h=>— ®
n

13

where n is the number of months, I"I +(#)dt is the time-average inventory, and 4 is the item cost
0

per month ($1). The average shortage cost (ASC) can be calculated as

j"] —()dt
ASC =g 2, (10)
n

where » is the number of months, J."] —(#)dt is the time-average number of items in backlog, and
7 is the item cost per month ($5). The total operating cost (TOC) function is
TOC = AOC + AHC + ASC. €8))

The following discussion assumes that /(0) = 60 (initial inventory is 60 units) and there are no
orders outstanding. The example is simulated for 10 years and the values of s and S, the decision
variables, have been determined to attain the lowest operating costs of the inventory system.

5.1 EXAMPLE 1 RESULTS

Two decision variables, s and S, the reorder point and the order up to point, respectively,
have the same range of values: a low of 10 and a high of 200, with s always being smaller than S.
The decision variables are only integers, but equation (6) is used in the genetic search because of
the ranges involved. A rounding subroutine was employed to round off the values to the nearest
integer. The pattern search and the response surface search were initiated from a U(12, 198)
distribution for the 50 initial points. For all of the algorithms

10 <s< 200,
10 <S§< 200, and
s <8

So the cost function is equation (11) and the search space is s + S.

5.2 EXAMPLE 1 PATTERN SEARCH

The pattern search used an initial step size of 2, and an expansion factor of 2. The plot in
figure 5 is of the initial points for an inventory system, s versus S, with the approximated
optimum s = 25 and S = 65 (indicated by a square).

14

200

+
+
+
+
1504
Small
S
J + . .
100+
. +
+
* +
+
50- P .o
+) . . - + * +
+ O, ¥ + o+
+ +
0o 50 100 150 200
BigS

Figure 5. Initial Points for Inventory System Search

(optimum designated by a square)

Figure 6 is a plot of the 50 simulation optimization results realized after the pattern search.
The points are the same as the points in figure 5, except for one. The pattern search has a very
high hurdle—either there is a statistically significant improvement in the function (a decline in
costs) or that search path is not taken. As a result, this test was successful for only one point; it
failed for all the others. The pattern search does not find an optimum quickly or easily.

200
.
N
.
1504
+
Small
s +
1001 *
+ +
.
+ +
s
501 + * S
1 T P *
+ o, * + o+
++ *
00 50 100 150
BigS

200

Figure 6. Final Points for Inventory System — Pattern Search

(optimum designated by a square)

15

5.3 EXAMPLE 1 RESPONSE SURFACE SEARCH

A better search method resulted from the response surface methodology outlined by the
computer code of Dennis Smith.!® The initial points are identical to those in figure 5. Again, the
step size for the response surface is 2 for both variables. The plot after the response surface
search is shown in figure 7.

200
R +
1 +
1604
+
Small
s
. +

1004 ¥ ¥

+
+ s
+
+ + +
.
504 . + o+ * t+ + : '
% . +
+ +
* o+ * + *oe
+ e + . + + o+
0o 50 100 180 200
Big S

Figure 7. Final Points for Inventory System — Response Surface Search
(optimum designated by a square)

5.4 EXAMPLE 1 GENETIC SEARCH

The genetic search method for example 1 used 50 searches, with each search consisting of a
simple genetic search and each generation having a population of 30 individuals. Seven
generations were used with each individual in a generation replicated three times to account for
sampling error. Each sample point has variability that must be considered. To account for
sampling error, the computer simulation was run three times with identical inputs to get a
variance. The average of three samples accounts for any outlier.

The inputs for the decision variables used equation (6) with Up» of 10 and Upax 0of 200. An
example chromosome is A; where

A;=101110110101010101001010010101.

Each chromosome is 30 units long and each variable makes up 15 units of that string; thus
I =15 in equation (6). The plot in figure 8 shows the final points and the calculated optimum,
indicated by a square, for the inventory system in figure 5. In each of the 50 runs of the genetic

16

search, the entire set of seven generations was scanned for an optimum, and that optimum was
used. Hence, there are 50 points for the 50 runs. The data show a very tight pattern close to the
calculated optimum. This is also the optimum reported by Law and Kelton,'® and is clearly an

improvement over the output for the pattern search and the response surface search.

200
1504
Small |
s «
1004
50
+4 4
hd e F4 4+
Resociy.
+ + 4
0o 50 100 150
Big$

Figure 8. Final Points for Inventory System — Genetic Search
(optimum designated by a square)

200

17 (18 blank)

6. EXAMPLE 2 — UNIVERSITY TIME-SHARED COMPUTER SYSTEM

The second example is based on a university computer system.'>!” In this section, a
university committee plans a computer system consisting of 40 terminals and would like to know
how to set the design parameters to minimize the average response time at a given terminal.
Each student working at a terminal “thinks” for a time that is exponentially distributed with a
mean of 2.5 seconds. The student then sends a command to the CPU of the mainframe that has a
service time that is an exponentially distributed random variable with a mean of s seconds. The
arriving jobs join a queue and are served in round-robin fashion with each job getting a
maximum service quantum of g seconds. When the service time of a job s is less than or equal to
g, the CPU spends time g plus an overhead 7 processing the job, and then sends the job back to
the terminal. If the service time is greater than g, the CPU spends time g plus 7 processing the
job, and then sends the uncompleted job back to the end of the queue, with its service time
decreased by g seconds. This process is repeated until the service is completed.

The response time is the time that elapses from when the job is submitted to when it is
finished being processed by the CPU. This is the response to be minimized. The decision
variables are quantum of processing time g and overhead 7. The response function can be written
as

cost=T, %1000+ N___ %1000 +...

res queue

2 2
((0.00S—ohd)) *1000+((0'50_qmm)j £10,000 - (12)
0.005 0.50

6.1 EXAMPLE 2 RESULTS

As noted above, the example has two decision variables: quantum and overhead. The
quantum variable has a minimum value of 0.010 and a maximum value of 1.00, and the overhead
has a minimum value of 0.001 and a maximum value of 0.01. The quantum variates were
generated by a pseudo-random number generator with uniform distribution U(0.012, 0.98), while
the overhead variates by U(0.0012, 0.098) to obtain the 50 initial points for the pattern search.
The decision variables were real valued, so equation (6) was used when performing the genetic
search. For all algorithms, the constraints 0.01 < quantum < 1.00 and 0.001 < quantum < 0.01
hold.

6.2 EXAMPLE 2 PATTERN SEARCH

The pattern search used an initial step size of 0.10 for quantum and 0.001 for overhead, and
an expansion factor of 2 for both decision variables. The step size for the quantum variable is
0.02, which is also its minimum step size; the step size for overhead is 0.00002, which is also the
minimum step size. Figure 9 is a plot of the initial 50 points, quantum versus overhead, with the
optimum of quantum of 0.50 and overhead of 0.005 indicated by a square.

19

.
+ +
* +
0.81 J *
1 +
+ + +
+ . +
0.61 . .
+ . N
guant | + o, + +
0.4 - - :
’ +
+ +
+ .
£ +
02 * Yo
; + +
.
+ + 4+
+
0p 0.002 0.004 0.006 0.008 0.01
ovhd

Figure 9. Initial Points for Computer System Search
(optimum designated by a square)

The pattern search program was run on a SunSparc /PX. The plot of 50 simulation
optimization results is shown in figure 10 for the pattern search with the true optimum indicated
by a square. These points are the same as those in figure 9, which again indicates poor
performance for this algorithm.

.
+ +
* +
.
0.8 N
.
+ + +
+ + 4
08 R .
.
juant + s, : * *
& + o+ . *
0.4 .
+ +
s
* +
.
0.2 " s
9 + +
.
+ + 4+
.
00 0.002 0.004 0006 0.008 0.01
ovhd

Figure 10. Final Points for Computer System — Pattern Search
(optimum designated by a square)

20

6.3 EXAMPLE 2 RESPONSE SURFACE SEARCH

Using Smith’s method,’” the initial points for the response surface search are the same as in
figure 9. The step size is 0.02 for the quantum decision variable and 0.0002 for the overhead
decision variable. The response surface program, run on an IBM RS/6000, took about 2 hours.
The plot of the final response surface search points is shown in figure 11. While this is an
improvement compared to the Hooke-Jeeves pattern-search algorithm, the scattering is fairly
loose.

1
0.6
1 +
o + * +
0.6} e .
+ + T4
yuant | T . +D:+ + .
] t. oy o 7 + ¥
0.4- . X *
. . .
. +
0.24 *
00 0.002 0.004 0.006 0.008 0.01
ovhd

Figure 11. Final Points for Computer System — Response Surface Search
(optimum designated by a square)

6.4 EXAMPLE 2 GENETIC SEARCH

The genetic search method employed 50 searches, each of which consisted of a simple
genetic search with a population of 30 individuals per generation. There were seven generations
with each individual in a generation replicated three times.

Equation (6) was used again since the variables were real valued. The chromosome was 30
units long with each variable taking up 15 units. The value of / was 15.

The genetic search program was run on a SunSparc /PX. Figure 12 is a plot of the final
points. The data show a very tight pattern very close to the optimum, which is a clear
improvement over the output for the pattern search and the response surface search.

21

0.6
&
0.6- . +++++++ +
*+ +
0.4 ++4¢+r ’
. +
R +
0.2
00 0.002 0.004 0.006 0.008 0.01
ovhd

Figure 12. Final Points for Computer System — Genetic Search
(optimum designated by a square)

22

7. EXAMPLE 3 — JOB-SHOP MODEL

The third example is a job-sho;) model that consists of a manufacturing facility made up of
five groups of identical machines.'>'® The jobs arrive at an i.i.d. exponential rate with a mean of
0.125 hour. There are three types of jobs, 1, 2, and 3, and their respective probabilities of arrival
are 0.30, 0.50, and 0.20. Each job type requires specific tasks; thus, each job type has a different
routing to the machine groups. A job does not have to visit all five machine groups, and most do
not. The time to perform a task at a particular machine is an independent, 2-Erlang, randomly
distributed variable whose mean is dependent on the job type and the group in which the
machine belongs.

The routing of the job types is shown in table 1. The respective mean time at each group
expansion appears in parentheses next to the machine group number.

Table 1. Routing of Job Types

Job Type Machine Groups
1 3 (0.50), 1 (0.60), 2 (0.85), 5 (0.50)

2 4 (1.10), 1 (0.80), 3 (0.7-5)
3 2 (1.20), 5 (0.25), 1 (0.70), 4 (0.90), 3 (1.00)

It is possible for a job to arrive at a group and find all the machines busy. In that case, the
job joins a first-in-first-out queue. The job-shop is simulated to run for 365 days, 8 hours per
day. Each group contains the same machines; the company wants to minimize the overall
average job total delay by optimally placing the machines in the different groups. The overall
average delay is a weighted average of the average delays calculated in each of the five queues
for each machine. The weights are the probabilities of a part going to each station. The decision
variables are the number of machines in each of the five groups. The response function can be
written as

cost = overall average delay in queue x 1000 + total number of machines x 1000. (13)

7.1 EXAMPLE 3 RESULTS
All decision variables in the job-shop example, in this case the number of identical machines

at each of the five workstations, are integers. A U(3,13) distribution was used to generate the 50
initial points for the pattern search. For all algorithms 1 <M, <15 and

where i=1,2, 3,4, and 5.

23

7.2 EXAMPLE 3 PATTERN SEARCH

The pattern search used an initial step size of 2, a minimum step size of 2, an expansion
factor of 2, a lower boundary of 1, and an upper boundary of 15 for the five variables. The
approximated optimums were determined to be M =9, M, =5, M3 =8, My =6, and Ms = 3. The
data for the job-shop system are not shown because with the five decision variables it is not
possible to show the data points on the same type of figures used earlier. While up to three sets
of decision variables can be shown on a single figure, to show them all would require 30 figures.
Thus, they are impractical to display.

7.3 EXAMPLE 3 RESPONSE SURFACE

The initial points are identical to those in the pattern search, so they are not displayed again.

7.4 EXAMPLE 3 GENETIC SEARCH

The methodology was 50 searches, with each search consisting of a simple genetic search
and a population of 30 individuals. There were seven generations with each individual in a
generation replicated three times. Each chromosome was 30 units long with each of the five
variables 4 units long for a low of 1 and a high of 15. If by chance the string worked out to be 0,
a finite possibility since this example deals with integers, the string was increased by 1.

The run itself took about 150 hours. The data show a very tight pattern close to the
calculated optimum. This is an improvement over the output of both the pattern and the response

surface searches.

24

8. DISCUSSION OF RESULTS

The results of the computer experiments were very informative, as shown in table 2. The
data show that a genetic algorithm executes a superior search compared to a pattern or a response
surface search, but requires more computer time. However, speed of the search was not a critical
factor in the evaluation of the applications considered in this study.

Table 2. Inventory System Comparison of Pattern, Response Surface,
and Genetic Search Methods

Lower 9.5%| Upper 9.5% Search
Type of Response | Average | Variance Limit Limit Method
. 129.91 544.48 135.35 124.38 Pattern
Optimum response ™24 089.17 151.68 136.77 | Response Surface
106.73 2.40 107.10 106.37 Genetic
30.46 | 3,005.43 NA NA Pattern
Distance traversed 9.06 837.83 NA NA Response Surface
NA NA NA NA Genetic
Distance from initial 86.09 2,47959 NA NA Pattern
points to optimum 86.09 2,479.59 NA NA Response Surface
NA NA NA NA Genetic
Distance from final | 59.76 | 1,985.01 NA NA Pattern
points to optimum 80.32 | 2,270.68 NA NA Response Surface
9.88 18.83 NA NA Genetic
56.04 739.26 62.48 49.60 Pattern
Runs per search 2022 | 18838 | 2347 16.96 | Response Surface
414.00 | 34,053.06 | 4.57.74 370.26 Genetic

The average cost for the genetic search was 106.73 (variance = 2.40); for the response
surface search it was 144.22 (variance = 989.17), and for the pattern search it was 129.91
(variance = 544.48). (See figure 13.) The result is that the genetic search method is superior to
the other two in terms of both response and stability. The low variance for the genetic algorithm
also results in a narrower confidence interval as shown in table 2. Based on these results, the
genetic search is also superior in value and stability. The larger relative variance indicates a
failure for the pattern search and the response surface search.

25

1000

Cost 500 -

Inventory System

Genetic Res. Sur. Pattern
{I Cost 106.73 144.22 129.91
IO Variance 24 989.17 544.48

Figure 13. Average Costs for the Inventory System Searches

The average number of runs per search for the inventory system is much larger for the
genetic search at 414 (variance = 34053.06) than for the other two search methods. This
compares with the average number of runs for the response surface of 20.22 (variance = 188.38)
and for the pattern search of 56.04 (variance = 739.26). (See figure 14.) The larger number of
runs seems to be a small tradeoff for a clearly superior search.

40000

20000 -

Inventory System

o

G

g
e

0 i B 4 i A A - R
Genetic Res. Sur. Patter ‘
B Average Runs 414 20.22 56.04
O Variance of Runs | 34053.06 188.38 739.26

Figure 14. Average Number of Runs for the Inventory System Searches

Table 3 compares the results of the computer time-sharing model searches.

26

Table 3. Computer System Comparison of Pattern, Response Surface,
and Genetic Search Methods

Lower Upper
9.5% 9.5%
Type of Response Average | Variance Limit Limit Search Method

51497.53 | 1394843.85 | 51777.47 51217.60 | Pattern

Optimum response 17699.50 | 2837811.31 | 18098.78 17300.22 | Response Surface

16150.66 | 133220.98 | 16237.18 16064.1.5 | Genetic

0.16 0.02 NA NA Pattern
Distance traversed 0.16 0.03 NA NA Response Surface
NA NA NA NA Genetic
Distance from initial 0.21 0.02 NA NA Patiern
points to optimum 0.21 0.02 NA NA Response Surface
NA NA NA NA Genetic
Distance from final 0.09 0.01 NA NA Pattern
points to optimum 0.09 0.01 NA NA Response Surface
0.0.5 0.01 NA NA Genetic
49.38 453.02 54.43 44.34 Pattern
Runs per search 40.08 630.6.5 46.03 34.13 Response Surface
365.40 39147.80 412.30 318.50 Genetic

The average cost for the computer systems example for the genetic search was 16,150.66
(variance = 133,220.98); for the response surface search it was 17,699.50 (variance =
2,837,811.31); and for the pattern search it was 51,497.53 (variance = 1,394,843.84). (See figure
15.) Therefore, the genetic search method is superior to the other two in terms of response and
stability. The low variance for the genetic algorithm also results in a narrower confidence
interval, as shown in table 3.

Computer Terminal

4000000 -

Cost 2000000 -

Genetic Res. Sur. Pattern
B Cost 16150.66 17699.5 51497.53
O Variance | 133220.98 |2837811.31 | 1394843.84

Figure 15. Average Costs for the Computer System Searches

27

The average number of runs per search for the computer system example is quite large for
the genetic search at 365.40 (variance = 39,147.80). This compares with the average of the
response surface search of 40.08 (variance = 630.65) and the pattern search of 49.38 (variance =
453.02). (See figure 16.) The larger number of runs seems to be a small tradeoff for a superior

search.

Computer terminal
40000 |
Cost 20000 -
Genetic Res. Sur. Pattern ’
Average Runs 365.4 40.08 49.38
[0 Variance 39147.8 630.65 453.02

Figure 16. Average Number of Runs for the Computer System Searches

Consider the job-shop example’s search output in table 4.

Table 4. Job-Shop Comparison of Pattern, Response Surface, and Genetic Search Methods

Lower 9.5% Upper 9.5%
Type of Response | Average | Variance Limit Limit Search Method
L 222436453 | 1.927x10™° | 255335993.61 | 189536913.30 | Pattern
Optimum response 3977737 | 16998523 40698.54 38744.09 | Response Surface
40082.05 | 8864470 40787.74 39376.36 Genetic
) 0.67 1.82 NA NA Pattern
Distance traversed 5.23 4.00 NA NA Response Surface
NA NA NA NA Genetic
Distance from 9.02 5.39 NA NA Pattern
initial points to 9.02 5.39 NA NA Response Surface
optimum NA NA NA NA Genetic
Distance from final 8.61 5.84 NA NA Pattern
points to optimum 6.94 6.61 NA NA Response Surface
6.57 4.82 NA NA Genetic
41.52 279.32 45.48 37.56 Pattern
Runs per search 65.28 265.06 69.14 6142 | Response Surface
385.20 38694.85 413.80 338.58 Genetic

28

The average cost of the job shop search for the genetic search was 40,082.05 (variance =
8,864,470), while for the response surface search it was 39,721.31 (variance = 16,998,523) and
for the pattern search it was 222,436,453 (variance = 1.927 x 10'°). (See figure 17.) The result is
that the genetic search method is superior compared to the pattern search in terms of both
average response and stability and was equal to the response surface search in terms of average
response and superior to it in terms of stability. The variance also resulted in narrower
confidence intervals, as shown in table 4. The confidence intervals for the pattern search are
very wide, narrow somewhat for the response surface search, and are narrower still for the

genetic search.

Job Shop System

2E+16

1E+16 -

Lo T—

Genetic Res. Sur. Pat?érn \
M Cost 40082.05 39721.31 | 222436453
O Variance | 8864470 16998523 | 1.927E+16

Figure 17. Average Costs for the Job-Shop System Searches

The average number of runs per search for the job-shop system is much larger for the
genetic search at 385.20 (variance 38,694.85) than for the response surface search at 65.28
(variance = 265.06) and for the pattern search at 41.52 (variance = 279.32). (See figure 18.)
Again, the larger number of runs seems to be a small tradeoff for a superior search.

29

Job Shop System
40000 -~
20000 -
Genetic Res. Sur. Pattern
W Average Runs 3852 65.28 41.52
O Variance 38694.85 265.06 279.32

Figure 18. Average Number of Runs for the Job-Shop System Searches

9. STATISTICAL TESTS

A t test was used for equal but unknown variances to determine if there was a statistically
significant difference between the means of either the pattern search or the response surface
search. The stability or variance of the response of the genetic search for each example was
compared to both the pattern search and the response surface search. As shown in table 5, the
difference for the inventory system optimized using the pattern search versus the genetic search
is statistically significant, as it is for the response surface search versus the genetic search. In
both comparisons the p value, the level of significance, was essentially zero.

Table 5. Statistical Tests for the Pattern Search and the Response Surface Methods
Versus the Genetic Search Method

p p
Example Comparison Scheme T; Value F Value
Pattern versus genetic search 7.01 0.00 | 227.27 0.00

Inventory System Response versus genetic search 841 | 000 | 413.0 | 0.00

Pattern versus genetic search 202.19 | 0.00 10.47 0.00
Response versus genetic search 6.35 0.00 21.30 0.00

Computer Systems

Pattern versus genetic search 11.32 0.00 |2.1x10° | 0.00
Response versus genetic search 5.02 0.62 1.92 0.02

Job-Shop

The difference for the computer system example optimized using the pattern search versus
the genetic search is statistically significant, as it is for the response surface search versus the
genetic search. For this example, the p value was employed instead of a threshold test for
statistical significance. Since the p value was essentially zero, any level of significance chosen
by the analyst would have led to the conclusion that the difference in the means was statistically
significant. Chance has very little to do with the difference.

. The job-shop system example shows a change in the trend. While it is true that the
difference in the pattern search versus the genetic search is significant at zero, there is no
significant difference at any low level between the response surface search and the genetic
search.

The genetic search is superior in terms of stability in every case. The only time the p value
is not zero is in the job-shop system example, specifically the response surface search method
versus the genetic search. In that case, the p value is only 0.02. The genetic searches show more
stability in all comparisons.

Consider the 95% confidence interval half-length about the response of each of the two
traditional searches compared to the genetic search. A ratio is created with the genetic search
confidence interval’s half-length in the numerator (since it was the smallest) to see the
comparison clearly. The results are shown in table 6.

31

Table 6. Ratio of the Confidence Interval Half-Lengths for the Pattern
and Response Surface Search Methods to Those for the Genetic Search Method

Comparison Scheme Ratio Numerical
Value
Inventory System:
Genetic Search 0367
Pattern Search 5.531 0.046
Genetic Search 0,367
Response Search 7.255 0.049
Computer System:
Genetic Search 86.51
Pattern Search 27993 0.103
Genetic Search 8651
- | Response Search 39928 0.217
Job-Shop:
Genetic Search 705,69
Pattern Search 32899540.15 0.00
Genetic Search 705,69
Response Search 977.69 0.722

The genetic search produces confidence intervals in all three examples with the smallest
ratios for the inventory system (genetic search/pattern search, genetic search/response surface
search) and the job-shop (genetic search/pattern search) examples. The largest ratio occurs in the
job-shop (genetic search/response surface search) examples. None of these ratios is greater than
1 (i.e., the genetic search always produces a smaller confidence interval ratio than the other
methods). :

The comparison of the genetic search method to the pattern search method for the inventory
system example showed the genetic search method’s confidence interval to be about 4.6% of the
pattern search’s confidence interval and 4.9% of the response surface search’s confidence
interval.

The comparison of the genetic search method to the pattern search method for the computer
system example showed the genetic search confidence’s interval to be about 10% of the pattern
search’s confidence interval and 22% of the response surface search’s confidence interval.

For the job-shop system example, the genetic search’s confidence interval half-length
compared to the pattern search’s half-length is essentially zero. However, the genetic search’s
confidence interval half-length is about 72% of the response surface search’s confidence interval
half-length.

32

10. SUMMARY

An examination of the response surface search method versus the GA search method shows
that the response surface search actually compares quite well with the GA in terms of accuracy
and speed on some occasions. Unlike the GA method, which showed itself to be robust in all
circumstances, the response surface method does not always hold up.

The pattern search method does not compare favorably with either of the other two more
sophisticated search methods, GA and response surface. The difference between the pattern
search and the response surface search is most obvious in the graphic plots around the
approximated optimum. The response surface search showed a more intense concentration
around the optimum than did the pattern search.

The genetic search method gave excellent robust results, where the other two methods
seemed to work well in only certain circumstances. This was, however, at the cost of more CPU
time.

33 (34 blank)

10.

11.

12.

13.

14.

REFERENCES

R. Suri, “An Overview of Evaluative Models to Flexible Manufacturing Systems,” Annals
of Operations Research, vol. 3, 1985, pp. 13-21.

R. Hooke and T. A. Jeeves, “Direct Search Solution of Numerical and Statistical
Problems,” Journal of the Association for Computing Machinery, vol. 8, no. 2, 1961,
pp. 212-229.

H. H. Rosenbrock, “An Automatic Method for Finding the Greatest or Least Value of a
Function,” Computer Journal, vol. 3, 1960, pp. 175-184.

J. A. Nelder and R. Mead, “A Simplex Method for Function Optimization,” Computer
Journal, no. 7, 1965, pp. 308-313.

C. D. Pegden and M. P. Gately, “A Decision Optimization Module for SLAM,”
Simulation, vol. 34, 1980, pp. 18-25.

M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley and
Sons, New York, 2000.

D. J. Wilde and C. S. Beightler, Foundations of Optimization, Prentice-Hall, Englewood
Cliffs, NJ, 1967, pp. 307-310.

R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, John Wiley and Sons, New
York, 1998.

J. J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 1, no. 16, 1986, pp. 122-128.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA, 1989, p. 5.

J. H. Holland, Adaption in Natural and Artificial Systems, The University of Michigan
Press, Ann Arbor, MI, 1970.

K. A. De Jong, “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,”
Ph.D. Dissertation, Department of Computer and Communication Sciences, University of
Michigan, Ann Arbor, M1, 1975.

A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, Second Edition,
McGraw-Hill, New York, 1991, pp. 75-103.

J. Banks and J. S. Carson, Discrete-Event System Simulation, Prentice-Hall, Englewood
Cliffs, NJ, 1984, pp. 253-251.

35

15.

16.

17.

18.

36

D. E. Smith, “Automated Response Surface Methodology in Digital Computer Simulation,
Volume 1: Program Description and User's Guide,” Desmatics Inc., State College, PA,

1978.

A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill, New
York, 1982, p. 379.

P. Bratley, B. Fox, and L. E. Schrage, A Guide to Simulation, SpringerVerlag, New York,
1987, pp. 257-259.

R. Varela, R. V. Camino, J. Puente, A. Gomez, and A. M. Vidal, “Chapter 8, Solving Job-
Shop Scheduling Problems by Means of Genetic Algorithms,” in The Practical Handbook
of Genetic Algorithms, L. Chambers ed., Chapman and Hall, Boca Raton, FL, 2001.

INITIAL DISTRIBUTION LIST

Addressee No. of Copies
Center for Naval Analyses 1

Defense Technical Information Center 2

